1
|
Lin X, Gu Q, Li J, Zhu J. Zinc-Mediated Living Cationic Polymerization. ACS Macro Lett 2023; 12:1692-1697. [PMID: 38038281 DOI: 10.1021/acsmacrolett.3c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Here, we present a facile and robust method for living cationic polymerization using zinc wire as a catalyst precursor. Well-defined poly(vinyl ether)s with various molecular weights and narrow molecular weight distributions (Đ < 1.10) can be achieved at room temperature. Excellent living characteristics were observed in kinetic and chain extension experiments. Mechanistic investigations revealed that the polymerization was catalyzed by the in situ generation of trace zinc ions, which is the key to polymerization under mild conditions. The utilization of zinc wire offers several advantages, including reusability, easy separation and low metal residue. Furthermore, we extended the application of this method in continuous flow polymerization, opening up a promising avenue for scalable and efficient industrial production under mild conditions.
Collapse
Affiliation(s)
- Xia Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qianxi Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Jiajia Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Janata M, Čadová E, Johnson JW, Raus V. Diminishing the catalyst concentration in the Cu(0)‐
RDRP
and
ATRP
synthesis of well‐defined low‐molecular weight poly(glycidyl methacrylate). JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20230087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Miroslav Janata
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Eva Čadová
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| | - Jeffery W. Johnson
- Axalta Coating Systems Global Innovation Center Philadelphia PA 19112 USA
| | - Vladimír Raus
- Institute of Macromolecular Chemistry Czech Academy of Sciences Heyrovského nám. 2 Prague 6 162 06 Czech Republic
| |
Collapse
|
3
|
Cooze MJ, Deacon HM, Phe K, Hutchinson RA. Methacrylate and Styrene Block Copolymer Synthesis by Cu‐Mediated Chain Extension of Acrylate Macroinitiator in a Semibatch Reactor. MACROMOL REACT ENG 2021. [DOI: 10.1002/mren.202100043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Morgan J. Cooze
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Hayden M. Deacon
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Katrina Phe
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
4
|
Borsari M, Braidi N, Buffagni M, Ghelfi F, Parenti F, Porcelli N, Serafini G, Isse AA, Bonifaci L, Cavalca G, Longo A, Morandini I, Pettenuzzo N. Copper-catalyzed ARGET ATRP of styrene from ethyl α-haloisobutyrate in EtOAc/EtOH, using ascorbic acid/Na2CO3 as reducing system. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Cooze MJ, Barr NR, Hutchinson RA. Toward an Efficient Process for the Cu(0)‐Mediated Synthesis and Chain Extension of Poly(methyl acrylate) Macroinitiator Using PMDETA as Ligand. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Morgan J. Cooze
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Nathaniel R. Barr
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering Queen's University Kingston ON K7L 3N6 Canada
| |
Collapse
|
6
|
Braidi N, Buffagni M, Buzzoni V, Ghelfi F, Parenti F, Focarete ML, Gualandi C, Bedogni E, Bonifaci L, Cavalca G, Ferrando A, Longo A, Morandini I, Pettenuzzo N. Unusual Cross-Linked Polystyrene by Copper-Catalyzed ARGET ATRP Using a Bifunctional Initiator and No Cross-Linking Agent. Macromol Res 2021. [DOI: 10.1007/s13233-021-9039-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Daro N, Vaudel T, Afindouli L, Marre S, Aymonier C, Chastanet G. One-Step Synthesis of Spin Crossover Nanoparticles Using Flow Chemistry and Supercritical CO 2. Chemistry 2020; 26:16286-16290. [PMID: 32648612 DOI: 10.1002/chem.202002322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/09/2022]
Abstract
Switchable materials are increasingly considered for implementation in devices or multifunctional composites leading to a strong need in terms of reliable synthetic productions of well-defined objects. Here, an innovative and robust template-free continuous process was developed to synthesize nanoparticles of a switchable coordination polymer, including the use of supercritical CO2 , aiming at both quenching the particle growth and drying the powder. This all-in-one process offers a 12-fold size reduction in a few minutes while maintaining the switching properties of the selected spin crossover coordination polymer.
