1
|
Petropoulos V, Mordini D, Montorsi F, Akturk M, Menichetti A, Olivati A, Petrozza A, Morandi V, Maiuri M, Gianneschi NC, Garavelli M, Valgimigli L, Cerullo G, Montalti M. Photochemical Pathways and Light-Enhanced Radical Scavenging Activity of 1,8-Dihydroxynaphthalene Allomelanin. J Am Chem Soc 2025; 147:10031-10043. [PMID: 40052704 PMCID: PMC11926873 DOI: 10.1021/jacs.5c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Melanins play important roles in nature, particularly in coloration and photoprotection, where interaction with light is essential. Biomimetic melanins represent an advantageous alternative to natural melanin for technological applications, sharing the same unique biocompatibility, as well as optoelectronic properties. Allomelanin, derived from 1,8-dihydroxynaphthalene, has been reported to exhibit even better photoprotective and antioxidant properties than the most studied example of biomimetic melanin, polydopamine. However, the interaction of allomelanin with light remains largely unexplored. Here we report the excited state dynamics of allomelanin in a wide range of time windows from femtoseconds to microseconds to minutes, using different experimental techniques, i.e., ultrafast transient absorption, nanosecond transient absorption, X-band electron paramagnetic resonance and radical quenching assays. We find that the photophysics of allomelanin starkly differs from that of the widely studied polydopamine, with broadband excitonically coupled states funneling the absorbed energy to a lower energy species in less than 1 ps. Independent of the excitation wavelength, a long-lived (>450 μs) photoproduct is populated in ≈24 ps. Quantum chemistry calculations suggest that the photoproduct primarily exhibits the character of localized 1,8-naphthoquinone radical anions. This light-driven increase in the anionic semiquinone-like radical concentration enhances the antioxidant activity of allomelanin. These results suggest that the two mechanisms considered at the basis of photoprotection, light-extinction and antioxidant action, are indeed synergistic in allomelanin and not independent, paving the way for new applications of allomelanin in nanomedicine, photocatalysis, energy conversion and environmental remediation.
Collapse
Affiliation(s)
- Vasilis Petropoulos
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Dario Mordini
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Francesco Montorsi
- Dipartimento
di Chimica industriale “Toso Montanari”, Università di Bologna, via Piero Gobetti 85, Bologna 40129, Italy
| | - Mert Akturk
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Arianna Menichetti
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Andrea Olivati
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan 20134, Italy
| | - Annamaria Petrozza
- Center
for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, Via Rubattino 81, Milan 20134, Italy
| | - Vittorio Morandi
- Istituto
per la Microelettronica e i Microsistemi (IMM), Consiglio Nazionale delle Ricerche (CNR), via Gobetti 101, Bologna 40129, Italy
| | - Margherita Maiuri
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Nathan C. Gianneschi
- Departments
of Chemistry, Materials Science & Engineering, Biomedical Engineering
and Pharmacology, Northwestern University, Evanston, Illinois 60208, United States
- Department
of Chemistry &Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | - Marco Garavelli
- Dipartimento
di Chimica industriale “Toso Montanari”, Università di Bologna, via Piero Gobetti 85, Bologna 40129, Italy
| | - Luca Valgimigli
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna,Via Selmi 2, Bologna 40126, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano 20133, Italy
| | - Marco Montalti
- Department
of Chemistry “Giacomo Ciamician”, University of Bologna,Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|
2
|
Wang L, Sun Y, Zhang H, Shi W, Huang H, Li Y. Selective sensing of catechol based on a fluorescent nanozyme with catechol oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123003. [PMID: 37336190 DOI: 10.1016/j.saa.2023.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Nanozymes, an unusual category of nanomaterials possessing enzymatic properties, and have generated considerable interest regarding their application feasibilities on several important fronts. In the present work, an innovative sensing device for catechol was established ground on a fluorescent nanozyme (Cu-BDC-NH2) that exhibited catechol oxidase activity. The fluorescent nanozyme combines both functions of catechol recognition and response signal output, and can realize the sensing of catechol without the addition of other chromogenic agents. In the existence of Cu-BDC-NH2, catechol can be oxidized efficiently to produce quinones or polymers with strong electron absorption capacity, which immediately results in efficient fluorescence quenching of Cu-BDC-NH2. However, other common phenolic compounds, such as phenol, the other two diphenols (hydroquinone and resorcinol), phloroglucinol, and chlorophenol, do not result in efficient fluorescence quenching of Cu-BDC-NH2. The method shows a nice linear relationship between catechol concentration prep the fluorescence intensity of Cu-BDC-NH2 in the scope of 0-10 μM, with a detection limit of 0.997 μM. The detection of catechol in actual water samples has also achieved the satisfactory consequences, which provides a new strategy for the convenient and selective detection of catechol.
