1
|
Gupta AK, Krasnoslobodtsev AV. DNA-Templated Silver Nanoclusters as Dual-Mode Sensitive Probes for Self-Powered Biosensor Fueled by Glucose. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1299. [PMID: 37110883 PMCID: PMC10145323 DOI: 10.3390/nano13081299] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Nanomaterials have been extensively explored in developing sensors due to their unique properties, contributing to the development of reliable sensor designs with improved sensitivity and specificity. Herein, we propose the construction of a fluorescent/electrochemical dual-mode self-powered biosensor for advanced biosensing using DNA-templated silver nanoclusters (AgNCs@DNA). AgNC@DNA, due to its small size, exhibits advantageous characteristics as an optical probe. We investigated the sensing efficacy of AgNCs@DNA as a fluorescent probe for glucose detection. Fluorescence emitted by AgNCs@DNA served as the readout signal as a response to more H2O2 being generated by glucose oxidase for increasing glucose levels. The second readout signal of this dual-mode biosensor was utilized via the electrochemical route, where AgNCs served as charge mediators between the glucose oxidase (GOx) enzyme and carbon working electrode during the oxidation process of glucose catalyzed by GOx. The developed biosensor features low-level limits of detection (LODs), ~23 μM for optical and ~29 μM for electrochemical readout, which are much lower than the typical glucose concentrations found in body fluids, including blood, urine, tears, and sweat. The low LODs, simultaneous utilization of different readout strategies, and self-powered design demonstrated in this study open new prospects for developing next-generation biosensor devices.
Collapse
|
2
|
Fu D, Chen T, Liu H, Cheng Y, Zong H, Li A, Liu J. Specific sensing of resorcin based on the hierarchical porous nanoprobes constructed by cuttlefish-derived biomaterials through differential pulse voltammetry. Anal Chim Acta 2021; 1188:339203. [PMID: 34794580 DOI: 10.1016/j.aca.2021.339203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
The specific detection of resorcin from its isomers is a current research hotspot. Thus in our work, a ternary hierarchical porous nanoprobe has been constructed based on the combination of cuttlefish ink and bimetallic Au@Ag nanoclusters for the specific sensing of resorcin. Briefly, through electrostatic interaction, Au@Ag core-shell nanoclusters are immobilized on the surface of polydopamine extracted from cuttlefish, which is turned into nitrogen-doped porous carbon functionalized by bimetallic Au@Ag by topological transformation subsequently. Afterward, an electrochemical sensor is fabricated based on the nanoprobes for specifically determining resorcin in solution by differential pulse voltammetry, and the linear detection ranges of the sensor are 1-100 μM and 1.2-4 mM while the detection limit reaches 0.06 μM. Meanwhile, the sensing mechanism of resorcin by the pre-fabricated sensor is detailedly studied by density functional theory to obtain a clear electrochemical process. Besides, the selectivity, stability, plus reproducibility of the pre-fabricated sensor have been also tested, and the determinations for resorcin in real environmental water samples have also been performed with good recoveries, revealing the auspicious application potential in the environmental monitoring.
Collapse
Affiliation(s)
- Donglei Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Tao Chen
- College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Yujun Cheng
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Hanwen Zong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China.
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Li C, Zi Y, Xu D, Jiang D, Qu F, Zhao XE. A fluorescence strategy for monitoring α-glucosidase activity and screening its inhibitors from Chinese herbal medicines based on Cu nanoclusters with aggregation-induced emission. Anal Bioanal Chem 2021; 413:2553-2563. [PMID: 33575817 DOI: 10.1007/s00216-021-03214-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/12/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Herein, the self-assembly of 1-dodecanethiol-capped Cu nanoclusters (DT-Cu NCs) is obtained by annealing of dibenzyl ether solution of nanoclusters. These aggregates are composed of small clusters and emit a high level of aggregation-induced emission (AIE) in water. Based on the quenching effect of 4-nitrophenol (4-NP) on DT-Cu NCs, a fluorescence strategy is developed to monitor α-glucosidase (α-Glu) activity and screen its inhibitors from Chinese herbal medicines. 4-Nitrophenyl-α-D-glucopyranoside (NGP) is selected as the substrate, which is further hydrolyzed to yield 4-NP through the catalysis of α-Glu. The quenching efficiency is positively correlated to the concentration of α-Glu. Furthermore, the inhibitory effects of the extracts from four Chinese herbal medicines (i.e., the rind of Punica granatum L., Momordica grosvenorii Swingle., Crataegus pinnatifida Bge., and Lycium barbarum L.) on the α-Glu activity have been studied. The IC50 values of extracts from the rind of Punica granatum L. and Momordica grosvenorii Swingle are 0.23 and 0.37 g/L, respectively, so they show obvious inhibitory effects on α-Glu. The extracts of Crataegus pinnatifida Bge. and Lycium barbarum L. exhibit relatively weak inhibitory effects. Hence, the proposed strategy can be applicable for screening α-Glu inhibitors from Chinese herbal medicines. Last but not the least, by immobilizing DT-Cu NCs into agarose hydrogels in polyethylene tubes, a visual device is fabricated to screen α-Glu inhibitors with high throughput and sensitivity.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China.,Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China
| | - Yuqiu Zi
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China.,Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China
| | - Dawei Xu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China.,Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Fei Qu
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China. .,Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China.
