1
|
Wang B, Akteruzzaman M, Yu S, Mehrgardi M, Shannon C, Jin C, Fan S. Fast response cathodic electrochemiluminescence sensor based on closed bipolar electrode for point-of-care blood glucose testing. Talanta 2025; 293:128104. [PMID: 40222094 DOI: 10.1016/j.talanta.2025.128104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Glucose detection is vital for managing diabetes, monitoring metabolic disorders, and developing advanced biosensors. Electrochemical methods are widely used for glucose detection due to their sensitivity, portability, and low cost. However, these methods also have several limitations, such as interference from non-specific molecules, fouling of electrodes, and enzyme stability. Herein, to avoid external interference, we report a fast response cathodic electrochemiluminescence (ECL) glucose biosensor using a closed bipolar electrode (BPE) system with two separate cells (reporting cell and sensing cell). In this platform, Tris(2,2'-bipyridyl) ruthenium and K2S2O8 were used as the luminophore and co-reagent, respectively, to generate the cathodic ECL in the reporting cell, and a commercial test strip modified with GOx (glucose oxidase) and mediator served as the BPE anode to detect glucose in the sensing cell. The developed technique was able to determine glucose with a good correlation in the quantification of glucose in human serum samples with a fast response under a low potential, which avoided side reactions and was comparable to the commercial blood glucose meter. In addition, the sensing mechanism and working principle have been thoroughly studied, with the detailed discussion of the effect of oxygen and acetonitrile in influencing the ECL generation. Using this platform, glucose in the buffer was successfully quantified up to 18 mM, achieving a limit of detection of 3.8 mM and a linear concentration range between 4 and 12 mM. This electrochemical technique offers a simple and cost-effective strategy for point-of-care blood glucose testing without external interference, thereby opening up emerging opportunities in a broad range of sensing applications.
Collapse
Affiliation(s)
- Buhua Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, China; Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Md Akteruzzaman
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA
| | - Songyan Yu
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Masoud Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Curtis Shannon
- Department of Chemistry and Biochemistry, Auburn University, Auburn, AL, 36849, USA.
| | - Chanyuan Jin
- The Second Clinical Division of Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| | - Sanjun Fan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
2
|
Cano M, del Valle M. The Personal Glucose Meter as the Measurement Principle in Point-of-Care Applications. BIOSENSORS 2025; 15:121. [PMID: 39997023 PMCID: PMC11852977 DOI: 10.3390/bios15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
A personal glucose meter (PGM) is a medical device that measures blood glucose levels and can be found worldwide. Owing to their sensitivity, simplicity, portability, and low cost, PGMs stand as one of the most frequently utilized analytical methods. This work reviews the different applied methodologies for detecting analytes other than glucose employing a PGM and how it can be incorporated for point-of-care diagnosis needs. To visualize the variants, first, a classification is made according to the biorecognition elements used (aptamers, antibodies, etc.), and where the determination of different analytes is done through the glucose signal using different glucose-generating enzymes such as invertase or glucosidase. Transduction can also be based on the use of nanocarriers that generally encapsulate glucose, although it is also possible to find a combination of the two aforementioned strategies. The PGM can also be used for the direct detection of interfering substances of the biosensor, such as NADH or paracetamol. Lastly, we discuss how a PGM might have been implemented to detect COVID-19 and how it could be used on a massive scale for the point-of-care diagnosis of a pandemic.
Collapse
Affiliation(s)
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Bellaterra, 08193 Barcelona, Spain;
| |
Collapse
|
3
|
Jiang F, Qi L, Li SC, Song G, Ge B, Yu HZ. UV/Ozone-Assisted Covalent Bioconjugation on Graphene Tapes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3843-3851. [PMID: 39905587 DOI: 10.1021/acs.langmuir.4c03901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Compared to pristine graphene, graphene oxide (GO) has intriguing advantages for biological applications, such as high compatibility and much improved solubility in an aqueous environment. In particular, the oxygen-containing functional groups on GO enable the highly stable covalent conjugation of biomolecules, which promotes its application for developing versatile functional devices. In this work, we explored an ultraviolet/ozone (UV/O3) treatment strategy to activate graphene-tape substrates (prepared by drop-casting graphene nanoplatelets on double-sided conductive carbon tapes) to achieve excellent bioconjugation capabilities. Our Fourier transform infrared spectroscopy (FTIR), wetting, and X-ray photoelectron spectroscopy (XPS) measurements confirmed the generation of high-density oxygen-containing functional groups on graphene-carbon tape, while the conductivity and electrochemical activity are merely influenced. Upon immobilizing amino-ferrocene (Fc-NH2) onto the UV/O3-activated graphene tape via carbodiimide cross-linking, a strong pair of redox peaks (corresponding to an Fc surface density over 8.0 × 10-9 mol/cm2) was observed, indicative of its "elevated" covalent conjugation capability. More remarkably, highly efficient conjugation of glucose oxidase on UV/O3-treated graphene tape was achieved, which demonstrated excellent catalytic activity, as confirmed by chronoamperometry. These results augment the great potential of UV/O3-activated graphene tape substrates for convenient fabrication of electroactive biofunctional devices with high performance.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Lin Qi
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
- eSenso Biotech Inc., Burnaby, British Columbia V5C 6N3, Canada
| | - Stephen Chengxi Li
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Guojun Song
- College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, China
| | - Bixia Ge
- eSenso Biotech Inc., Burnaby, British Columbia V5C 6N3, Canada
| | - Hua-Zhong Yu
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
4
|
Hung SC. Highly sensitive non-enzymatic glucose sensing using Ni nanowires and graphene thin film on the gate area of extended gate electric double-layer field-effect transistor. Heliyon 2025; 11:e41857. [PMID: 39877607 PMCID: PMC11773060 DOI: 10.1016/j.heliyon.2025.e41857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
This study presents an innovative glucose detection platform, featuring a highly sensitive, non-enzymatic glucose sensor. The sensor integrates nickel nanowires and a graphene thin film deposited on the gate region of an extended-gate electric double-layer field-effect transistor (EGEDL-FET). This unique combination of materials and device structure enables superior glucose sensing performance. Ni nanowires were deposited on the surface of the extended gate region of the EGEDL-FET, where high quality monolayer graphene grown by chemical vapor deposition (CVD) had been previously transferred. The Ni nanowires provide a high surface area and excellent catalytic activity for non-enzymatic glucose oxidation. Meanwhile, the graphene thin film enhances the conductivity of the sensing interface due to the matching of work functions between the Ni nanowires and the graphene. The bimetal gate-electrolyte interface with a spacing of 65 μm forms an electric double layer that effectively avoids ion shielding due to its dimension being smaller than the Debye length. This configuration significantly amplifies the electrical signal, thereby enhancing the sensor's sensitivity. The fabricated EGEDL-FET glucose sensor demonstrates a wide linear range from 0.05 mM to 5 mM, high sensitivity of 1043 mA μM-1 cm-2, and a low detection limit of 51 nM. The synergistic effect of the Ni nanowires, graphene film, and EGEDL-FET configuration results in a highly sensitive non-enzymatic glucose sensor with excellent selectivity in glucose alkaline solutions containing both chloride ions and potassium ions. These experimental results represent a promising advancement for glucose monitoring systems, offering improved performance and reliability.
Collapse
Affiliation(s)
- Sheng-Chun Hung
- Department of Electrical Engineering, Feng Chia University, Taichung, 407802, Taiwan
| |
Collapse
|
5
|
Guo X, Cai J, Meng Q, Liu Y, Cai L, Yang S, Zhao W, Zou M, Su J, Dai H, Yan Z. Renewable regeneration optic fiber glucose sensor based on succinylaminobenzenoboronic acid modified excessively tilted fiber grating. Anal Chim Acta 2024; 1324:343089. [PMID: 39218573 DOI: 10.1016/j.aca.2024.343089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/04/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Optical fiber sensors have been used to detect glucose owing to advantages such as low cost, small size, and ease of operation etc. phenylboronic acid is one of the commonly used receptors for glucose detection, however phenylboronic acid based regenerative optical fiber sensors are commonly cumulative regeneration, renewable regeneration sensor has been missing from the literature. RESULTS In this work, instead of using phenylboronic acid, we synthesized succinylaminobenzenoboronic acid molecule (BPOA) by introducing a short chain containing carboxyl group at the other end of phenylboronic acid then covalently bonded BPOA on the surface of excessively tilted fiber grating (Ex-TFG). This provides a very stable platform for renewable regeneration and the regenerative buffer was also optimized. The proposed renewable regeneration method exhibited higher linearity and sensitivity (R2 = 0.9992, 8 pm/mM) in relative to the conventional cumulative regeneration method (R2 = 0.9718, 4.9 pm/mM). The binding affinity between BPOA and glucose was found to be almost constant over 140 bind/release cycles with a variation of less than 0.3 % relative standard deviation. SIGNIFICANCE The regenerative and label-free sensing capacity of the proposed device provides a theoretical foundation for label-free saccharide detection and the development of wearable glucose monitoring devices based on fiber optic sensors.