Collapse
Affiliation(s)
- Le Wang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Yue Sun
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hao Zhang
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Wenqi Shi
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongxin Li
- Key Lab of Groundwater Resources and Environment of Ministry of Education, Key Lab of Water Resources and Aquatic Environment of Jilin Province, College of New Energy and Environment, Jilin University, Changchun 130021, China.
| |
Collapse
|
3
|
An S, Jeon EJ, Han SY, Jeon J, Lee MJ, Kim S, Shin M, Cho SW. pH-Universal Catechol-Amine Chemistry for Versatile Hyaluronic Acid Bioadhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202729. [PMID: 35989097 DOI: 10.1002/smll.202202729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Catechol, a major mussel-inspired underwater adhesive moiety, has been used to develop functional adhesive hydrogels for biomedical applications. However, oxidative catechol chemistry for interpolymer crosslinking and adhesion is exclusively effective under alkaline conditions, with limited applications in non-alkaline conditions. To overcome this limitation, pH-universal catechol-amine chemistry to recapitulate naturally occurring biochemical events induced by pH variation in the mussel foot is suggested. Aldehyde moieties are introduced to hyaluronic acid (HA) by partial oxidation, which enables dual-mode catechol tethering to the HA via both stable amide and reactive secondary amine bonds. Because of the presence of additional reactive amine groups, the resultant aldehyde-modified HA conjugated with catechol (AH-CA) is effectively crosslinked in acidic and neutral pH conditions. The AH-CA hydrogel exhibits not only fast gelation via active crosslinking regardless of pH conditions, but also strong adhesion and excellent biocompatibility. The hydrogel enables rapid and robust wound sealing and hemostasis in neutral and alkaline conditions. The hydrogel also mediates effective therapeutic stem cell and drug delivery even in dynamic and harsh environments, such as a motile heart and acidic stomach. Therefore, the AH-CA hydrogel can serve as a versatile biomaterial in a wide range of pH conditions in vivo.
Collapse
Affiliation(s)
- Soohwan An
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Seung Yeop Han
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihoon Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
4
|
Li Y, Liu Y, Liu S, Zhang L, Shao H, Wang X, Zhang W. Photoaging of Baby Bottle-Derived Polyethersulfone and Polyphenylsulfone Microplastics and the Resulting Bisphenol S Release. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3033-3044. [PMID: 35142490 DOI: 10.1021/acs.est.1c05812] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study evaluated the release of bisphenol S (BPS) from polyethersulfone (PES) and polyphenylsulfone microplastics (MPs) derived from baby bottles under UV irradiation. Released BPS fluctuates over time because it undergoes photolysis under UV254 irradiation. Under UV365 irradiation, the highest released concentration at 50 °C was 1.7 and 3.2 times that at 35 and 25 °C, respectively, as the activation energy of the photochemical reactions responsible for MP decay was reduced at high temperatures. Low concentrations of humic acid (HA, ≤10 mg·L-1) promote BPS release because HA acts as a photosensitizer. A high concentration of HA (10∼50 mg·L-1) decreases the BPS release because HA shields MPs from light and scavenges reactive radicals that are produced via photochemical reactions. For example, under UV irradiation, hydroxyl radicals (•OH) attack results in the breakage of ether bonds and the formation of phenyl radicals (Ph•) and phenoxy radicals (Ph-O•).The•OH addition and hydrogen extractions further produce BPS from the decayed MPs. A leaching kinetics model was developed and calibrated by the experimental data. The calibrated model predicts the equilibrium level of BPS release from MPs that varies with the surface coverage density of BPS and leaching rate constants. This study provides groundwork that deepens our understanding of environmental aging and the chemical release of MPs.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Yuan Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Shengdong Liu
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Heng Shao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| |
Collapse
|
5
|
