1
|
Dias OFM, Valle NME, Mamani JB, Costa CJS, Alves AH, Oliveira FA, Rego GNA, Galanciak MCS, Felix K, Nucci MP, Gamarra LF. Longitudinal Evaluation of the Detection Potential of Serum Oligoelements Cu, Se and Zn for the Diagnosis of Alzheimer's Disease in the 3xTg-AD Animal Model. Int J Mol Sci 2025; 26:3657. [PMID: 40332200 PMCID: PMC12026877 DOI: 10.3390/ijms26083657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of β-amyloid (Aβ) and hyperphosphorylated tau, leading to neuroinflammation, oxidative stress, and neuronal death. Early detection of AD remains a challenge, as clinical manifestations only emerge in the advanced stages, limiting therapeutic interventions. Minimally invasive biomarkers are essential for early identification and monitoring of disease progression. This study aims to evaluate the sensitivity of the relationship between serum oligoelement levels as biomarkers and the monitoring of AD progression in the 3xTg-AD model. Transgenic 3xTg-AD mice and C57BL/6 controls were evaluated over 12 months through serum oligoelement quantification using inductively coupled plasma mass spectrometry (ICP-MS), Aβ deposition via immunohistochemistry, and cognitive assessments using memory tests (Morris water maze and novel object recognition test), as well as spontaneous locomotion analysis using the open field test. The results demonstrated that oligoelements (copper, zinc, and selenium) were sensitive in detecting alterations in the AD group, preceding cognitive and motor deficits. Immunohistochemistry was performed for qualitative purposes, confirming the presence of β-amyloid in the CNS of transgenic animals. Up to the third month, labeling was moderate and restricted to neuronal cell bodies; from the fifth month onward, evident extracellular deposits emerged. Behavioral assessment indicated impairments in spatial and episodic memory, as well as altered locomotor patterns in AD mice. These findings reinforce that oligoelement variations may be associated with neurodegenerative processes, including oxidative stress and synaptic dysfunction. Thus, oligoelement analysis emerges as a promising approach for the early diagnosis of AD and the monitoring of disease progression, potentially contributing to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Olivia F. M. Dias
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Javier B. Mamani
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Cicero J. S. Costa
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Arielly H. Alves
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Fernando A. Oliveira
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Gabriel N. A. Rego
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Marta C. S. Galanciak
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Keithy Felix
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| | - Mariana P. Nucci
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, SP, Brazil;
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, SP, Brazil; (O.F.M.D.); (N.M.E.V.); (J.B.M.); (C.J.S.C.); (A.H.A.); (F.A.O.); (G.N.A.R.); (M.C.S.G.); (K.F.)
| |
Collapse
|
2
|
Shippy DC, Oliai SF, Ulland TK. Zinc utilization by microglia in Alzheimer's disease. J Biol Chem 2024; 300:107306. [PMID: 38648940 PMCID: PMC11103939 DOI: 10.1016/j.jbc.2024.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia defined by two key pathological characteristics in the brain, amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau. Microglia, the primary innate immune cells of the central nervous system (CNS), provide neuroprotection through Aβ and tau clearance but may also be neurotoxic by promoting neuroinflammation to exacerbate Aβ and tau pathogenesis in AD. Recent studies have demonstrated the importance of microglial utilization of nutrients and trace metals in controlling their activation and effector functions. Trace metals, such as zinc, have essential roles in brain health and immunity, and zinc dyshomeostasis has been implicated in AD pathogenesis. As a result of these advances, the mechanisms by which zinc homeostasis influences microglial-mediated neuroinflammation in AD is a topic of continuing interest since new strategies to treat AD are needed. Here, we review the roles of zinc in AD, including zinc activation of microglia, the associated neuroinflammatory response, and the application of these findings in new therapeutic strategies.
Collapse
Affiliation(s)
- Daniel C Shippy
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Sophia F Oliai
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA
| | - Tyler K Ulland
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA; Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, USA.