Collapse
Affiliation(s)
- Nathalie Daro
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Tony Vaudel
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Luc Afindouli
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Samuel Marre
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | - Cyril Aymonier
- CNRS-Université de Bordeaux- INP, ICMCB UMR 5026, F-33600, Pessac, France
| | | |
Collapse
|
8
|
Corrigan N, Zhernakov L, Hashim MH, Xu J, Boyer C. Flow mediated metal-free PET-RAFT polymerisation for upscaled and consistent polymer production. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00014c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A slug flow process has been utilised in conjunction with metal-free photopolymerisation to produce well-defined polymers with outstanding consistency.
Collapse
Affiliation(s)
- Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Leonid Zhernakov
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Muhammad Hazim Hashim
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- UNSW Sydney
- Australia
- Australian Centre for NanoMedicine
| |
Collapse
|
9
|
Shirali Zadeh N, Cooze MJ, Barr NR, Hutchinson RA. An efficient process for the Cu(0)-mediated synthesis and subsequent chain extension of poly(methyl acrylate) macroinitiator. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00224c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A process combining a continuous tubular and a semi-batch reactor is established as an efficient method for the synthesis of block copolymers.
Collapse
Affiliation(s)
| | - Morgan J. Cooze
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| | - Nathaniel R. Barr
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering
- Dupuis Hall
- Queen's University
- Kingston
- Canada
| |
Collapse
|
10
|
Vishwakarma NK, Hwang YH, Mishra AK, Kim JK, Kim DP. A platform for accelerated continuous-flow radical polymerization of acrylates and styrene with copper-wire threads. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00186g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Accelerated Cu(0)-mediated homo-/block (co)polymerization of the vinyl monomers is conducted via continuous-flow process with a copper metal-wire catalyst threaded through perfluoroalkoxy alkane (PFA) tube.
Collapse
Affiliation(s)
- Niraj K. Vishwakarma
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Yoon-Ho Hwang
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Avnish Kumar Mishra
- Center for Smart Block Copolymers
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Jin Kon Kim
- Center for Smart Block Copolymers
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| | - Dong-Pyo Kim
- Center for Intelligent Microprocess of Pharmaceutical Synthesis
- Department of Chemical Engineering
- Pohang University of Science and Technology
- Pohang
- Republic of Korea
| |
Collapse
|
11
|
Lligadas G, Grama S, Percec V. Single-Electron Transfer Living Radical Polymerization Platform to Practice, Develop, and Invent. Biomacromolecules 2017; 18:2981-3008. [DOI: 10.1021/acs.biomac.7b01131] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
12
|
Lligadas G, Grama S, Percec V. Recent Developments in the Synthesis of Biomacromolecules and their Conjugates by Single Electron Transfer-Living Radical Polymerization. Biomacromolecules 2017; 18:1039-1063. [PMID: 28276244 DOI: 10.1021/acs.biomac.7b00197] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single electron transfer-living radical polymerization (SET-LRP) represents a robust and versatile tool for the synthesis of vinyl polymers with well-defined topology and chain end functionality. The crucial step in SET-LRP is the disproportionation of the Cu(I)X generated by activation with Cu(0) wire, powder, or nascent Cu(0) generated in situ into nascent, extremely reactive Cu(0) atoms and nanoparticles and Cu(II)X2. Nascent Cu(0) activates the initiator and dormant chains via a homogeneous or heterogeneous outer-sphere single-electron transfer mechanism (SET-LRP). SET-LRP provides an ultrafast polymerization of a plethora of monomers (e.g., (meth)-acrylates, (meth)-acrylamides, styrene, and vinyl chloride) including hydrophobic and water insoluble to hydrophilic and water soluble. Some advantageous features of SET-LRP are (i) the use of Cu(0) wire or powder as readily available catalysts under mild reaction conditions, (ii) their excellent control over molecular weight evolution and distribution as well as polymer chain ends, (iii) their high functional group tolerance allowing the polymerization of commercial-grade monomers, and (iv) the limited purification required for the resulting polymers. In this Perspective, we highlight the recent advancements of SET-LRP in the synthesis of biomacromolecules and of their conjugates.