Leresche F, Vialykh EA, Rosario-Ortiz FL. Computational Calculation of Dissolved Organic Matter Absorption Spectra. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:491-500. [PMID: 34905334 DOI: 10.1021/acs.est.1c06252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The absorption spectrum of dissolved organic matter (DOM) is a topic of interest to environmental scientists and engineers as it can be used to assess both the concentration and physicochemical properties of DOM. In this study, the UV-vis spectra for DOM model compounds were calculated using time-dependent density functional theory. Summing these individual spectra, it was possible to re-create the observed exponential shape of the DOM absorption spectra. Additionally, by predicting the effects of sodium borohydride reduction on the model compounds and then calculating the UV-vis absorbance spectra of the reduced compounds, it was also possible to correctly predict the effects of borohydride reduction on DOM absorbance spectra with a relatively larger decrease in absorbance at longer wavelengths. The contribution of charge-transfer (CT) interactions to DOM absorption was also evaluated, and the calculations showed that intra-molecular CT interactions could take place, while inter-molecular CT interactions were proposed to be less likely to contribute.
Collapse
Affiliation(s)
- Frank Leresche
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Elena A Vialykh
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Fernando L Rosario-Ortiz
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Environmental Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
6
|
Bai S, Kim B, Kim C, Tamwattana O, Park H, Kim J, Lee D, Kang K. Permselective metal-organic framework gel membrane enables long-life cycling of rechargeable organic batteries. NATURE NANOTECHNOLOGY 2021; 16:77-84. [PMID: 33139935 DOI: 10.1038/s41565-020-00788-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Rechargeable organic batteries show great potential as a low-cost, sustainable and mass-producible alternatives to current transition-metal-based cells; however, serious electrode dissolution issues and solubilization of organic redox intermediates (shuttle effect) have plagued the capacity retention and cyclability of these cells. Here we report on the use of a metal-organic framework (MOF) gel membrane as a separator for organic batteries. The homogeneous micropores, intrinsic of the MOF-gel separator, act as permselective channels for targeted organic intermediates, thereby mitigating the shuttling problem without sacrificing power. A battery using a MOF-gel separator and 5,5'-dimethyl-2,2'-bis-p-benzoquinone (Me2BBQ) as the electrode displays high cycle stability with capacity retention of 82.9% after 2,000 cycles, corresponding to a capacity decay of ~0.008% per cycle, with a discharge capacity of ~171 mA h g-1 at a current density of 300 mA g-1. The molecular and ionic sieving capabilities of MOF-gel separators promise general applicability, as pore size can be tuned to specific organic electrode materials. The use of MOF-gel separators to prevent side reactions of soluble organic redox intermediates could lead to the development of rechargeable organic batteries with high energy density and long cycling life.
Collapse
Affiliation(s)
- Songyan Bai
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
| | - Byunghoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea
| | - Chungryeol Kim
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Orapa Tamwattana
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
| | - Hyeokjun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
| | - Jihyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
| | - Dongwhan Lee
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul National University, Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
McKay G. Emerging investigator series: critical review of photophysical models for the optical and photochemical properties of dissolved organic matter. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1139-1165. [PMID: 32270849 DOI: 10.1039/d0em00056f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical measurements (absorbance and fluorescence) are widely used to track dissolved organic matter (DOM) quantity and quality in natural and engineered systems. Despite many decades of research on the optical properties of DOM, there is a lack of understanding with regards to the underlying photophysical model that is the basis for these optical properties. This review both summarizes advances to date on the photophysical properties of DOM and seeks to critically evaluate the photophysical models for DOM optical properties. Recent studies have refined the quantitative understanding of DOM photophysical properties such as excited state lifetimes and energies, rates of different photophysical processes, and quantum yields. Considering fundamental models, more clarity is needed on whether DOM photophysical processes are due to a superposition of non-interacting components (superposition model), or whether a portion of optical signals can be ascribed to electronically interacting moieties, for example in the form of electron donor-acceptor complexes (charge transfer model). Multiple studies over more than two decades have provided evidence for the charge transfer model. Questions have been raised, however, about the broad applicability of the charge transfer model. The charge transfer and superposition model are critically reviewed in light of this current research. Recommendations are given for future studies to help clarify the accuracy of these competing photophysical models.