Collapse
Affiliation(s)
- Xiaoxia Guo
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Jiapeng Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Qingao Meng
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Yue Liu
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Le Cai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Shaoxian Yang
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China
| | - Weiliang Zhao
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Meng Zou
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Jiangtao Su
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Heshuang Dai
- School of Life and Health Sciences, Hubei University of Technology, Wuhan, 430068, China; National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| | - Zhijun Yan
- The School of Optical and Electronic Information, National Engineering Laboratory for Next Generation Internet Access System, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| |
Collapse
|
6
|
Joorabloo A, Liu T. Smart theranostics for wound monitoring and therapy. Adv Colloid Interface Sci 2024; 330:103207. [PMID: 38843699 DOI: 10.1016/j.cis.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
To overcome the challenges of poor wound diagnosis and limited clinical efficacy of current wound management, wound dressing materials with the aim of monitoring various biomarkers vital to the wound healing process such as temperature, pH, glucose concentration, and reactive oxygen species (ROS) and improving the therapeutic outcomes have been developed. These innovative theranostic dressings are smartly engineered using stimuli-responsive biomaterials to monitor and regulate local microenvironments and deliver cargos to the wound sites in a timely and effective manner. This review provides an overview of recent advances in novel theranostics for wound monitoring and therapy as well as giving insights into the future treatment of wounds via smart design of theranostic materials.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|
7
|
Kuntoji G, Kousar N, Gaddimath S, Koodlur Sannegowda L. Macromolecule-Nanoparticle-Based Hybrid Materials for Biosensor Applications. BIOSENSORS 2024; 14:277. [PMID: 38920581 PMCID: PMC11201996 DOI: 10.3390/bios14060277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Biosensors function as sophisticated devices, converting biochemical reactions into electrical signals. Contemporary emphasis on developing biosensor devices with refined sensitivity and selectivity is critical due to their extensive functional capabilities. However, a significant challenge lies in the binding affinity of biosensors to biomolecules, requiring adept conversion and amplification of interactions into various signal modalities like electrical, optical, gravimetric, and electrochemical outputs. Overcoming challenges associated with sensitivity, detection limits, response time, reproducibility, and stability is essential for efficient biosensor creation. The central aspect of the fabrication of any biosensor is focused towards forming an effective interface between the analyte electrode which significantly influences the overall biosensor quality. Polymers and macromolecular systems are favored for their distinct properties and versatile applications. Enhancing the properties and conductivity of these systems can be achieved through incorporating nanoparticles or carbonaceous moieties. Hybrid composite materials, possessing a unique combination of attributes like advanced sensitivity, selectivity, thermal stability, mechanical flexibility, biocompatibility, and tunable electrical properties, emerge as promising candidates for biosensor applications. In addition, this approach enhances the electrochemical response, signal amplification, and stability of fabricated biosensors, contributing to their effectiveness. This review predominantly explores recent advancements in utilizing macrocyclic and macromolecular conjugated systems, such as phthalocyanines, porphyrins, polymers, etc. and their hybrids, with a specific focus on signal amplification in biosensors. It comprehensively covers synthetic strategies, properties, working mechanisms, and the potential of these systems for detecting biomolecules like glucose, hydrogen peroxide, uric acid, ascorbic acid, dopamine, cholesterol, amino acids, and cancer cells. Furthermore, this review delves into the progress made, elucidating the mechanisms responsible for signal amplification. The Conclusion addresses the challenges and future directions of macromolecule-based hybrids in biosensor applications, providing a concise overview of this evolving field. The narrative emphasizes the importance of biosensor technology advancement, illustrating the role of smart design and material enhancement in improving performance across various domains.
Collapse
Affiliation(s)
| | | | | | - Lokesh Koodlur Sannegowda
- Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Jnanasagara, Vinayakanagara, Ballari 583105, India; (G.K.); (N.K.); (S.G.)
| |
Collapse
|
8
|
Mota FAR, Passos MLC, Santos JLM, Saraiva MLMFS. Comparative analysis of electrochemical and optical sensors for detection of chronic wounds biomarkers: A review. Biosens Bioelectron 2024; 251:116095. [PMID: 38382268 DOI: 10.1016/j.bios.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Chronic wounds (CW) present a significant healthcare challenge due to their prolonged healing time and associated complications. To effectively treat these wounds and prevent further deterioration, monitoring their healing progress is crucial. Traditional wound assessment methods relying on visual inspection and subjective evaluation are prone to inter-observer variability. Biomarkers play a critical role in objectively evaluating wound status and predicting healing outcomes, providing quantitative measures of wound healing progress, inflammation, infection, and tissue regeneration. Recent attention has been devoted to identifying and validating CW biomarkers. Various studies have investigated potential biomarkers, including growth factors, cytokines, proteases, and extracellular matrix components, shedding light on the complex molecular and cellular processes within CW. This knowledge enables a more targeted and personalized approach to wound management. Accurate and sensitive techniques are necessary for detecting CW biomarkers. Thus, this review compares and discusses the use of electrochemical and optical sensors for biomarker determination. The advantages and disadvantages of these sensors are highlighted. Differences in detection capabilities and characteristics such as non-invasiveness, portability, high sensitivity, specificity, simplicity, cost-effectiveness, compatibility with point-of-care applications, and real-time monitoring of wound biomarkers will be pointed out and compared. In summary, this work provides an overview of CW, explores the emerging field of CW biomarkers, and discusses methods for detecting these biomarkers, with a specific focus on optical and electrochemical sensors. The potential of further research and development in this field for advancing wound care and improving patient outcomes will also be noted.
Collapse
Affiliation(s)
- Fátima A R Mota
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - Marieta L C Passos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - João L M Santos
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| | - M Lúcia M F S Saraiva
- LAQV, REQUIMTE, Department of Chemical Sciences, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, no 228, Porto, 4050-313, Portugal.
| |
Collapse
|
9
|
Jeong YH, Kwon M, Shin S, Lee J, Kim KS. Biomedical Applications of CNT-Based Fibers. BIOSENSORS 2024; 14:137. [PMID: 38534244 DOI: 10.3390/bios14030137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024]
Abstract
Carbon nanotubes (CNTs) have been regarded as emerging materials in various applications. However, the range of biomedical applications is limited due to the aggregation and potential toxicity of powder-type CNTs. To overcome these issues, techniques to assemble them into various macroscopic structures, such as one-dimensional fibers, two-dimensional films, and three-dimensional aerogels, have been developed. Among them, carbon nanotube fiber (CNTF) is a one-dimensional aggregate of CNTs, which can be used to solve the potential toxicity problem of individual CNTs. Furthermore, since it has unique properties due to the one-dimensional nature of CNTs, CNTF has beneficial potential for biomedical applications. This review summarizes the biomedical applications using CNTF, such as the detection of biomolecules or signals for biosensors, strain sensors for wearable healthcare devices, and tissue engineering for regenerating human tissues. In addition, by considering the challenges and perspectives of CNTF for biomedical applications, the feasibility of CNTF in biomedical applications is discussed.
Collapse
Affiliation(s)
- Yun Ho Jeong
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Mina Kwon
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sangsoo Shin
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jaegeun Lee
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Ki Su Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
- Institute of Advanced Organic Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
10
|
Kaur D, Purwar R. Nanotechnological advancement in artificial intelligence for wound care. NANOTECHNOLOGICAL ASPECTS FOR NEXT-GENERATION WOUND MANAGEMENT 2024:281-318. [DOI: 10.1016/b978-0-323-99165-0.00005-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
11
|
Friedel M, Thompson IAP, Kasting G, Polsky R, Cunningham D, Soh HT, Heikenfeld J. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat Biomed Eng 2023; 7:1541-1555. [PMID: 36658344 DOI: 10.1038/s41551-022-00998-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/06/2022] [Indexed: 01/21/2023]
Abstract
The volume of interstitial fluid (ISF) in the human body is three times that of blood. Yet, collecting diagnostically useful ISF is more challenging than collecting blood because the extraction of dermal ISF disrupts the delicate balance of pressure between ISF, blood and lymph, and because the triggered local inflammation further skews the concentrations of many analytes in the extracted fluid. In this Perspective, we overview the most meaningful differences in the make-up of ISF and blood, and discuss why ISF cannot be viewed generally as a diagnostically useful proxy for blood. We also argue that continuous sensing of small-molecule analytes in dermal ISF via rapid assays compatible with nanolitre sample volumes or via miniaturized sensors inserted into the dermis can offer clinically advantageous utility, particularly for the monitoring of therapeutic drugs and of the status of the immune system.
Collapse
Affiliation(s)
- Mark Friedel
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Ian A P Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Gerald Kasting
- The James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Ronen Polsky
- Nano and Micro Sensors, Sandia National Laboratories, Albuquerque, NM, USA
| | - David Cunningham
- Department of Chemistry and Physics, Southeast Missouri State University, Cape Girardeau, MO, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA.