| | - Xian-En Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China. .,Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Jining, 272000, Shandong, China.
| |
Collapse
|
4
|
Silicon-doped carbon quantum dots with blue and green emission are a viable ratiometric fluorescent probe for hydroquinone. Mikrochim Acta 2019; 186:399. [DOI: 10.1007/s00604-019-3490-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/05/2019] [Indexed: 01/14/2023]
|
5
|
Chen J, Gao Y, Hu X, Xu Y, Lu X. Detection of hydroquinone with a novel fluorescence probe based on the enzymatic reaction of graphite phase carbon nitride quantum dots. Talanta 2019; 194:493-500. [DOI: 10.1016/j.talanta.2018.09.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/25/2018] [Accepted: 09/30/2018] [Indexed: 12/12/2022]
|
6
|
Patil SK, Bhise SC, Awale DV, Vadiyar MM, Patil SA, Gunjal DB, Kolekar GB, Ghorpade UV, Kim JH, Kolekar SS. “Seems Bad Turns Good” – traces of precursor in dicationic ionic liquid lead to analytical application. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
π-π nanoassembly of water-soluble metalloporphyrin of ZnTCPP on RGO/AuNPs/CS nanocomposites for photoelectrochemical sensing of hydroquinone. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
8
|
Liu Y, Wang YM, Zhu WY, Zhang CH, Tang H, Jiang JH. Conjugated polymer nanoparticles-based fluorescent biosensor for ultrasensitive detection of hydroquinone. Anal Chim Acta 2018; 1012:60-65. [PMID: 29475474 DOI: 10.1016/j.aca.2018.01.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/06/2018] [Indexed: 11/26/2022]
Abstract
This work describes a simple and sensitive fluorescent method for detection of hydroquinone utilizing conjugated polymer nanoparticles (CPNs). The CPNs serve both as a catalyst to accelerate the conversion of hydroquinone to benzoquinone and a fluorescent probe. In the presence of hydroquinone, the fluorescence of CPNs can be effectively quenched by benzoquinone. The detection limit of hydroquinone was down to 5 nM and excellent selectivity toward possible interferences was obtained. This method was successfully applied for hydroquinone detection in lake water and satisfactory results were achieved.
Collapse
Affiliation(s)
- Yuan Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yu-Min Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Wu-Yang Zhu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Viral Disease Control and Prevention, Beijing, PR China
| | - Chong-Hua Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
9
|
Chen Z, Liu C, Cao F, Ren J, Qu X. DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 2018; 47:4017-4072. [DOI: 10.1039/c8cs00011e] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes the research activities on DNA metallization since the concept was first proposed in 1998, covering the principles, methods, structures, and applications.
Collapse
Affiliation(s)
- Zhaowei Chen
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
10
|
Patil SK, Patil SA, Vadiyar MM, Awale DV, Sartape AS, Walekar LS, Kolekar GB, Ghorpade UV, Kim JH, Kolekar SS. Tailor-made dicationic ionic liquid as a fluorescent sensor for detection of hydroquinone and catechol. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.119] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Wang P, Huang D, Guo W, Di J. Photoelectrochemical sensing for hydroquinone based on gold nanoparticle-modified indium tin oxide glass electrode. J Solid State Electrochem 2017. [DOI: 10.1007/s10008-017-3730-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Luo T, Zhang S, Wang Y, Wang M, Liao M, Kou X. Glutathione-stabilized Cu nanocluster-based fluorescent probe for sensitive and selective detection of Hg2+
in water. LUMINESCENCE 2017; 32:1092-1099. [DOI: 10.1002/bio.3296] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Tingting Luo
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| | - Shiting Zhang
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| | - Yujue Wang
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| | - Meina Wang
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| | - Mei Liao
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| | - Xingming Kou
- College of Chemistry; Sichuan University; Chengdu People's Republic of China
| |
Collapse
|
13
|
Fluorescence Detection of p-Nitrophenol in Water Using Bovine Serum Albumin Capped ag Nanoclusters. J Fluoresc 2017; 27:1421-1426. [DOI: 10.1007/s10895-017-2080-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/04/2017] [Indexed: 01/25/2023]
|
14
|
He Y, Sun J, Feng D, Chen H, Gao F, Wang L. Graphene quantum dots: Highly active bifunctional nanoprobes for nonenzymatic photoluminescence detection of hydroquinone. Biosens Bioelectron 2015; 74:418-22. [DOI: 10.1016/j.bios.2015.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/30/2015] [Accepted: 07/03/2015] [Indexed: 01/06/2023]
|
15
|
Cu2+ modulated silver nanoclusters as an on–off–on fluorescence probe for the selective detection of l-histidine. Biosens Bioelectron 2015; 66:103-8. [DOI: 10.1016/j.bios.2014.11.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/23/2014] [Accepted: 11/09/2014] [Indexed: 12/28/2022]
|
16
|
Peng J, Ling J, Zhang XQ, Bai HP, Zheng L, Cao QE, Ding ZT. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:1250-1257. [PMID: 25305618 DOI: 10.1016/j.saa.2014.08.135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/07/2014] [Accepted: 08/31/2014] [Indexed: 06/04/2023]
Abstract
In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs.