Collapse
Affiliation(s)
- Garrett McKay
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
8
|
Grieco C, Empey JM, Kohl FR, Kohler B. Probing eumelanin photoprotection using a catechol:quinone heterodimer model system. Faraday Discuss 2019; 216:520-537. [PMID: 31012874 DOI: 10.1039/c8fd00231b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eumelanin is a natural pigment with photoprotective and radical scavenging characteristics, which are vital for a multitude of living organisms. However, the molecular mechanisms behind these functions remain obscure, in part because eumelanin is a heterogeneous polymer composed of a complex assortment of structural and chemical domains. Despite uncertainty about its precise structure, the functional units of eumelanin are thought to include quinones in various oxidation states. Here, we investigate the photochemistry of a catechol : o-quinone heterodimer as a model system for uncovering the photoprotective roots of eumelanin. Ultrafast transient absorption measurements in the UV to near-IR spectral regions are used to identify the photochemical processes that follow selective excitation of the o-quinone in the heterodimer using 395 nm light. We find that both singlet and triplet o-quinone excited states induce hydrogen atom transfer from the catechol, forming semiquinone radical pairs that persist beyond 2.5 ns, which is the upper time limit accessible by our instrument. Furthermore, the hydrogen atom transfer reaction was found to occur 1000 times faster via the singlet channel. Excited state pathways such as these may be important in eumelanin, where similar hydrogen-bonded interfaces are believed to exist between catechol and o-quinone functional groups.
Collapse
Affiliation(s)
- Christopher Grieco
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | - Jennifer M Empey
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
9
|
Radhika S, Saranya S, Harry NA, Anilkumar G. Recent Advances and Prospects in the Chemistry of
o
‐Benzoquinones. ChemistrySelect 2019. [DOI: 10.1002/slct.201902637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Sankaran Radhika
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Salim Saranya
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Nissy Ann Harry
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| | - Gopinathan Anilkumar
- School of Chemical SciencesMahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
- Advanced Molecular Materials Research Centre (AMMRC)Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam Kerala 686560 India
| |
Collapse
|
10
|
Milić JV, Schneeberger T, Zalibera M, Diederich F, Boudon C, Ruhlmann L. Spectro-electrochemical toolbox for monitoring and controlling quinone-mediated redox-driven molecular gripping. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Milić JV, Diederich F. The Quest for Molecular Grippers: Photo‐Electric Control of Molecular Gripping Machinery. Chemistry 2019; 25:8440-8452. [DOI: 10.1002/chem.201900852] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 03/25/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Jovana V. Milić
- Laboratory of Photonics and InterfacesÉcole Polytechnique Fédéralé de Lausanne 1015 Lausanne Switzerland
| | - François Diederich
- Department of Chemistry and Applied BiosciencesETH Zurich Vladimir-Prelog-Weg 3 8010 Zurich Switzerland
| |
Collapse
|
12
|
Milić JV, Schneeberger T, Zalibera M, Milowska KZ, Ong QK, Trapp N, Ruhlmann L, Boudon C, Thilgen C, Diederich F. Thioether‐Functionalized Quinone‐Based Resorcin[4]arene Cavitands: Electroswitchable Molecular Actuators. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201800225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jovana V. Milić
- Laboratory of Organic ChemistryETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
- Laboratory of Photonics and Interfaces, Station 6, EPF Lausanne CH-1015 Switzerland
| | - Thomas Schneeberger
- Laboratory of Organic ChemistryETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Michal Zalibera
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food TechnologyInstitute of Physical Chemistry and Chemical Physics, Radlinského 9 812 37 Bratislava Slovak Republic
| | - Karolina Z. Milowska
- Department of Physics and Center for Nanoscience (CeNS)Ludwig-Maximilians-Universität (LMU) Amalienstaße 54 80799 Munich Germany
- Nanosystems Initiative Munich (NIM) Schellingstraße 4 80799 Munich Germany
- Department of Materials Science and MetallurgyUniversity of Cambridge 27 Charles Babbage Rd CB3 0FS Cambridge UK
| | - Quy K. Ong