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | - Jason Heikenfeld
- Novel Device Laboratory, Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Kim SE, Yoon JC, Tae HJ, Muthurasu A. Electrospun Manganese-Based Metal-Organic Frameworks for MnO x Nanostructures Embedded in Carbon Nanofibers as a High-Performance Nonenzymatic Glucose Sensor. ACS OMEGA 2023; 8:42689-42698. [PMID: 38024713 PMCID: PMC10652823 DOI: 10.1021/acsomega.3c05459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Material-specific electrocatalytic activity and electrode design are essential factors in evaluating the performance of electrochemical sensors. Herein, the technique described involves electrospinning manganese-based metal-organic frameworks (Mn-MOFs) to develop MnOx nanostructures embedded in carbon nanofibers. The resulting structure features an electrocatalytic material for an enzyme-free glucose sensor. The elemental composition, morphology, and microstructure of the fabricated electrodes materials were characterized by using energy-dispersive X-ray spectroscopy (EDX), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). Cyclic voltammetry (CV) and amperometric i-t (current-time) techniques are characteristically employed to assess the electrochemical performance of materials. The MOF MnOx-CNFs nanostructures significantly improve detection performance for nonenzymatic amperometric glucose sensors, including a broad linear range (0 mM to 9.1 mM), high sensitivity (4080.6 μA mM-1 cm-2), a low detection limit (0.3 μM, S/N = 3), acceptable selectivity, outstanding reproducibility, and stability. The strategy of metal and metal oxide-integrated CNF nanostructures based on MOFs opens interesting possibilities for the development of high-performance electrochemical sensors.
Collapse
Affiliation(s)
- So Eun Kim
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Jae Chol Yoon
- Department
of Emergency Medicine, Research Institute
of Clinical Medicine of Jeonbuk National University and Biomedical
Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Hyun-Jin Tae
- College
of Veterinary Medicine and Biosafety Research Institute, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Alagan Muthurasu
- Department
of Nano Convergence Technology, Jeonbuk
National University, Jeonju 54907, Republic
of Korea
| |
Collapse
|
13
|
Luo Y, Shupletsov L, Ortega Vega MR, Gutiérrez-Serpa A, Khan AH, Brunner E, Senkovska I, Kaskel S. Integration of Triphenylene-Based Conductive Metal-Organic Frameworks into Carbon Nanotube Electrodes for Boosting Nonenzymatic Glucose Sensing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37903405 DOI: 10.1021/acsami.3c11810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The rational design and preparation of conductive metal-organic frameworks (MOFs) are alluring and challenging pathways to develop active catalysts toward electrocatalytic glucose oxidation. The hybridization of conductive MOFs with carbon nanotubes (CNTs) in the form of a composite can greatly improve the electrocatalytic performance. Herein, a facile one-step synthetic strategy is utilized to fabricate a Ni3(HHTP)2/CNT (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) composite for nonenzymatic detection of glucose in an alkaline solution. The Ni3(HHTP)2/CNT composite, as an electrochemical glucose sensor material, exhibits superior electrocatalytic activity toward glucose oxidation with a wide detection range of up to 3.9 mM, a low detection limit of 4.1 μM (signal/noise = 3), a fast amperometric response time of <2 s, and a high sensitivity of 4774 μA mM-1 cm-2, surpassing the performance of some recently reported nonenzymatic transition-metal-based glucose sensors. In addition, the composite sensor also shows outstanding selectivity, robust long-term electrochemical stability, favorable anti-interference properties, and good reproducibility. This work displays the effectiveness of enhancing the electrocatalytic performance toward glucose detection by combing conductive MOFs with CNTs, thereby opening up an applicable and encouraging approach for the design of advanced nonenzymatic glucose sensors.
Collapse
Affiliation(s)
- Yutong Luo
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Leonid Shupletsov
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Maria Rita Ortega Vega
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Adrián Gutiérrez-Serpa
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Arafat Hossain Khan
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Eike Brunner
- Chair of Bioanalytical Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Bergstraße 66, Dresden 01069, Germany
| |
Collapse
|
14
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
15
|
Papiano I, De Zio S, Hofer A, Malferrari M, Mínguez Bacho I, Bachmann J, Rapino S, Vogel N, Magnabosco G. Nature-inspired functional porous materials for low-concentration biomarker detection. MATERIALS HORIZONS 2023; 10:4380-4388. [PMID: 37465878 DOI: 10.1039/d3mh00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanostructuration is a promising tool for enhancing the performance of sensors based on electrochemical transduction. Nanostructured materials allow for increasing the surface area of the electrode and improving the limit of detection (LOD). In this regard, inverse opals possess ideal features to be used as substrates for developing sensors, thanks to their homogeneous, interconnected pore structure and the possibility to functionalize their surface. However, overcoming the insulating nature of conventional silica inverse opals fabricated via sol-gel processes is a key challenge for their application as electrode materials. In this work, colloidal assembly, atomic layer deposition and selective surface functionalization are combined to design conductive inverse opals as an electrode material for novel glucose sensing platforms. An insulating inverse opal scaffold is coated with uniform layers of conducting aluminum zinc oxide and platinum, and subsequently functionalized with glucose oxidase embedded in a polypyrrole layer. The final device can sense glucose at concentrations in the nanomolar range and is not affected by the presence of common interferents gluconolactone and pyruvate. This method may also be applied to different conductive materials and enzymes to generate a new class of highly efficient biosensors.
Collapse
Affiliation(s)
- Irene Papiano
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - André Hofer
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Ignacio Mínguez Bacho
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Giulia Magnabosco
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
16
|
OSMANOĞULLARI SC, SÖYLEMEZ S, KARAKURT O, ÖZDEMİR HACIOĞLU S, ÇIRPAN A, TOPPARE L. Innovative polymer engineering for the investigation of electrochemical properties and biosensing ability. Turk J Chem 2023; 47:1271-1284. [PMID: 38173753 PMCID: PMC10760843 DOI: 10.55730/1300-0527.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/31/2023] [Accepted: 09/28/2023] [Indexed: 01/05/2024] Open
Abstract
Subtle engineering for the generation of a biosensor from a conjugated polymer with the inclusion of fluorine-substituted benzothiadiazole and indole moieties is reported. The engineering includes the electrochemical copolymerization of the indole-6-carboxylic acid (M1) and 5-fluoro-4,7-bis(4-hexylthiophen-2-yl)benzo[c][1,2,5]thiadiazole (M2) on the indium tin oxide and graphite electrode surfaces for the investigation of both their electrochemical properties and biosensing abilities with their copolymer counterparts. The intermediates and final conjugated polymers, Poly(M1) [P-In6C], Poly(M2) [P-FBTz], and copoly(M1 and M2) [P-In6CFBTz], were entirely characterized by 1H NMR, 13C NMR, CV, UV-Vis-NIR spectrophotometry, and SEM techniques. HOMO energy levels of electrochemically obtained polymers were calculated from the oxidation onsets in anodic scans as -4.78 eV, -5.23 eV, and -4.89 eV, and optical bandgap (Egop) values were calculated from the onset of the lowest-energy π-π* transitions as 2.26 eV, 1.43 eV, and 1.59 eV for P-In6C, P-FBTz, and P-In6CFBTz, respectively. By incorporation of fluorine-substituted benzothiadiazole (M2) into the polymer backbone by electrochemical copolymerization, the poor electrochemical properties of P-In6C were remarkably improved. The polymer P-In6CFBTz demonstrated striking electrochemical properties such as a lower optical band gap, red-shifted absorption, multielectrochromic behavior, a lower switching time, and higher optical contrast. Overall, the newly developed copolymer, which combined the features of each monomer, showed superior electrochemical properties and was tested as a glucose-sensing framework, offering a low detection limit (0.011 mM) and a wide linear range (0.05-0.75 mM) with high sensitivity (44.056 μA mM-1 cm-2).
Collapse
Affiliation(s)
- Sıla Can OSMANOĞULLARI
- Department of Chemistry, Faculty of Science, Karadeniz Technical University, Trabzon,
Turkiye
| | - Saniye SÖYLEMEZ
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya,
Turkiye
| | - Oğuzhan KARAKURT
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
| | - Serife ÖZDEMİR HACIOĞLU
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Basic Sciences of Engineering, Faculty of Engineering and Natural Sciences, İskenderun Technical University, Hatay,
Turkiye
| | - Ali ÇIRPAN
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Center for Solar Energy Research and Application (GÜNAM), Middle East Technical University, Ankara,
Turkiye
- Department of Micro and Nanotechnology, Middle East Technical University, Ankara,
Turkiye
| | - Levent TOPPARE
- Department of Chemistry, Faculty of Arts and Science, Middle East Technical University, Ankara,
Turkiye
- Department of Polymer Science and Technology, Middle East Technical University, Ankara,
Turkiye
- Department of Biotechnology, Middle East Technical University, Ankara,
Turkiye
| |
Collapse
|
17
|
Thompson IA, Saunders J, Zheng L, Hariri AA, Maganzini N, Cartwright AP, Pan J, Yee S, Dory C, Eisenstein M, Vuckovic J, Soh HT. An antibody-based molecular switch for continuous small-molecule biosensing. SCIENCE ADVANCES 2023; 9:eadh4978. [PMID: 37738337 PMCID: PMC10516488 DOI: 10.1126/sciadv.adh4978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
We present a generalizable approach for designing biosensors that can continuously detect small-molecule biomarkers in real time and without sample preparation. This is achieved by converting existing antibodies into target-responsive "antibody-switches" that enable continuous optical biosensing. To engineer these switches, antibodies are linked to a molecular competitor through a DNA scaffold, such that competitive target binding induces scaffold switching and fluorescent signaling of changing target concentrations. As a demonstration, we designed antibody-switches that achieve rapid, sample preparation-free sensing of digoxigenin and cortisol in undiluted plasma. We showed that, by substituting the molecular competitor, we can further modulate the sensitivity of our cortisol switch to achieve detection at concentrations spanning 3.3 nanomolar to 3.3 millimolar. Last, we integrated this switch with a fiber optic sensor to achieve continuous sensing of cortisol in a buffer and blood with <5-min time resolution. We believe that this modular sensor design can enable continuous biosensor development for many biomarkers.