Collapse
Affiliation(s)
- Gerard Lligadas
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States.,Laboratory of Sustainable Polymers, Department of Analytical Chemistry and Organic Chemistry, University Rovira i Virgili , Tarragona, Spain
| | - Silvia Grama
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
13
|
Grishin ID, Grishin DF. From regulation of elementary stages of radical processes to controlled synthesis of macromolecules. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1070428016110014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
|
15
|
Xie L, Zhu LT, Luo ZH. Computational Fluid Dynamics Simulation of Multiscale Mixing in Anionic Polymerization Tubular Reactors. Chem Eng Technol 2016. [DOI: 10.1002/ceat.201500628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Li X, Mastan E, Wang WJ, Li BG, Zhu S. Progress in reactor engineering of controlled radical polymerization: a comprehensive review. REACT CHEM ENG 2016. [DOI: 10.1039/c5re00044k] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Controlled radical polymerization (CRP) represents an important advancement in polymer chemistry. It allows synthesis of polymers with well-controlled chain microstructures.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
- Department of Chemical Engineering
| | - Erlita Mastan
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| | - Wen-Jun Wang
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Bo-Geng Li
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou
- PR China
| | - Shiping Zhu
- Department of Chemical Engineering
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
17
|
Zhu N, Hu X, Zhang Y, Zhang K, Li Z, Guo K. Continuous flow SET-LRP in the presence of P(VDF-co-CTFE) as macroinitiator in a copper tubular reactor. Polym Chem 2016. [DOI: 10.1039/c5py01728a] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A green, highly effective and energy-saving route to the grafting modification of P(VDF-co-CTFE) was developedviacontinuous flow SET-LRP with significant advantages over batch reactors.
Collapse
Affiliation(s)
- Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Xin Hu
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Yajun Zhang
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Kai Zhang
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Zhenjiang Li
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| |
Collapse
|
18
|
Boyer C, Corrigan NA, Jung K, Nguyen D, Nguyen TK, Adnan NNM, Oliver S, Shanmugam S, Yeow J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem Rev 2015; 116:1803-949. [DOI: 10.1021/acs.chemrev.5b00396] [Citation(s) in RCA: 356] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Cyrille Boyer
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nathaniel Alan Corrigan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Kenward Jung
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Diep Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Thuy-Khanh Nguyen
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Nik Nik M. Adnan
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Susan Oliver
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Sivaprakash Shanmugam
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| | - Jonathan Yeow
- Australian Centre for Nanomedicine, and ‡Centre for Advanced
Macromolecular
Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
19
|
Anastasaki A, Nikolaou V, Nurumbetov G, Wilson P, Kempe K, Quinn JF, Davis TP, Whittaker MR, Haddleton DM. Cu(0)-Mediated Living Radical Polymerization: A Versatile Tool for Materials Synthesis. Chem Rev 2015; 116:835-77. [DOI: 10.1021/acs.chemrev.5b00191] [Citation(s) in RCA: 339] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Athina Anastasaki
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Vasiliki Nikolaou
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Gabit Nurumbetov
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
| | - Paul Wilson
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Kristian Kempe
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - John F. Quinn
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Thomas P. Davis
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - Michael R. Whittaker
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| | - David M. Haddleton
- Chemistry
Department, University of Warwick, Library Road, CV4 7AL, Coventry, United Kingdom
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology,
Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 399 Royal Parade, Parkville, Victoria 3152, Australia
| |
Collapse
|
20
|
Exploring the Full Potential of Reversible Deactivation Radical Polymerization Using Pareto-Optimal Fronts. Polymers (Basel) 2015. [DOI: 10.3390/polym7040655] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
21
|
Wang W, Zhou YN, Luo ZH. Modeling of the ATRcoP Processes of Methyl Methacrylate and 2-(Trimethylsilyl) Ethyl Methacrylate in Continuous Reactors: From CSTR to PFR. MACROMOL REACT ENG 2015. [DOI: 10.1002/mren.201400056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Wei Wang
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| | - Yin-Ning Zhou
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering; School of Chemistry and Chemical Engineering; Shanghai Jiao Tong University; Shanghai 200240, P. R. China
| |
Collapse
|
22
|
Abstract
This article reviews the preparation of polymers using iron-catalyzed atom transfer radical polymerization.