- Supramolecular Nano-Materials LaboratoryInstitute of Material Science and Engineering, Station 12, MXG, EPF Lausanne CH-1015 Switzerland
| | - Nils Trapp
- Laboratory of Organic ChemistryETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Laurent Ruhlmann
- Université de Strasbourg, Laboratoire d'Électrochimie et de Chimie Physique du Corps SolideInstitut de Chimie de Strasbourg 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Corinne Boudon
- Université de Strasbourg, Laboratoire d'Électrochimie et de Chimie Physique du Corps SolideInstitut de Chimie de Strasbourg 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Carlo Thilgen
- Laboratory of Organic ChemistryETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - François Diederich
- Laboratory of Organic ChemistryETH Zurich Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
13
|
Ju KY, Fischer MC, Warren WS. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin. ACS NANO 2018; 12:12050-12061. [PMID: 30500158 DOI: 10.1021/acsnano.8b04905] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, we investigate the relationship between the complex hierarchical assembly structure of eumelanin, its characteristic broad absorption band, and the highly unusual nonlinear dynamics revealed by pump-probe or transient absorption microscopy. Melanin-like nanoparticles (MelNPs), generated by spontaneous oxidation of dopamine, were created with uniform but adjustable size distributions, and kinetically controlled oxidation was probed with a wide range of characterization methods. This lets us explore the broad absorption bands of eumelanin models at different assembly levels, such as small subunit fractions (single monomeric and oligomeric units and small oligomer stacks), stacked oligomer fractions (protomolecules), and large-scale aggregates of protomolecules (parental particles). Both the absorption and pump-probe dynamics are very sensitive to these structural differences or to the size of intact particles (a surprising result for an organic polymer). We show that the geometric packing order of protomolecules in long-range aggregation is key secondary interactions to extend the absorption band of eumelanin to the low energy spectrum and produce drastic changes in the transient absorption spectrum.
Collapse
Affiliation(s)
- Kuk-Youn Ju
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
| | - Martin C Fischer
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
- Department of Physics , Duke University , Durham , North Carolina 27708 , United States
| | - Warren S Warren
- Department of Chemistry , Duke University , Durham , North Carolina 27708 , United States
- Department of Physics , Duke University , Durham , North Carolina 27708 , United States
- Department of Radiology , Duke University , Durham , North Carolina 27710 , United States
| |
Collapse
|
14
|
|
15
|
Im BG, Do M, Kim Y, Cho M, Jang JH. BiFACIAL ( Biomimetic Freestanding Anisotropic Catechol- Interfaces with Asymmetrically Layered) Films as Versatile Extracellular Matrix Substitutes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7602-7613. [PMID: 28910078 DOI: 10.1021/acsami.7b10023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biological naïve extracellular matrices (ECMs) exhibit anisotropic functions in their physical, chemical, and morphological properties. Representative examples include anisotropic skin layers or blood vessels simultaneously facing multiphasic environments. Here, anisotropically multifunctional structures called BiFACIAL ( biomimetic freestanding anisotropic catechol- interfaces with asymmetrically layered) films were developed simply by contacting two polysaccharide solutions of heparin-catechol (Hep-C) and chitosan-catechol (Chi-C). Such anisotropic characters were due to controlling catechol cross-linking by alkaline pH, resulting in a trimodular structure: a rigid yet porous Hep-C exterior, nonporous interfacial zone, and soft/highly porous Chi-C interior. The anisotropic features of each layer, including the porosity, rigidity, rheology, composition, and ionic strength, caused the BiFACIAL films to show spontaneously biased stimuli responses and differential behaviors against biological substances (e.g., blood plasma). The films could be created in situ in live animals and imitated the structural/functional aspects of the representative anisotropic tissues (e.g., skin and blood vessels), providing valuable ECM-like platforms for the creation of favorable environments or for tissue regeneration or disease treatment by effectively manipulating cellular behaviors.