| |
Collapse
|
3
|
Fasano G, Godoy RS, Angiulli E, Consalvo A, Franco C, Mancini M, Santucci D, Alleva E, Ciavardelli D, Toni M, Biffali E, Ekker M, Canzoniero LMT, Sordino P. Effects of low-dose methylcyclopentadienyl manganese tricarbonyl-derived manganese on the development of diencephalic dopaminergic neurons in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117151. [PMID: 34020261 DOI: 10.1016/j.envpol.2021.117151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Fuel additive methylcyclopentadienyl manganese tricarbonyl (MMT) is counted as an organic manganese (Mn)-derived compound. The toxic effects of Mn (alone and complexed) on dopaminergic (DA) neurotransmission have been investigated in both cellular and animal models. However, the impact of environmentally relevant Mn exposure on DA neurodevelopment is rather poorly understood. In the present study, the MMT dose of 100 μM (about 5 mg Mn/L) caused up-regulation of DA-related genes in association with cell body swelling and increase in the number of DA neurons of the ventral diencephalon subpopulation DC2. Furthermore, our analysis identified significant brain Mn bioaccumulation and enhancement of total dopamine levels in association with locomotor hyperactivity. Although DA levels were restored at adulthood, we observed a deficit in the acquisition and consolidation of memory. Collectively, these findings suggest that developmental exposure to low-level MMT-derived Mn is responsible for the selective alteration of diencephalic DA neurons and with long-lasting effects on fish explorative behaviour in adulthood.
Collapse
Affiliation(s)
- Giulia Fasano
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Rafael Soares Godoy
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | - Elisa Angiulli
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Ada Consalvo
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; Department of Medical, Oral and Biotechnological Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini, 66100, Chieti, Italy
| | - Cristina Franco
- Department of Sciences and Technologies, University of Sannio, Via Francesco de Sanctis, 82100, Benevento, Italy
| | - Maria Mancini
- Department of Neuroscience and Physiology, New York University School of Medicine, 435 East 30th Street, New York, NY, 10016, USA; NYU Marlene and Paolo Fresco Institute for Parkinson's Disease and Movement Disorders, New York University School of Medicine, 222 East 41st Street, New York, NY, 10017, USA
| | - Daniela Santucci
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Enrico Alleva
- Centro di Riferimento per le Scienze Comportamentali e La Salute Mentale, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Domenico Ciavardelli
- Centro Scienze Dell'Invecchiamento e Medicina Traslazionale - CeSI-MeT, Via Polacchi 11, 66100, Chieti, Italy; School of Human and Social Science, "Kore" University of Enna, Cittadella Universitaria, 94100, Enna, Italy
| | - Mattia Toni
- Department of Biology and Biotechnology ''Charles Darwin", Sapienza University, Via Borelli 50, 00161, Rome, Italy
| | - Elio Biffali
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Marc Ekker
- Department of Biology, University of Ottawa, Marie-Curie Private, Ottawa, ON K1N 9A7, Canada
| | | | - Paolo Sordino
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy.
| |
Collapse
|
4
|
Saracco M, Maccauro G, Urbani A, Ciavardelli D, Persichilli S, Ancillai G, Pasqualetti P, Calvisi V, Logroscino G. Ceramic-on-metal bearing in short stem total hip arthroplasty: ions, functional and radiographic evaluation at mid-term follow-up. Hip Int 2020; 30:52-58. [PMID: 33267696 DOI: 10.1177/1120700020971661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The aim of this study is to evaluate clinical, radiographic and laboratory results of ceramic-on-metal (CoM) (hybrid hard bearing) in total hip arthroplasty (THA), associated with a short stem implant. METHODS From a cohort of 37 patients suffering from primary or secondary hip osteoarthritis who underwent THA using CoM bearing, 19 were suitable for this study. All procedures were performed by the same surgeon using a posterior-lateral approach. All patients were compared clinically using the Harris Hip Score (HHS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), visual analogue scale (VAS), 12-item Short Form Health Survey (SF12F/M), and radiographically (offset, CD angle, limb length discrepancy, cup inclination and anteversion, subsidence, osseointegration, heterotopic ossification). Blood samples were collected in order to evaluate chromium (Cr) and cobalt (Co) ions level. Radiographic evaluations were carried out by 3 different blinded surgeons. A statistical analysis was performed. RESULTS At a mean follow-up of 97 (73-125) months all implanted stems were well-positioned and osseointegrated. Clear improvements were observed for clinical scores comparing preoperative and postoperative values. Radiographic evaluation showed a good ability to restore proper articular geometry. Cr ion analysis revealed values below the safety threshold except for 1 case. Serum levels of Co were below the threshold in all patients. There was a statistically significant correlation only between Cr metal ions and length of follow-up. CONCLUSIONS CoM bearing has proven to be reliable and safe at a mean 8-year follow-up for patients in whom the components were correctly implanted. The rise of blood metal ions was minimal and involved neither systemic or local toxicity nor influenced clinical results.