Collapse
Affiliation(s)
- Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
- China
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
23
|
Li Z, Chen W, Zhang L, Cheng Z, Zhu X. Fast RAFT aqueous polymerization in a continuous tubular reactor: consecutive synthesis of a double hydrophilic block copolymer. Polym Chem 2015. [DOI: 10.1039/c5py00847f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Utilizing a continuous tubular reactor, well-defined double hydrophilic block copolymer PSPMA-b-PPEGMA was successfully synthesized with an extremely high monomer conversion in water without handling the intermediate macro-RAFT agent.
Collapse
Affiliation(s)
- Zhen Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Weijie Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
24
|
Zhou J, Wang J, Han J, He D, Yang D, Xue Z, Liao Y, Xie X. Amide group-containing polar solvents as ligands for iron-catalyzed atom transfer radical polymerization of methyl methacrylate. RSC Adv 2015. [DOI: 10.1039/c5ra05460e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Iron-catalyzed ATRP of MMA using polar solvents based on amide groups as ligands is reported.
Collapse
Affiliation(s)
- Jun Zhou
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jirong Wang
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Jianyu Han
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
- China
| | - Danfeng Yang
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Yonggui Liao
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
25
|
Chen M, Johnson JA. Improving photo-controlled living radical polymerization from trithiocarbonates through the use of continuous-flow techniques. Chem Commun (Camb) 2015; 51:6742-5. [DOI: 10.1039/c5cc01562f] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, we report simple flow reactor designs that enable photo-controlled living radical polymerization (photo-CRP) from trithiocarbonates (TTCs) with significant enhancements in scalability and reaction rates compared to the analogous batch reactions.
Collapse
Affiliation(s)
- Mao Chen
- Department of Chemistry
- Massachusetts Institute of Technology Cambridge
- USA
| | | |
Collapse
|
26
|
Kermagoret A, Wenn B, Debuigne A, Jérôme C, Junkers T, Detrembleur C. Improved photo-induced cobalt-mediated radical polymerization in continuous flow photoreactors. Polym Chem 2015. [DOI: 10.1039/c5py00299k] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The implementation of cobalt-mediated radical polymerization (CMRP) for continuous microflow reactor synthesis is described.