Collapse
Affiliation(s)
- Byung Gee Im
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Minjae Do
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Korea
| | - Yoojin Kim
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Mira Cho
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| | - Jae-Hyung Jang
- Department of Chemical and Biomolecular Engineering , Yonsei University , 50 Yonsei-ro , Seodaemun-gu , Seoul 120-749 , Korea
| |
Collapse
|
16
|
Milić J, Zalibera M, Talaat D, Nomrowski J, Trapp N, Ruhlmann L, Boudon C, Wenger OS, Savitsky A, Lubitz W, Diederich F. Photoredox-Switchable Resorcin[4]arene Cavitands: Radical Control of Molecular Gripping Machinery via Hydrogen Bonding. Chemistry 2017; 24:1431-1440. [DOI: 10.1002/chem.201704788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 01/10/2023]
Affiliation(s)
- Jovana Milić
- Laboratory of Organic Chemistry; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics; Slovak University of Technology; Radlinského 9 81237 Bratislava Slovakia
- Max Planck Institute for Chemical Energy Conversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Darius Talaat
- Laboratory of Organic Chemistry; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Julia Nomrowski
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| | - Laurent Ruhlmann
- Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg; Université de Strasbourg; 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Corinne Boudon
- Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg; Université de Strasbourg; 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Oliver S. Wenger
- Department of Chemistry; University of Basel; St. Johanns-Ring 19 4056 Basel Switzerland
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion; Stiftstrasse 34-36 45470 Mülheim an der Ruhr Germany
| | - François Diederich
- Laboratory of Organic Chemistry; ETH Zurich; Vladimir-Prelog-Weg 3 8093 Zurich Switzerland
| |
Collapse
|
17
|
Shin M, Park SG, Oh BC, Kim K, Jo S, Lee MS, Oh SS, Hong SH, Shin EC, Kim KS, Kang SW, Lee H. Complete prevention of blood loss with self-sealing haemostatic needles. NATURE MATERIALS 2017; 16:147-152. [PMID: 27698353 DOI: 10.1038/nmat4758] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 08/23/2016] [Indexed: 06/06/2023]
Abstract
Bleeding is largely unavoidable following syringe needle puncture of biological tissues and, while inconvenient, this typically causes little or no harm in healthy individuals. However, there are certain circumstances where syringe injections can have more significant side effects, such as uncontrolled bleeding in those with haemophilia, coagulopathy, or the transmission of infectious diseases through contaminated blood. Herein, we present a haemostatic hypodermic needle able to prevent bleeding following tissue puncture. The surface of the needle is coated with partially crosslinked catechol-functionalized chitosan that undergoes a solid-to-gel phase transition in situ to seal punctured tissues. Testing the capabilities of these haemostatic needles, we report complete prevention of blood loss following intravenous and intramuscular injections in animal models, and 100% survival in haemophiliac mice following syringe puncture of the jugular vein. Such self-sealing haemostatic needles and adhesive coatings may therefore help to prevent complications associated with bleeding in more clinical settings.