Collapse
Affiliation(s)
- Ian A.P. Thompson
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jason Saunders
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Liwei Zheng
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Amani A. Hariri
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Nicolò Maganzini
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alyssa P. Cartwright
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jing Pan
- Department of Mechanical and Aerospace Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Steven Yee
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Constantin Dory
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jelena Vuckovic
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Javanbakht S, Darvishi S, Dorchei F, Hosseini-Ghalehno M, Dehghani M, Pooresmaeil M, Suzuki Y, Ul Ain Q, Ruiz Rubio L, Shaabani A, Hayashita T, Namazi H, Heydari A. Cyclodextrin Host-Guest Recognition in Glucose-Monitoring Sensors. ACS OMEGA 2023; 8:33202-33228. [PMID: 37744789 PMCID: PMC10515351 DOI: 10.1021/acsomega.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Diabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge. Addressing these challenges is critical to improving the clinical utility of GM technologies in diabetes management. In this concept, cyclodextrins (CDs) can be instrumental in the development of GM systems due to their high supramolecular recognition capabilities based on the host-guest interaction. The introduction of CDs into GM systems not only impacts the sensitivity, selectivity, and detection limit of the monitoring process but also improves biocompatibility and stability. These findings motivated the current review to provide a comprehensive summary of CD-based blood glucose sensors and their chemistry of glucose detection, efficiency, and accuracy. We categorize CD-based sensors into four groups based on their modification strategies, including CD-modified boronic acid, CD-modified mediators, CD-modified nanoparticles, and CD-modified functionalized polymers. These findings shed light on the potential of CD-based sensors as a promising tool for continuous GM in diabetes mellitus management.
Collapse
Affiliation(s)
- Siamak Javanbakht
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Sima Darvishi
- Faculty
of Chemistry, Khajeh Nasir Toosi University, Tehran, Iran
| | - Faeze Dorchei
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | | | - Marjan Dehghani
- Department
of Chemistry, Shahid Bahonar University
of Kerman, Kerman 76169, Iran
| | - Malihe Pooresmaeil
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Yota Suzuki
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
- Graduate
School of Science and Engineering, Saitama
University, Saitama 338-8570, Japan
| | - Qurat Ul Ain
- Department
of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad H-12, Pakistan
| | - Leire Ruiz Rubio
- Macromolecular
Chemistry Group (LQM), Department of Physical Chemistry, Faculty of
Science and Technology, University of Basque
Country (UPV/EHU), Leioa 48940, Spain
- Basque
Centre for Materials, Applications and Nanostructures
(BCMaterials), UPV/EHU
Science Park, Leioa 48940, Spain
| | - Ahmad Shaabani
- Faculty
of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Takashi Hayashita
- Department
of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1, Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Hassan Namazi
- Research
Laboratory of Dendrimers and Natural Polymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
- Research
Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran
| | - Abolfazl Heydari
- Polymer
Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- National
Institute of Rheumatic Diseases, Nábrežie I. Krasku 4782/4, 921 12 Piešt’any, Slovakia
| |
Collapse
|
19
|
Islam MS, Banik S, Collinson MM. Recent Advances in Bimetallic Nanoporous Gold Electrodes for Electrochemical Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2515. [PMID: 37764545 PMCID: PMC10535497 DOI: 10.3390/nano13182515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Bimetallic nanocomposites and nanoparticles have received tremendous interest recently because they often exhibit better properties than single-component materials. Improved electron transfer rates and the synergistic interactions between individual metals are two of the most beneficial attributes of these materials. In this review, we focus on bimetallic nanoporous gold (NPG) because of its importance in the field of electrochemical sensing coupled with the ease with which it can be made. NPG is a particularly important scaffold because of its unique properties, including biofouling resistance and ease of modification. In this review, several different methods to synthesize NPG, along with varying modification approaches are described. These include the use of ternary alloys, immersion-reduction (chemical, electrochemical, hybrid), co-electrodeposition-annealing, and under-potential deposition coupled with surface-limited redox replacement of NPG with different metal nanoparticles (e.g., Pt, Cu, Pd, Ni, Co, Fe, etc.). The review also describes the importance of fully characterizing these bimetallic nanocomposites and critically analyzing their structure, surface morphology, surface composition, and application in electrochemical sensing of chemical and biochemical species. The authors attempt to highlight the most recent and advanced techniques for designing non-enzymatic bimetallic electrochemical nanosensors. The review opens up a window for readers to obtain detailed knowledge about the formation and structure of bimetallic electrodes and their applications in electrochemical sensing.
Collapse
Affiliation(s)
| | | | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA; (M.S.I.); (S.B.)
| |
Collapse
|
20
|
Yuwen T, Shu D, Zou H, Yang X, Wang S, Zhang S, Liu Q, Wang X, Wang G, Zhang Y, Zang G. Carbon nanotubes: a powerful bridge for conductivity and flexibility in electrochemical glucose sensors. J Nanobiotechnology 2023; 21:320. [PMID: 37679841 PMCID: PMC10483845 DOI: 10.1186/s12951-023-02088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
The utilization of nanomaterials in the biosensor field has garnered substantial attention in recent years. Initially, the emphasis was on enhancing the sensor current rather than material interactions. However, carbon nanotubes (CNTs) have gained prominence in glucose sensors due to their high aspect ratio, remarkable chemical stability, and notable optical and electronic attributes. The diverse nanostructures and metal surface designs of CNTs, coupled with their exceptional physical and chemical properties, have led to diverse applications in electrochemical glucose sensor research. Substantial progress has been achieved, particularly in constructing flexible interfaces based on CNTs. This review focuses on CNT-based sensor design, manufacturing advancements, material synergy effects, and minimally invasive/noninvasive glucose monitoring devices. The review also discusses the trend toward simultaneous detection of multiple markers in glucose sensors and the pivotal role played by CNTs in this trend. Furthermore, the latest applications of CNTs in electrochemical glucose sensors are explored, accompanied by an overview of the current status, challenges, and future prospects of CNT-based sensors and their potential applications.
Collapse
Affiliation(s)
- Tianyi Yuwen
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Danting Shu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Hanyan Zou
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Xinrui Yang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shijun Wang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Shuheng Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Qichen Liu
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
- JinFeng Laboratory, Chongqing, 401329, China
- Chongqing Institute for Food and Drug Control, Chongqing, 401121, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| | - Yuchan Zhang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
| | - Guangchao Zang
- Institute of Life Science, and Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China.
- JinFeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
21
|
Vanderlaan EL, Nolan JK, Sexton J, Evans-Molina C, Lee H, Voytik-Harbin SL. Development of electrochemical Zn 2+ sensors for rapid voltammetric detection of glucose-stimulated insulin release from pancreatic β-cells. Biosens Bioelectron 2023; 235:115409. [PMID: 37244091 DOI: 10.1016/j.bios.2023.115409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/29/2023]
Abstract
Diabetes is a chronic disease characterized by elevated blood glucose levels resulting from absent or ineffective insulin release from pancreatic β-cells. β-cell function is routinely assessed in vitro using static or dynamic glucose-stimulated insulin secretion (GSIS) assays followed by insulin quantification via time-consuming, costly enzyme-linked immunosorbent assays (ELISA). In this study, we developed a highly sensitive electrochemical sensor for zinc (Zn2+), an ion co-released with insulin, as a rapid and low-cost method for measuring dynamic insulin release. Different modifications to glassy carbon electrodes (GCE) were evaluated to develop a sensor that detects physiological Zn2+ concentrations while operating within a biological Krebs Ringer Buffer (KRB) medium (pH 7.2). Electrodeposition of bismuth and indium improved Zn2+ sensitivity and limit of detection (LOD), and a Nafion coating improved selectivity. Using anodic stripping voltammetry (ASV) with a pre-concentration time of 6 min, we achieved a LOD of 2.3 μg/L over the wide linear range of 2.5-500 μg/L Zn2+. Sensor performance improved with 10-min pre-concentration, resulting in increased sensitivity, lower LOD (0.18 μg/L), and a bilinear response over the range of 0.25-10 μg/L Zn2+. We further characterized the physicochemical properties of the Zn2+ sensor using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). Finally, we demonstrated the sensor's capability to measure Zn2+ release from glucose-stimulated INS-1 β-cells and primary mouse islets. Our results exhibited a high correlation with secreted insulin and validated the sensor's potential as a rapid alternative to conventional two-step GSIS plus ELISA methods.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Indiana Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN, USA
| | - James K Nolan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA
| | - Carmella Evans-Molina
- Indiana Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Roudebush VA Medical Center, Indianapolis, IN, USA
| | - Hyowon Lee
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Center for Implantable Devices, Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN, USA; Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
22
|
Khosravi S, Soltanian S, Servati A, Khademhosseini A, Zhu Y, Servati P. Screen-Printed Textile-Based Electrochemical Biosensor for Noninvasive Monitoring of Glucose in Sweat. BIOSENSORS 2023; 13:684. [PMID: 37504083 PMCID: PMC10377550 DOI: 10.3390/bios13070684] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Abstract
Wearable sweat biosensors for noninvasive monitoring of health parameters have attracted significant attention. Having these biosensors embedded in textile substrates can provide a convenient experience due to their soft and flexible nature that conforms to the skin, creating good contact for long-term use. These biosensors can be easily integrated with everyday clothing by using textile fabrication processes to enhance affordable and scalable manufacturing. Herein, a flexible electrochemical glucose sensor that can be screen-printed onto a textile substrate has been demonstrated. The screen-printed textile-based glucose biosensor achieved a linear response in the range of 20-1000 µM of glucose concentration and high sensitivity (18.41 µA mM-1 cm-2, R2 = 0.996). In addition, the biosensors show high selectivity toward glucose among other interfering analytes and excellent stability over 30 days of storage. The developed textile-based biosensor can serve as a platform for monitoring bio analytes in sweat, and it is expected to impact the next generation of wearable devices.