Collapse
Affiliation(s)
- Michela Saracco
- Department of Orthopaedics, Catholic University of Rome-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Maccauro
- Department of Orthopaedics, Catholic University of Rome-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Andrea Urbani
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenico Ciavardelli
- Centre of Sciences and Aging and Translational Medicine, CeSI-MeT, Chieti, Italy
- School of Human and Social Science, "Kore" University of Enna, Enna, Italy
| | - Silvia Persichilli
- Institute of Biochemistry and Clinical Biochemistry, Catholic University of Rome-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giulio Ancillai
- Department of Orthopaedics, Catholic University of Rome-Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Patrizio Pasqualetti
- Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Rome, Italy
| | - Vittorio Calvisi
- Mininvasive and Computer-Assisted Orthopaedic Surgery, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giandomenico Logroscino
- Mininvasive and Computer-Assisted Orthopaedic Surgery, Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
5
|
Disease Ionomics: Understanding the Role of Ions in Complex Disease. Int J Mol Sci 2020; 21:ijms21228646. [PMID: 33212764 PMCID: PMC7697569 DOI: 10.3390/ijms21228646] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022] Open
Abstract
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.
Collapse
|
6
|
Xie Z, Wu H, Zhao J. Multifunctional roles of zinc in Alzheimer’s disease. Neurotoxicology 2020; 80:112-123. [DOI: 10.1016/j.neuro.2020.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
|
7
|
Yu L, Qiao N, Li T, Yu R, Zhai Q, Tian F, Zhao J, Zhang H, Chen W. Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ 2019; 7:e6963. [PMID: 31198632 PMCID: PMC6553448 DOI: 10.7717/peerj.6963] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS AND AIMS Aluminum contamination of water is becoming increasingly serious and threatens the health status of fish. Lactobacillus plantarum CCFM639 was previously shown to be a potential probiotic for alleviation aluminum toxicity in Nile tilapia. Considering the significant role of the gut microbiota on fish health, it seems appropriate to explore the relationships among aluminum exposure, probiotic supplementation, and the gut microbiota in Nile tilapia and to determine whether regulation of the gut microbiota is related to alleviation of aluminum toxicity by a probiotic in Nile tilapia. METHODS AND RESULTS The tilapia were assigned into four groups, control, CCFM639 only, aluminum only, and aluminum + CCFM639 groups for an experimental period of 4 weeks. The tilapia in the aluminum only group were grown in water with an aluminum ion concentration of 2.73 mg/L. The final concentration of CCFM639 in the diet was 108 CFU/g. The results show that environmental aluminum exposure reduced the numbers of L. plantarum in tilapia feces and altered the gut microbiota. As the predominant bacterial phyla in the gut, the abundances of Bacteroidetes and Proteobacteria in aluminum-exposed fish were significantly elevated and lowered, respectively. At the genus level, fish exposed to aluminum had a significantly lower abundance of Deefgea, Plesiomonas, and Pseudomonas and a greater abundance of Flavobacterium, Enterovibrio, Porphyromonadaceae uncultured, and Comamonadaceae. When tilapia were exposed to aluminum, the administration of a probiotic promoted aluminum excretion through the feces and led to a decrease in the abundance of Comamonadaceae, Enterovibrio and Porphyromonadaceae. Notably, supplementation with a probiotic only greatly decreased the abundance of Aeromonas and Pseudomonas. CONCLUSION Aluminum exposure altered the diversity of the gut microbiota in Nile tilapia, and probiotic supplementation allowed the recovery of some of the diversity. Therefore, regulation of gut microbiota with a probiotic is a possible mechanism for the alleviation of aluminum toxicity in Nile tilapia.
Collapse
Affiliation(s)
- Leilei Yu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Nanzhen Qiao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tianqi Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Ruipeng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qixiao Zhai
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Fengwei Tian
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology & Business University, Beijing, China
| |
Collapse
|
8
|
Peters DG, Purnell CJ, Haaf MP, Yang QX, Connor JR, Meadowcroft MD. Dietary lipophilic iron accelerates regional brain iron-load in C57BL6 mice. Brain Struct Funct 2017; 223:1519-1536. [DOI: 10.1007/s00429-017-1565-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 11/07/2017] [Indexed: 11/29/2022]
|
9
|
Harris CJ, Voss K, Murchison C, Ralle M, Frahler K, Carter R, Rhoads A, Lind B, Robinson E, Quinn JF. Oral zinc reduces amyloid burden in Tg2576 mice. J Alzheimers Dis 2015; 41:179-92. [PMID: 24595193 DOI: 10.3233/jad-131703] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The aggregation of amyloid-β in Alzheimer's disease can be affected by free transition metals such as copper and zinc in the brain. Addition of copper and zinc with amyloid acts to increase aggregation and copper additionally promotes the formation of reactive oxygen species. We propose that reduction of brain copper by blocking uptake of copper from the diet is a viable strategy to regulate the formation of insoluble amyloid-β in the brain of Tg2576 mice. Mice were treated with regimens of zinc acetate, which acts with metallothionein to block copper uptake in the gut, at various times along their lifespan to model prevention and treatment paradigms. We found that the mice tolerated zinc acetate well over the six month course of study. While we did not observe significant changes in cognition and behavior, there was a reduction in insoluble amyloid-β in the brain. This observation coincided with a reduction in brain copper and interestingly no change in brain zinc. Our findings show that blocking copper uptake from the diet can redistribute copper from the brain and reduce amyloid-β aggregation.