Collapse
Affiliation(s)
- Anthony Kermagoret
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Benjamin Wenn
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| | - Tanja Junkers
- Polymer Reaction Design Group
- Institute for Materials Research (IMO)
- Universiteit Hasselt
- 3500 Hasselt
- Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- Chemistry Department
- University of Liège (ULg)
- 4000 Liège
- Belgium
| |
Collapse
|
27
|
Myers RM, Fitzpatrick DE, Turner RM, Ley SV. Flow Chemistry Meets Advanced Functional Materials. Chemistry 2014; 20:12348-66. [DOI: 10.1002/chem.201402801] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
28
|
Boyer C, Zetterlund PB, Whittaker MR. Synthesis of complex macromolecules using iterative copper(0)-mediated radical polymerization. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27220] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales; Sydney 2052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales; Sydney 2052 Australia
| | - Michael R. Whittaker
- ARC Centre of Excellence in Convergent Nano-Bio Science & Technology, Monash University; Parkville Melbourne 3052 Australia
| |
Collapse
|
29
|
Vandenbergh J, Tura T, Baeten E, Junkers T. Polymer end group modifications and polymer conjugations via “click” chemistry employing microreactor technology. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27112] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Joke Vandenbergh
- Polymer Reaction Design GroupInstitute for Materials Research (IMO‐imomec), Universiteit HasseltAgoralaan Building DB‐3590Diepenbeek Belgium
| | - Tiago Tura
- Escola Polytécnica da Universidade de São PauloAvenida Professor Luciano GualbertoTravessa 3, n° 380 ButantãSão Paulo05508‐010 Brazil
| | - Evelien Baeten
- Polymer Reaction Design GroupInstitute for Materials Research (IMO‐imomec), Universiteit HasseltAgoralaan Building DB‐3590Diepenbeek Belgium
| | - Tanja Junkers
- Polymer Reaction Design GroupInstitute for Materials Research (IMO‐imomec), Universiteit HasseltAgoralaan Building DB‐3590Diepenbeek Belgium
| |
Collapse
|
30
|
Bellesia F, Clark AJ, Felluga F, Gennaro A, Isse AA, Roncaglia F, Ghelfi F. Efficient and Green Route to γ-Lactams by Copper-Catalysed Reversed Atom Transfer Radical Cyclisation of α-Polychloro-N-allylamides, using a Low Load of Metal (0.5 mol%). Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Chan N, Cunningham MF, Hutchinson RA. Copper-mediated controlled radical polymerization in continuous flow processes: Synergy between polymer reaction engineering and innovative chemistry. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26711] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicky Chan
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| | - Michael F. Cunningham
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| | - Robin A. Hutchinson
- Department of Chemical Engineering; Queen's University; Kingston Ontario Canada K7L 3N6
| |
Collapse
|
32
|
Toloza Porras C, D'hooge DR, Reyniers MF, Marin GB. Computer-Aided Optimization of Conditions for Fast and Controlled ICAR ATRP of n
-Butyl Acrylate. MACROMOL THEOR SIMUL 2013. [DOI: 10.1002/mats.201200074] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Hornung CH, Nguyen X, Kyi S, Chiefari J, Saubern S. Synthesis of RAFT Block Copolymers in a Multi-Stage Continuous Flow Process Inside a Tubular Reactor. Aust J Chem 2013. [DOI: 10.1071/ch12479] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work describes a multi-stage continuous flow polymerisation process for the synthesis of block copolymers using the RAFT polymerization method. The process retains all the benefits and versatility of the RAFT method and has been adapted for a series of monomer combinations, including acrylates, acrylamides, and vinyl monomers. It resulted in polymers with molecular weights between 13500 and 34100 g mol–1, and dispersities typically between 1.21 and 1.58. Different architectures were prepared (including combinations of hydrophilic and hydrophobic blocks) which are soluble in a range of different solvents including aqueous and organic media.
Collapse
|
34
|
Nguyen NH, Sun HJ, Levere ME, Fleischmann S, Percec V. Where is Cu(0) generated by disproportionation during SET-LRP? Polym Chem 2013. [DOI: 10.1039/c3py21133a] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Levere ME, Nguyen NH, Sun HJ, Percec V. Interrupted SET-LRP of methyl acrylate demonstrates Cu(0) colloidal particles as activating species. Polym Chem 2013. [DOI: 10.1039/c2py20791e] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Tonhauser C, Natalello A, Löwe H, Frey H. Microflow Technology in Polymer Synthesis. Macromolecules 2012. [DOI: 10.1021/ma301671x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christoph Tonhauser
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
| | - Adrian Natalello
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
- Graduate School Materials Science in Mainz, Staudingerweg 9, D-55128
Mainz, Germany
| | - Holger Löwe
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
- Institut für Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-22, 55129
Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry,
Organic and Macromolecular Chemistry, Duesbergweg 10-14 Johannes Gutenberg-University (JGU), D-55099 Mainz,
Germany
| |
Collapse
|
37
|
|