Collapse
Affiliation(s)
- Mikyung Shin
- The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung-Gurl Park
- Predictive Model Research Center, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
| | - Byung-Chang Oh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Keumyeon Kim
- R&D Center, InnoTherapy Inc., Seoul 07327, Republic of Korea
| | - Seongyeon Jo
- R&D Center, InnoTherapy Inc., Seoul 07327, Republic of Korea
| | - Moon Sue Lee
- R&D Center, InnoTherapy Inc., Seoul 07327, Republic of Korea
| | - Seok Song Oh
- Meta-Biomed Co., Cheongju, Chungbuk 28161, Republic of Korea
| | - Seon-Hui Hong
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ki-Suk Kim
- Predictive Model Research Center, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sun-Woong Kang
- Predictive Model Research Center, Korea Institute of Toxicology (KIT), Daejeon 34114, Republic of Korea
- Department of Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Haeshin Lee
- The Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- R&D Center, InnoTherapy Inc., Seoul 07327, Republic of Korea
| |
Collapse
|
18
|
Milić J, Zalibera M, Pochorovski I, Trapp N, Nomrowski J, Neshchadin D, Ruhlmann L, Boudon C, Wenger OS, Savitsky A, Lubitz W, Gescheidt G, Diederich F. Paramagnetic Molecular Grippers: The Elements of Six-State Redox Switches. J Phys Chem Lett 2016; 7:2470-2477. [PMID: 27300355 DOI: 10.1021/acs.jpclett.6b01094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of semiquinone-based resorcin[4]arene cavitands expands the toolbox of switchable molecular grippers by introducing the first paramagnetic representatives. The semiquinone (SQ) states were generated electrochemically, chemically, and photochemically. We analyzed their electronic, conformational, and binding properties by cyclic voltammetry, ultraviolet/visible (UV/vis) spectroelectrochemistry, electron paramagnetic resonance (EPR) and transient absorption spectroscopy, in conjunction with density functional theory (DFT) calculations. The utility of UV/vis spectroelectrochemistry and EPR spectroscopy in evaluating the conformational features of resorcin[4]arene cavitands is demonstrated. Guest binding properties were found to be enhanced in the SQ state as compared to the quinone (Q) or the hydroquinone (HQ) states of the cavitands. Thus, these paramagnetic SQ intermediates open the way to six-state redox switches provided by two conformations (open and closed) in three redox states (Q, SQ, and HQ) possessing distinct binding ability. The switchable magnetic properties of these molecular grippers and their responsiveness to electrical stimuli has the potential for development of efficient molecular devices.
Collapse
Affiliation(s)
- Jovana Milić
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Michal Zalibera
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology , Radlinského 9, 81237 Bratislava, Slovak Republic
| | - Igor Pochorovski
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Nils Trapp
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| | - Julia Nomrowski
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Dmytro Neshchadin
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - Laurent Ruhlmann
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Corinne Boudon
- Université de Strasbourg, Laboratoire d'Électrochimie et Chimie Physique du Corps Solide, Institut de Chimie de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Oliver S Wenger
- Department of Chemistry, University of Basel , St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Anton Savitsky
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, NAWI Graz, Graz University of Technology , Stremayrgasse 9/Z2, 8010 Graz, Austria
| | - François Diederich
- Laboratory of Organic Chemistry, ETH Zurich , Vladimir-Prelog-Weg 3, 8093 Zurich, Switzerland
| |
Collapse
|
19
|
Ma R, Guo M, Lin KT, Hebert VR, Zhang J, Wolcott MP, Quintero M, Ramasamy KK, Chen X, Zhang X. Peracetic Acid Depolymerization of Biorefinery Lignin for Production of Selective Monomeric Phenolic Compounds. Chemistry 2016; 22:10884-91. [PMID: 27373451 DOI: 10.1002/chem.201600546] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 11/08/2022]
Abstract
Lignin is the largest source of renewable material with an aromatic skeleton. However, due to the recalcitrant and heterogeneous nature of the lignin polymer, it has been a challenge to effectively depolymerize lignin and produce high-value chemicals with high selectivity. In this study, a highly efficient lignin-to-monomeric phenolic compounds (MPC) conversion method based on peracetic acid (PAA) treatment was reported. PAA treatment of two biorefinery lignin samples, diluted acid pretreated corn stover lignin (DACSL) and steam exploded spruce lignin (SESPL), led to complete solubilization and production of selective hydroxylated monomeric phenolic compounds (MPC-H) and monomeric phenolic acid compounds (MPC-A) including 4-hydroxy-2-methoxyphenol, p-hydroxybenzoic acid, vanillic acid, syringic acid, and 3,4-dihydroxybenzoic acid. The maximized MPC yields obtained were 18 and 22 % based on the initial weight of the lignin in SESPL and DACSL, respectively. However, we found that the addition of niobium pentoxide catalyst to PAA treatment of lignin can significantly improve the MPC yields up to 47 %. The key reaction steps and main mechanisms involved in this new lignin-to-MPC valorization pathway were investigated and elucidated.