Collapse
Affiliation(s)
- Christopher J Harris
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Kellen Voss
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Charles Murchison
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Martina Ralle
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Kate Frahler
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Raina Carter
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Allison Rhoads
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Betty Lind
- Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| | - Emily Robinson
- Department of Molecular and Medical Genetics, Oregon Health and Sciences University, Portland, OR, USA
| | - Joseph F Quinn
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), Portland Veterans Affairs Medical Center, Portland, OR, USA Department of Neurology, Oregon Health and Sciences University, Portland, OR, USA
| |
Collapse
|
10
|
Pompilio A, Ciavardelli D, Crocetta V, Consalvo A, Zappacosta R, Di Ilio C, Di Bonaventura G. Stenotrophomonas maltophilia virulence and specific variations in trace elements during acute lung infection: implications in cystic fibrosis. PLoS One 2014; 9:e88769. [PMID: 24586389 PMCID: PMC3938418 DOI: 10.1371/journal.pone.0088769] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/15/2014] [Indexed: 01/04/2023] Open
Abstract
Metal ions are necessary for the proper functioning of the immune system, and, therefore, they might have a significant influence on the interaction between bacteria and host. Ionic dyshomeostasis has been recently observed also in cystic fibrosis (CF) patients, whose respiratory tract is frequently colonized by Stenotrophomonas maltophilia. For the first time, here we used an inductively mass spectrometry method to perform a spatial and temporal analysis of the pattern of changes in a broad range of major trace elements in response to pulmonary infection by S. maltophilia. To this, DBA/2 mouse lungs were comparatively infected by a CF strain and by an environmental one. Our results showed that pulmonary ionomic profile was significantly affected during infection. Infected mice showed increased lung levels of Mg, P, S, K, Zn, Se, and Rb. To the contrary, Mn, Fe, Co, and Cu levels resulted significantly decreased. Changes of element concentrations were correlated with pulmonary bacterial load and markers of inflammation, and occurred mostly on day 3 post-exposure, when severity of infection culminated. Interestingly, CF strain – significantly more virulent than the environmental one in our murine model - provoked a more significant impact in perturbing pulmonary metal homeostasis. Particularly, exposure to CF strain exclusively increased P and K levels, while decreased Fe and Mn ones. Overall, our data clearly indicate that S. maltophilia modulates pulmonary metal balance in a concerted and virulence-dependent manner highlighting the potential role of the element dyshomeostasis during the progression of S. maltophilia infection, probably exacerbating the harmful effects of the loss of CF transmembrane conductance regulator function. Further investigations are required to understand the biological significance of these alterations and to confirm they are specifically caused by S. maltophilia.
Collapse
Affiliation(s)
- Arianna Pompilio
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Domenico Ciavardelli
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- School of Engineering, Architecture and Motor Science, “Kore” University, Enna, Italy
| | - Valentina Crocetta
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Ada Consalvo
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
| | - Roberta Zappacosta
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Carmine Di Ilio
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
| | - Giovanni Di Bonaventura
- Clinical Microbiology Unit, Center of Excellence on Aging, “G. d'Annunzio” University Foundation, Chieti, Italy
- Department of Experimental and Clinical Sciences, School of Medicine, “G. d'Annunzio” University, Chieti, Italy
- * E-mail:
| |
Collapse
|
11
|
Ciavardelli D, D'Orazio M, Pieroni L, Consalvo A, Rossi C, Sacchetta P, Di Ilio C, Battistoni A, Urbani A. Proteomic and ionomic profiling reveals significant alterations of protein expression and calcium homeostasis in cystic fibrosis cells. MOLECULAR BIOSYSTEMS 2013; 9:1117-26. [DOI: 10.1039/c3mb25594h] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|