Collapse
Affiliation(s)
- Jun Peng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Jian Ling
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Xiu-Qing Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Hui-Ping Bai
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Liyan Zheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Qiu-E Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| | - Zhong-Tao Ding
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| |
Collapse
|
17
|
Choi H, Kang T, Um K, Kim J, Lee K. Reduction of silver ions in gold nanoparticle suspension for detection of dihydroxybenzene isomers. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.06.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Yuan Z, Chen YC, Li HW, Chang HT. Fluorescent silver nanoclusters stabilized by DNA scaffolds. Chem Commun (Camb) 2014; 50:9800-15. [DOI: 10.1039/c4cc02981j] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Chen J, Zhang X, Cai S, Wu D, Chen M, Wang S, Zhang J. A fluorescent aptasensor based on DNA-scaffolded silver-nanocluster for ochratoxin A detection. Biosens Bioelectron 2014; 57:226-31. [PMID: 24590125 DOI: 10.1016/j.bios.2014.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 02/02/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
The selective detection of ultratrace amounts of ochratoxin A (OTA) is extremely important for food safety since it is one of the most toxic and widespread mycotoxin. Here we develop a signal-on fluorescent biosensor for detection of OTA based on fluorescent DNA-scaffolded silver-nanocluster (AgNCs), structure-switching of anti-OTA aptamer (Ap) and magnetic beads (MBs), and demonstrate its feasibility in the application of detecting OTA in real samples of wheat. The method exhibits superior sensitivity with a detection limit as low as 2 pg/mL OTA with high specificity. To the best of our knowledge, this is the first attempt to detect OTA based on DNA-scaffolded AgNCs, which possesses relatively high fluorescence quantum yield and photostability with regard to traditional organic dyes and quantum dots. Moreover, combined with the merits of MBs and aptamer, the proposed sensor has many advantages such as fabrication easiness, operation convenience, low cost, and being fast and portable, which may represent a promising path toward routine OTA control.
Collapse
Affiliation(s)
- Jinghua Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Xi Zhang
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Shuxian Cai
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Dongzhi Wu
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Mei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, Fujian, China
| | - Shihua Wang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| | - Jing Zhang
- The Ministry of Education Key Laboratory of Biopesticide and Chemical Biology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|
20
|
Liu J, Ren X, Meng X, Fang Z, Tang F. Sensitive and selective detection of Hg2+ and Cu2+ ions by fluorescent Ag nanoclusters synthesized via a hydrothermal method. NANOSCALE 2013; 5:10022-10028. [PMID: 24056730 DOI: 10.1039/c3nr03329e] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
An easily prepared fluorescent Ag nanoclusters (Ag NCs) probe for the sensitive and selective detection of Hg(2+) and Cu(2+) ions was developed here. The Ag NCs were synthesized by using polymethacrylic acid sodium salt as a template via a convenient hydrothermal process. The as-prepared fluorescent Ag NCs were monodispersed, uniform and less than 2 nm in diameter, and can be quenched in the presence of mercury (Hg(2+)) or copper (Cu(2+)) ions. Excellent linear relationships existed between the quenching degree of the Ag NCs and the concentrations of Hg(2+) or Cu(2+) ions in the range of 10 nM to 20 μM or 10 nM to 30 μM, respectively. By using ethylenediaminetetraacetate (EDTA) as the masking agent of Cu(2+), Hg(2+) was exclusively detected in coexistence with Cu(2+) with high sensitivity (LOD = 10 nM), which also provided a reusable detection method for Cu(2+). Furthermore, the different quenching phenomena caused by the two metals ions such as changes in visible colour, shifts of UV absorbance peaks and changes in size of Ag NCs make it easy to distinguish between them. Therefore the easily synthesized fluorescent Ag NCs may have great potential as Hg(2+) and Cu(2+) ions sensors.
Collapse
Affiliation(s)
- Jing Liu
- College of Chemistry and Chemical Engineering, Central South University, Hunan 410083, China.
| | | | | | | | | |
Collapse
|
21
|
Abstract
DNA stabilized fluorescent silver nanoclusters are promising materials, of which fluorescent properties can be exploited to develop sensors. Particularly, the presence of a DNA strand in the structure has promoted the development of gene sensors where one part of the sensor is able to recognize the target gene sequence. Moreover, since oligonucleotides can be designed to have binding properties (aptamers) a variety of sensors for proteins and cells have been developed using silver nanoclusters. In this review the applications of this material as sensors of different biomolecules are summarized.
Collapse
|