Collapse
Affiliation(s)
- Ruoshui Ma
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Mond Guo
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Kuan-Ting Lin
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Vincent R Hebert
- Food and Environmental Laboratory, Washington State, University-TriCities, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Jinwen Zhang
- Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Michael P Wolcott
- Wood Materials and Engineering Laboratory, Washington State University, Pullman, WA, 99164, USA
| | - Melissa Quintero
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Karthikeyan K Ramasamy
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Xiaowen Chen
- National Bioenergy Center, National Renewable Energy Lab, 1617 Cole Blvd, Golden, CO, 80127, USA
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering, Bioproducts, Science & Engineering Laboratory, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA.
| |
Collapse
|
20
|
Kim SH, Sharker SM, In I, Park SY. Surface patterned pH-sensitive fluorescence using β-cyclodextrin functionalized poly(ethylene glycol). Carbohydr Polym 2016; 147:436-443. [PMID: 27178950 DOI: 10.1016/j.carbpol.2016.04.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 12/13/2022]
Abstract
This paper reports the development of a pH-responsive molecular pattern that shows specific and selective affinity for particular host-guest interactions, and its use as a pH fluorescent sensor. The pH-responsive boronate ester is formed via interactions between the diol group of β-cyclodextrin (CD) and phenylboronic acid of poly(ethylene glycol), and is strategically designed to allow reversible formation of a molecular lining pattern. Printing on a versatile substrate provides a method to monitor the positioning of different molecules by using a pH-responsive boronate ester, allowing specific host-guest interactions on any surface. Confocal laser scanning microscopy, fluorescence spectroscopy, and (1)H NMR results indicate that the assembled CD monolayer can be removed by washing with an acidic pH buffer, demonstrating the presence of a boronate ester connective bridge, which is acid labile. Therefore, visualization of the pH-responsive fluorescence sensor using a rhodamine-CD complex allows straightforward discrimination between different molecules on any substrate, thus facilitating application of this sensor in clinical diagnostics and environmental monitoring.
Collapse
Affiliation(s)
- Sung Han Kim
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Shazid Md Sharker
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-702, Republic of Korea
| | - Insik In
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea; Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea
| | - Sung Young Park
- Department of IT Convergence, Korea National University of Transportation, Chungju 380-702, Republic of Korea; Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 380-702, Republic of Korea.
| |
Collapse
|
21
|
Amorín‐Ferré L, Busqué F, Bourdelande JL, Ruiz‐Molina D, Hernando J, Novio F. Encapsulation and Release Mechanisms in Coordination Polymer Nanoparticles. Chemistry 2013; 19:17508-16. [DOI: 10.1002/chem.201302662] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Laura Amorín‐Ferré
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès, 08193 (Spain), Fax: (+34) 935811265
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès, 08193 (Spain), Fax: (+34) 935811265
| | - José Luis Bourdelande
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès, 08193 (Spain), Fax: (+34) 935811265
| | - Daniel Ruiz‐Molina
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2, Campus UAB Cerdanyola del Vallès, 08193 (Spain), Fax: (+ 34) 937372648
- Consejo Superior de Investigaciones, Científicas (CSIC), Edificio ICN2, Campus UAB, Cerdanyola del Vallès, 08193(Spain)
| | - Jordi Hernando
- Departament de Química, Universitat Autònoma de Barcelona, Edifici C/n, Campus UAB, Cerdanyola del Vallès, 08193 (Spain), Fax: (+34) 935811265
| | - Fernando Novio
- Institut Català de Nanociència i Nanotecnologia (ICN2), Edifici ICN2, Campus UAB Cerdanyola del Vallès, 08193 (Spain), Fax: (+ 34) 937372648
- Consejo Superior de Investigaciones, Científicas (CSIC), Edificio ICN2, Campus UAB, Cerdanyola del Vallès, 08193(Spain)
| |
Collapse
|