Collapse
Affiliation(s)
- Safoora Khosravi
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Saeid Soltanian
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Amir Servati
- Materials Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Peyman Servati
- Flexible Electronics and Energy Lab (FEEL), Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
23
|
Silva MNT, Rocha RG, Richter EM, Munoz RAA, Nossol E. Nickel Oxy-Hydroxy/Multi-Wall Carbon Nanotubes Film Coupled with a 3D-Printed Device as a Nonenzymatic Glucose Sensor. BIOSENSORS 2023; 13:646. [PMID: 37367011 DOI: 10.3390/bios13060646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
A rapid and simple method for the amperometric determination of glucose using a nanocomposite film of nickel oxyhydroxide and multi-walled carbon nanotube (MWCNTs) was evaluated. The NiHCF)/MWCNT electrode film was fabricated using the liquid-liquid interface method, and it was used as a precursor for the electrochemical synthesis of nickel oxy-hydroxy (Ni(OH)2/NiOOH/MWCNT). The interaction between nickel oxy-hydroxy and the MWCNTs provided a film that is stable over the electrode surface, with high surface area and excellent conductivity. The nanocomposite presented an excellent electrocatalytic activity for the oxidation of glucose in an alkaline medium. The sensitivity of the sensor was found to be 0.0561 μA μmol L-1, and a linear range from 0.1 to 150 μmol L-1 was obtained, with a good limit of detection (0.030 μmol L-1). The electrode exhibits a fast response (150 injections h-1) and a sensitive catalytic performance, which may be due to the high conductivity of MWCNT and the increased active surface area of the electrode. Additionally, a minimal difference in the slopes for ascending (0.0561 µA µmol L-1) and descending (0.0531 µA µmol L-1) was observed. Moreover, the sensor was applied to the detection of glucose in artificial plasma blood samples, achieving values of 89 to 98% of recovery.
Collapse
Affiliation(s)
- Murillo N T Silva
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Raquel G Rocha
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Eduardo M Richter
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Rodrigo A A Munoz
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| | - Edson Nossol
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia 38400-902, MG, Brazil
| |
Collapse
|
24
|
Hekmat F, Ataei Kachouei M, Taghaddosi Foshtomi S, Shahrokhian S, Zhu Z. Direct decoration of commercial cotton fabrics by binary nickel-cobalt metal-organic frameworks for flexible glucose sensing in next-generation wearable sensors. Talanta 2023; 257:124375. [PMID: 36821966 DOI: 10.1016/j.talanta.2023.124375] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/21/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Having a prime significance in diagonsing and predicting the dangerous symptoms of chronic diseases in the early stages, special attention has been drawn by wearable glucose-sensing platforms in recent years. Herein, modified commercial cotton fabrics, decorated with binary Ni-Co metal-organic frameworks (NC-MOFs) through a one-pot scalable hydrothermal route, were directly utilized as flexible electrodes for non-enzymatic glucose amperometric sensing. Glucose sensitivities of 105.2 μA mM-1 cm-2 and 23 μA mM-1 cm-2 were acheived within two distinct linear dynamic ranges of 0.04-3.13 mM and 3.63-8.28 mM, respectively. Receiving benefits from a remarkable glucose sensitivity behavior in co-existence of iso-structures and interferences, rapid response (4.2 s), and remarkable reproducibility and repeatability, NC-MOF-modified cotton fabric electrodes are imensilly promising for developing high-performance wearable glucose sensing platfroms. The sensing performance of fabricated electrodes was further investigated in human blood serum and saliva.
Collapse
Affiliation(s)
- Farzaneh Hekmat
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | - Matin Ataei Kachouei
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran
| | | | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Azadi Avenue, Tehran, 11155-9516, Iran.
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
25
|
Nandhini C, Arul P, Huang ST, Tominaga M, Huang CH. Electrochemical sensing of dual biomolecules in live cells and whole blood samples: A flexible gold wire-modified copper-organic framework-based hybrid composite. Bioelectrochemistry 2023; 152:108434. [PMID: 37028136 DOI: 10.1016/j.bioelechem.2023.108434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/21/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
For clinical research, the precise measurement of hydrogen peroxide (H2O2) and glucose (Glu) is of paramount importance, due to their imbalanced concentrations in blood glucose, and reactive oxygen species (ROS) play a huge role in COVID-19 viral disease. It is critical to construct and develop a simple, rapid, flexible, long-term, and sensitive detection of H2O2 and glucose. In this paper, we have developed a unique morphological structure of MOF(Cu) on a single-walled carbon nanotube-modified gold wire (swnt@gw). Highly designed frameworks with nanotube composites enhance electron rate-transfer behavior while extending conductance and electroactive surface area.The composite sensing system delivers wide linear-range concentrations, low detection limit, and interference-free performance in co-existence with other biomolecules and metal ions. Endogenous quantitative tracking of H2O2 was performed in macrophage live-cells with the help of a strong stimulator lipopolysaccharide.The composite device was effectively utilized for the measurement of H2O2 and glucose in turbid samples of whole blood and milk samples without a pretreatment process. The practical results of biofluids showed favorable voltammetric results and acceptance recovery percentage levels between 97.49 and 98.88%. Finally, a flexible MOF-based hybrid system may provide a suitable detection platform in the construction of electro-biosensors and hold potential promise for clinical-sensory applications.
Collapse
Affiliation(s)
- C Nandhini
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Masato Tominaga
- Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| |
Collapse
|
26
|
Nishida S, Sumi H, Noji H, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Influence of distal glycan mimics on direct electron transfer performance for bilirubin oxidase bioelectrocatalysts. Bioelectrochemistry 2023; 152:108413. [PMID: 37028137 DOI: 10.1016/j.bioelechem.2023.108413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Bilirubin oxidase (BOD) is a bioelectrocatalyst that reduces dioxygen (O2) to water and is capable of direct electron transfer (DET)-type bioelectrocatalysis via its electrode-active site (T1 Cu). BOD from Myrothecium verrucaria (mBOD) has been widely studied and has strong DET activity. mBOD contains two N-linked glycans (N-glycans) with N472 and N482 binding sites distal to T1 Cu. We previously reported that different N-glycan compositions affect the enzymatic orientation on the electrode by using recombinant BOD expressed in Pichia pastoris and the deglycosylation method. However, the individual function of the two N-glycans and the effects of N-glycan composition (size, structure, and non-reducing termini) on DET-type reactions are still unclear. In this study, we utilize maleimide-functionalized polyethylene glycol (MAL-PEG) as an N-glycan mimic to evaluate the aforementioned effects. Site-specific enzyme-PEG crosslinking was carried out by specific binding of maleimide to Cys residues. Recombinant BOD expressed in Escherichia coli (eBOD), which does not have a glycosylation system, was used as a benchmark to evaluate the effect. Site-directed mutagenesis of Asn residue (N472 or N482) into Cys residue is utilized to realize site-specific glycan mimic modification to the original binding site.
Collapse
|
27
|
Kitamura M, Umemura K. Hybridization of papain molecules and DNA-wrapped single-walled carbon nanotubes evaluated by atomic force microscopy in fluids. Sci Rep 2023; 13:4833. [PMID: 36964258 PMCID: PMC10039081 DOI: 10.1038/s41598-023-31927-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/20/2023] [Indexed: 03/26/2023] Open
Abstract
Although various conjugates of single-walled carbon nanotubes (SWNTs) and biomolecules, such as nanobiosensors and nanobiodevices, have been reported, the conjugation of papain and SWNTs have not been reported because of the formation of unexpected aggregates. In this study, atomic force microscopy (AFM) in liquid was used to investigate the interactions between papain and DNA-wrapped SWNTs (DNA-SWNTs) at two different pH values (pH 3.0 and 10.5). The direct AFM observation of the mixture of papain and DNA-SWNTs confirmed the aggregation of papain molecules with DNA-SWNTs in the buffer solutions. The numerous and non-uniform adsorption of papain molecules onto DNA-SWNTs was more pronounced at pH 3.0 than that at pH 10.5. Furthermore, thick conjugates appeared when papain and DNA-SWNTs were simultaneously mixed. The near-infrared photoluminescence spectra of the SWNTs drastically changed when the papain molecules were injected into the DNA-SWNT suspension at pH 3.0. Thus, the regulation of electrostatic interactions is a key aspect in preparing optimal conjugates of papain and DNA-SWNTs. Furthermore, although previous papers reported AFM images of dried samples, this study demonstrates the potential of AFM in liquid in evaluating individual bioconjugates of SWNTs.
Collapse
Affiliation(s)
- Masaki Kitamura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, 1628601, Japan.
| | - Kazuo Umemura
- Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, 1628601, Japan
| |
Collapse
|
28
|
Gold/MnO2 particles decorated on electrodeposited polyaniline toward non-enzymatic electrochemical sensor for glucose. MICRO AND NANO ENGINEERING 2023. [DOI: 10.1016/j.mne.2023.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
29
|
Podunavac I, Djocos M, Vejin M, Birgermajer S, Pavlovic Z, Kojic S, Petrovic B, Radonic V. 3D-Printed Microfluidic Chip for Real-Time Glucose Monitoring in Liquid Analytes. MICROMACHINES 2023; 14:mi14030503. [PMID: 36984909 PMCID: PMC10052769 DOI: 10.3390/mi14030503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
The connection of macrosystems with microsystems for in-line measurements is important in different biotechnological processes as it enables precise and accurate monitoring of process parameters at a small scale, which can provide valuable insights into the process, and ultimately lead to improved process control and optimization. Additionally, it allows continuous monitoring without the need for manual sampling and analysis, leading to more efficient and cost-effective production. In this paper, a 3D printed microfluidic (MF) chip for glucose (Glc) sensing in a liquid analyte is proposed. The chip made in Poly(methyl methacrylate) (PMMA) contains integrated serpentine-based micromixers realized via stereolithography with a slot for USB-like integration of commercial DropSens electrodes. After adjusting the sample's pH in the first micromixer, small volumes of the sample and enzyme are mixed in the second micromixer and lead to a sensing chamber where the Glc concentration is measured via chronoamperometry. The sensing potential was examined for Glc concentrations in acetate buffer in the range of 0.1-100 mg/mL and afterward tested for Glc sensing in a cell culturing medium. The proposed chip showed great potential for connection with macrosystems, such as bioreactors, for direct in-line monitoring of a quality parameter in a liquid sample.
Collapse
Affiliation(s)
- Ivana Podunavac
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Miroslav Djocos
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Marija Vejin
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Slobodan Birgermajer
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Zoran Pavlovic
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| | - Sanja Kojic
- University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21000 Novi Sad, Serbia
| | - Bojan Petrovic
- University of Novi Sad, Faculty of Medicine, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Vasa Radonic
- University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia
| |
Collapse
|
30
|
Lei L, Xu C, Dong X, Ma B, Chen Y, Hao Q, Zhao C, Liu H. Continuous Glucose Monitoring in Hypoxic Environments Based on Water Splitting-Assisted Electrocatalysis. CHEMOSENSORS 2023; 11:149. [DOI: 10.3390/chemosensors11020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Conventional enzyme-based continuous glucose sensors in interstitial fluid usually rely on dissolved oxygen as the electron-transfer mediator to bring electrons from oxidase to electrode while generating hydrogen peroxide. This may lead to several problems. First, the sensor may provide biased detection results owing to fluctuation of oxygen in interstitial fluid. Second, the polymer coatings that regulate the glucose/oxygen ratio can affect the dynamic response of the sensor. Third, the glucose oxidation reaction continuously produces corrosive hydrogen peroxide, which may compromise the long-term stability of the sensor. Here, we introduce an oxygen-independent nonenzymatic glucose sensor based on water splitting-assisted electrocatalysis for continuous glucose monitoring. For the water splitting reaction (i.e., hydrogen evolution reaction), a negative pretreatment potential is applied to produce a localized alkaline condition at the surface of the working electrode for subsequent nonenzymatic electrocatalytic oxidation of glucose. The reaction process does not require the participation of oxygen; therefore, the problems caused by oxygen can be avoided. The nonenzymatic sensor exhibits acceptable sensitivity, reliability, and biocompatibility for continuous glucose monitoring in hypoxic environments, as shown by the in vitro and in vivo measurements. Therefore, we believe that it is a promising technique for continuous glucose monitoring, especially for clinically hypoxic patients.
Collapse
Affiliation(s)
- Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chengtao Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xing Dong
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yichen Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qing Hao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
31
|
Patra S, Sahu KM, Reddy AA, Swain SK. Polymer and biopolymer based nanocomposites for glucose sensing. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2023.2175824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Swapnita Patra
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Krishna Manjari Sahu
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - A. Amulya Reddy
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| | - Sarat K. Swain
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, India
| |
Collapse
|
32
|
Integration of enzyme-encapsulated mesoporous silica between nanohole array electrode and hydrogel film for flow-type electrochemical biosensor. ANAL SCI 2023; 39:153-161. [PMID: 36334242 DOI: 10.1007/s44211-022-00209-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
We herein propose a simple and sensitive electrochemical flow biosensor platform without an external flow device. The sensing unit comprises a platinum nanohole array electrode deposited on a nanoporous track-etched membrane (PtNH/NPM), a packed-layer of glucose oxidase-encapsulated mesoporous silica particles (GOD/MPS), and bovine serum albumin hydrogel film (BSA gel film). This sensing unit was fixed at the open window at the side of the plastic container with internal solution containing NaCl as osmotic reagent. When the sample glucose solution (0.10 mL) was pipetted at the sensing unit, a portion of the sample solution (5 μL) was spontaneously transferred into the BSA gel film. The concentration gradient of NaCl between the internal solution and the BSA gel film induced osmotic flow of water toward the internal solution. This osmotic flow assisted delivery of glucose to the GOD/MPS and enzymatically generated H2O2 to the PtNH/NPM. The proposed sensor could be used repeatedly and produced a linear current response for glucose, with a limit of detection of 16 μM. These sensor performances confirmed availability of the sensor design utilizing the osmotic flow.
Collapse
|
33
|
Hossain S, Kim KD. Non-Invasive In Vivo Estimation of HbA1c Using Monte Carlo Photon Propagation Simulation: Application of Tissue-Segmented 3D MRI Stacks of the Fingertip and Wrist for Wearable Systems. SENSORS (BASEL, SWITZERLAND) 2023; 23:540. [PMID: 36617136 PMCID: PMC9824266 DOI: 10.3390/s23010540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
The early diagnosis of diabetes mellitus in normal people or maintaining stable blood sugar concentrations in diabetic patients requires frequent monitoring of the blood sugar levels. However, regular monitoring of the sugar levels is problematic owing to the pain and inconvenience associated with pricking the fingertip or using minimally invasive patches. In this study, we devise a noninvasive method to estimate the percentage of the in vivo glycated hemoglobin (HbA1c) values from Monte Carlo photon propagation simulations, based on models of the wrist using 3D magnetic resonance (MR) image data. The MR image slices are first segmented for several different tissue types, and the proposed Monte Carlo photon propagation system with complex composite tissue support is then used to derive several models for the fingertip and wrist sections with different wavelengths of light sources and photodetector arrangements. The Pearson r values for the estimated percent HbA1c values are 0.94 and 0.96 for the fingertip transmission- and reflection-type measurements, respectively. This is found to be the best among the related studies. Furthermore, a single-detector multiple-source arrangement resulted in a Pearson r value of 0.97 for the wrist. The Bland-Altman bias values were found to be -0.003 ± 0.36, 0.01 ± 0.25, and 0.01 ± 0.21, for the two fingertip and wrist models, respectively, which conform to the standards of the current state-of-the-art invasive point-of-care devices. The implementation of these algorithms will be a suitable alternative to the invasive state-of-the-art methods.
Collapse
Affiliation(s)
- Shifat Hossain
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ki-Doo Kim
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
34
|
Chmayssem A, Shalayel I, Marinesco S, Zebda A. Investigation of GOx Stability in a Chitosan Matrix: Applications for Enzymatic Electrodes. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23010465. [PMID: 36617063 PMCID: PMC9824325 DOI: 10.3390/s23010465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 06/12/2023]
Abstract
In this study, we designed a new biosensing membrane for the development of an electrochemical glucose biosensor. To proceed, we used a chitosan-based hydrogel that entraps glucose oxidase enzyme (GOx), and we crosslinked the whole matrix using glutaraldehyde, which is known for its quick and reactive crosslinking behavior. Then, the stability of the designed biosensors was investigated over time, according to different storage conditions (in PBS solution at temperatures of 4 °C and 37 °C and in the presence or absence of glucose). In some specific conditions, we found that our biosensor is capable of maintaining its stability for more than six months of storage. We also included catalase to protect the biosensing membranes from the enzymatic reaction by-products (e.g., hydrogen peroxide). This design protects the biocatalytic activity of GOx and enhances the lifetime of the biosensor.
Collapse
Affiliation(s)
- Ayman Chmayssem
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| | - Ibrahim Shalayel
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| | - Stéphane Marinesco
- Plate-Forme Technologique BELIV, Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69373 Lyon, France
| | - Abdelkader Zebda
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, INSERM, TIMC, 38000 Grenoble, France
| |
Collapse
|
35
|
Application of Nanoparticles: Diagnosis, Therapeutics, and Delivery of Insulin/Anti-Diabetic Drugs to Enhance the Therapeutic Efficacy of Diabetes Mellitus. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122078. [PMID: 36556443 PMCID: PMC9783843 DOI: 10.3390/life12122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder of carbohydrates, lipids, and proteins due to a deficiency of insulin secretion or failure to respond to insulin secreted from pancreatic cells, which leads to high blood glucose levels. DM is one of the top four noncommunicable diseases and causes of death worldwide. Even though great achievements were made in the management and treatment of DM, there are still certain limitations, mainly related to the early diagnosis, and lack of appropriate delivery of insulin and other anti-diabetic agents. Nanotechnology is an emerging field in the area of nanomedicine and NP based anti-diabetic agent delivery is reported to enhance efficacy by increasing bioavailability and target site accumulation. Moreover, theranostic NPs can be used as diagnostic tools for the early detection and prevention of diseases owing to their unique biological, physiochemical, and magnetic properties. NPs have been synthesized from a variety of organic and inorganic materials including polysaccharides, dendrimers, proteins, lipids, DNA, carbon nanotubes, quantum dots, and mesoporous materials within the nanoscale size. This review focuses on the role of NPs, derived from organic and inorganic materials, in the diagnosis and treatment of DM.
Collapse
|
36
|
Siampour H, Abbasian S, Moshaii A, Amirsoleimani AR. Stable, reproducible, and binder-free gold/copper core-shell nanostructures for high-sensitive non-enzymatic glucose detection. Sci Rep 2022; 12:18945. [PMID: 36347929 PMCID: PMC9643390 DOI: 10.1038/s41598-022-23504-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
The core-shell non-enzymatic glucose sensors are generally fabricated by chemical synthesis approaches followed by a binder-based immobilization process. Here, we have introduced a new approach to directly synthesis the core-shell of Au@Cu and its Au@CuxO oxides on an FTO electrode for non-enzymatic glucose detection. Physical vapor deposition of Au thin film followed by thermal annealing has been used to fabricate Au nanocores on the electrode. The Cu shells have been deposited selectively on the Au cores using an electrodeposition method. Additionally, Au@Cu2O and Au@CuO have been synthesized via post thermal annealing of the Au@Cu electrode. This binder-free and selective-growing approach has the merit of high electrooxidation activity owing to improving electron transfer ability and providing more active sites on the surface. Electrochemical measurements indicate the superior activity of the Au@Cu2O electrode for glucose oxidation. The high sensitivity of 1601 μAcm-2 mM-1 and a low detection limit of 0.6 μM are achieved for the superior electrode. Additionally, the sensor indicates remarkable reproducibility and supplies accurate results for glucose detection in human serums. Moreover, this synthesis approach can be used for fast, highly controllable and precise fabrication of many core-shell structures by adjusting the electrochemical deposition and thermal treatment parameters.
Collapse
Affiliation(s)
- Hossein Siampour
- grid.412266.50000 0001 1781 3962Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| | - Sara Abbasian
- grid.412266.50000 0001 1781 3962Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Ahmad Moshaii
- grid.412266.50000 0001 1781 3962Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Sensor and Biosensor, Faculty of Interdisciplinary Sciences and Technologies, Tarbiat Modares University, P.O. Box 14115-336, Tehran, Iran
| | - Amir R. Amirsoleimani
- grid.412266.50000 0001 1781 3962Department of Physics, Tarbiat Modares University, P.O Box 14115-175, Tehran, Iran
| |
Collapse
|
37
|
Norman NJ, Ghali J, Radzyukevich TL, Heiny JA, Landero-Figueroa J. Glucose uptake in mammalian cells measured by ICP-MS. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Hossain S, Satter S, Kwon TH, Kim KD. Optical Measurement of Molar Absorption Coefficient of HbA1c: Comparison of Theoretical and Experimental Results. SENSORS (BASEL, SWITZERLAND) 2022; 22:8179. [PMID: 36365877 PMCID: PMC9658719 DOI: 10.3390/s22218179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Diabetes can cause dangerous complications if not diagnosed in a timely manner. The World Health Organization accepts glycated hemoglobin (HbA1c) as a measure of diagnosing diabetes as it provides significantly more information on the glycemic behavior from a single blood sample than the fasting blood sugar reading. The molar absorption coefficient of HbA1c is needed to quantify the amount of HbA1c present in a blood sample. In this study, we measured the molar absorption coefficient of HbA1c in the range of 450 nm to 700 nm using optical methods experimentally. We observed that the characteristic peaks of the molar absorption coefficient of HbA1c (at 545 nm and 579 nm for level 1, at 544 nm and 577 nm for level 2) are in close agreement with those reported in previous studies. The molar absorption coefficient values were also found to be close to those of earlier reports. The average molar absorption coefficient values of HbA1c were found to be 804,403.5 M−1cm−1 at 545 nm and 703,704.5 M−1cm−1 at 579 nm for level 1 as well as 503,352.4 M−1cm−1 at 544 nm and 476,344.6 M−1cm−1 at 577 nm for level 2. Our experiments focused on calculating the molar absorption coefficients of HbA1c in the visible wavelength region, and the proposed experimental method has an advantage of being able to easily obtain the molar absorption coefficient at any wavelength in the visible wavelength region. The results of this study are expected to help future investigations on noninvasive methods of estimating HbA1c levels.
Collapse
Affiliation(s)
- Shifat Hossain
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Shama Satter
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| | - Tae-Ho Kwon
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| | - Ki-Doo Kim
- Department of Electronics Engineering, Kookmin University, Seoul 02707, Korea
| |
Collapse
|
39
|
Bossard B, Grothe RA, Martins AB, Lobato A, Tasić N, Paixão TRLC, Gonçalves LM. Nanographene laser-pyrolyzed paper electrodes for the impedimetric detection of d-glucose via a molecularly imprinted polymer. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Yin R, Xin J, Yang D, Gao Y, Zhang H, Qian Z, Zhang W. High-Linearity Hydrogel-Based Capacitive Sensor Based on Con A-Sugar Affinity and Low-Melting-Point Metal. Polymers (Basel) 2022; 14:4302. [PMID: 36297880 PMCID: PMC9610871 DOI: 10.3390/polym14204302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Continuous glucose monitoring (CGM) plays an important role in the treatment of diabetes. Affinity sensing based on the principle of reversible binding to glucose does not produce intermediates, and the specificity of concanavalin A (Con A) to glucose molecules helps to improve the anti-interference performance and long-term stability of CGM sensors. However, these affinity glucose sensors have some limitations in their linearity with a large detection range, and stable attachment of hydrogels to sensor electrodes is also challenging. In this study, a capacitive glucose sensor with high linearity and a wide detection range was proposed based on a glucose-responsive DexG-Con A hydrogel and a serpentine coplanar electrode made from a low-melting-point metal. The results show that within the glucose concentration range of 0-20 mM, the sensor can achieve high linearity (R2 = 0.94), with a sensitivity of 33.3 pF mM-1, and even with the larger glucose concentration range of 0-30 mM the sensor can achieve good linearity (R2 = 0.84). The sensor also shows resistance to disturbances of small molecules, good reversibility, and long-term stability. Due to its low cost, wide detection range, high linearity, good sensitivity, and biocompatibility, the sensor is expected to be used in the field of continuous monitoring of blood glucose.
Collapse
Affiliation(s)
- Ruixue Yin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jizhong Xin
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Dasheng Yang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Gao
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongbo Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqin Qian
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada
| |
Collapse
|
41
|
Althobaiti M. In Silico Investigation of SNR and Dermis Sensitivity for Optimum Dual-Channel Near-Infrared Glucose Sensor Designs for Different Skin Colors. BIOSENSORS 2022; 12:805. [PMID: 36290941 PMCID: PMC9599199 DOI: 10.3390/bios12100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Diabetes is a serious health condition that requires patients to regularly monitor their blood glucose level, making the development of practical, compact, and non-invasive techniques essential. Optical glucose sensors-and, specifically, NIR sensors-have the advantages of being non-invasive, compact, inexpensive, and user-friendly devices. However, these sensors have low accuracy and are yet to be adopted by healthcare providers. In our previous work, we introduced a non-invasive dual-channel technique for NIR sensors, in which a long channel is utilized to measure the glucose level in the inner skin (dermis) layer, while a short channel is used to measure the noise signal of the superficial skin (epidermis) layer. In this work, we investigated the use of dual-NIR channels for patients with different skin colors (i.e., having different melanin concentrations). We also adopted a Monte Carlo simulation model that takes into consideration the differences between different skin layers, in terms of blood content, water content, melanin concentration in the epidermis layer, and skin optical proprieties. On the basis of the signal-to-noise ratio, as well as the sensitivities of both the epidermis and dermis layers, we suggest the selection of wavelengths and source-to-detector separation for optimal NIR channels under different skin melanin concentrations. This work facilitates the improved design of a compact and non-invasive NIR glucose sensor that can be utilized by patients with different skin colors.
Collapse
Affiliation(s)
- Murad Althobaiti
- Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
42
|
Fenoy GE, Piccinini E, Knoll W, Marmisollé WA, Azzaroni O. The Effect of Amino-Phosphate Interactions on the Biosensing Performance of Enzymatic Graphene Field-Effect Transistors. Anal Chem 2022; 94:13820-13828. [PMID: 36170602 DOI: 10.1021/acs.analchem.2c02373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between polyamines and phosphate species is found in a wide range of biological and abiotic systems, yielding crucial consequences that range from the formation of supramolecular colloids to structure determination. In this work, the occurrence of phosphate-amino interactions is evidenced from changes in the electronic response of graphene field effect transistors (gFETs). First, the surface of the transistors is modified with poly(allylamine), and the effect of phosphate binding on the transfer characteristics is interpreted in terms of its impact on the surface charge density. The electronic response of the polyamine-functionalized gFETs is shown to be sensitive to the presence of different phosphate anions, such as orthophosphate, adenosine triphosphate, and tripolyphosphate, and a simple binding model is developed to explain the dependence of the shift of the Dirac point potential on the phosphate species concentration. Afterward, the impact of phosphate-amino interactions on the immobilization of enzymes to polyamine-modified graphene surfaces is investigated, and a decrease in the amount of anchored enzyme as the phosphate concentration increases is found. Finally, multilayer polyamine-urease biosensors are fabricated while increasing the phosphate concentration in the enzyme solution, and the sensing properties of the gFETs toward urea are evaluated. It is found that the presence of simple phosphate anions alters the nanoarchitecture of the polyelectrolyte-urease assemblies, with direct implications on urea sensing.
Collapse
Affiliation(s)
- Gonzalo E Fenoy
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina.,AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina
| | - Wolfgang Knoll
- AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria.,Department of Scientific Coordination and Management, Danube Private University, 3500 Krems an der Donau, Austria
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata (UNLP), CONICET, 1900 La Plata, Argentina.,CEST-UNLP Partner Lab for Bioelectronics (INIFTA), Diagonal 64 y 113, La Plata 1900, Argentina
| |
Collapse
|
43
|
Soranzo T, Ben Tahar A, Chmayssem A, Zelsmann M, Vadgama P, Lenormand JL, Cinquin P, K. Martin D, Zebda A. Electrochemical Biosensing of Glucose Based on the Enzymatic Reduction of Glucose. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197105. [PMID: 36236202 PMCID: PMC9572614 DOI: 10.3390/s22197105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 06/12/2023]
Abstract
In this work, the enzyme aldehyde reductase, also known as aldose reductase, was synthesized and cloned from a human gene. Spectrophotometric measurements show that in presence of the nicotinamide adenine dinucleotide phosphate cofactor (NADPH), the aldehyde reductase catalyzed the reduction of glucose to sorbitol. Electrochemical measurements performed on an electrodeposited poly(methylene green)-modified gold electrode showed that in the presence of the enzyme aldehyde reductase, the electrocatalytic oxidation current of NADPH decreased drastically after the addition of glucose. These results demonstrate that aldehyde reductase is an enzyme that allows the construction of an efficient electrochemical glucose biosensor based on glucose reduction.
Collapse
Affiliation(s)
- Thomas Soranzo
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Awatef Ben Tahar
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Ayman Chmayssem
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Marc Zelsmann
- Univ. Grenoble Alpes, CNRS, CEA-LETI, Grenoble INP, LTM, F-38054 Grenoble, France
| | - Pankaj Vadgama
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Jean-Luc Lenormand
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Phillipe Cinquin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Donald K. Martin
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| | - Abdelkader Zebda
- Univ. Grenoble Alpes, TIMC-IMAG/CNRS/INSERM, UMR 5525, F-38000 Grenoble, France
| |
Collapse
|
44
|
Zhong J, Liu S, Zou T, Yan W, Chen P, Liu B, Sun Z, Wang Y. High-Sensitivity Optical Fiber-Based Glucose Sensor Using Helical Intermediate-Period Fiber Grating. SENSORS (BASEL, SWITZERLAND) 2022; 22:6824. [PMID: 36146172 PMCID: PMC9501600 DOI: 10.3390/s22186824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
An all-fiber glucose sensor is proposed and demonstrated based on a helical intermediate-period fiber grating (HIPFG) produced by using a hydrogen/oxygen flame heating method. The HIPFG, with a grating length of 1.7 cm and a period of 35 μm, presents four sets of double dips with low insertion losses and strong coupling strengths in the transmission spectrum. The HIPFG possesses an averaged refractive index (RI) sensitivity of 213.6 nm/RIU nm/RIU in the RI range of 1.33-1.36 and a highest RI sensitivity of 472 nm/RIU at RI of 1.395. In addition, the HIPFG is demonstrated with a low-temperature sensitivity of 3.67 pm/°C, which promises a self-temperature compensation in glucose detection. In the glucose-sensing test, the HIPFG sensor manifests a detection sensitivity of 0.026 nm/(mg/mL) and a limit of detection (LOD) of 1 mg/mL. Moreover, the HIPFG sensor exhibits good stability in 2 h, indicating its capacity for long-time detection. The properties of easy fabrication, high flexibility, insensitivity to temperature, and good stability of the proposed HIPFG endow it with a promising potential for long-term and compact biosensors.
Collapse
Affiliation(s)
- Junlan Zhong
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Shen Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Tao Zou
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Wenqi Yan
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Peijing Chen
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Bonan Liu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Zhongyuan Sun
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Photonic Devices and Sensing Systems for Internet of Tings, Guangdong and Hong Kong Joint Research Centre for Optical Fibre Sensors, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
45
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
46
|
Pilo MI, Baluta S, Loria AC, Sanna G, Spano N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2840. [PMID: 36014704 PMCID: PMC9413253 DOI: 10.3390/nano12162840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.
Collapse
Affiliation(s)
- Maria I. Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna C. Loria
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
47
|
Chen Q, Liu Y, Gu K, Yao J, Shao Z, Chen X. Silk-Based Electrochemical Sensor for the Detection of Glucose in Sweat. Biomacromolecules 2022; 23:3928-3935. [PMID: 35973042 DOI: 10.1021/acs.biomac.2c00753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of reliable glucose sensors for noninvasive monitoring is highly desirable and essential for diabetes detection. As a testing sample, sweat is voluminous and is easy to collect compared to blood. However, the application of sweat glucose sensors is generally limited because of their low stability and sensitivity compared to commercial glucometers. In this manuscript, a silk nanofibril (SNF)/reduced graphene oxide (RGO)/glucose oxidase (GOx) composite was developed as the working electrode of the sweat glucose sensor. The SNF/RGO/GOx composite was prepared via a facile two-step process, which involved the self-assembly of SNF from silk fibroin while reducing graphene oxide to RGO and immobilizing GOx on SNF. The SNF/RGO/GOx glucose sensor exhibited a low limit of detection (300 nM) and high sensitivity (18.0 μA/mM) in the sweat glucose range, covering both healthy people and diabetic patients (0-100 μM). Moreover, the SNF/RGO/GOx glucose sensors showed a long stability for at least 4 weeks. Finally, the SNF/RGO/GOx glucose sensor was applied to test the actual sweat samples from two volunteers and two sweating methods (by dry sauna and exercise). The results indicate the glucose data tested by the SNF/RGO/GOx glucose sensor were reliable, which correlated well to the data obtained from the commercial glucometer. Therefore, the SNF/RGO/GOx glucose sensor developed in this study may have a great potential for glucose control in personalized healthcare monitoring and chronic disease management.
Collapse
Affiliation(s)
- Qianying Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Yi Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Kai Gu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Shanghai Stomatological Hospital & School of Stomatology, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
48
|
Abdelbasset WK, Savina SV, Mavaluru D, Shichiyakh RA, Bokov DO, Mustafa YF. Smartphone based aptasensors as intelligent biodevice for food contamination detection in food and soil samples: Recent advances. Talanta 2022; 252:123769. [PMID: 36041314 DOI: 10.1016/j.talanta.2022.123769] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 01/03/2023]
Abstract
Nowadays, the integration of conventional analytical approaches with smartphones has been developed novel, emerging and affordable devices for improving on-site detection platforms in the fields of food safety. Smartphone-based aptasensors as the next generation of portable aptasensing technique has attracted considerable attention as it offers a semi-automated user interface that can be exploited by inexpert characters. Wireless data transferability is an undeniable advantage that home-testing platforms have as well as it can suggest high computational power. In addition, these types of biodevices can provide real-time monitoring in terms of exchanging digital networks in real-time. To elaborate, the ability of smartphones to connect through the Internet is one of the most critical advantages of smartphone-based aptasensor that can be uploaded to Cloud databases and results can be disseminated as spatio-temporal maps across the globe. This review focused on the recent progress and technical breakthroughs of aptasensor on the smartphone as a groundbreaking enterprise in the field of biochemical analysis, importantly in the aspect of the combination of different types of biosensors including electrochemical, optical and colorimetric. In our opinion, this review can broaden our understanding of using smartphones as a portable sensing approach by addressing the current challenges and future perspectives.
Collapse
Affiliation(s)
- Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia; Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt.
| | - Svetlana Vladimirovna Savina
- Department of business informatics, Financial University under the Government of the Russian Federation, Moscow, Russian Federation
| | - Dinesh Mavaluru
- Department of Information Technology, College of Computing and Informatics, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Rustem Adamovich Shichiyakh
- Kuban State Agrarian University Named after I.T. Trubilin, 350044, Krasnodar, Kalinina Str. 13, Russian Federation
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
49
|
Suzuki Y, Itoh A, Kataoka K, Yamashita S, Kano K, Sowa K, Kitazumi Y, Shirai O. Effects of N-linked glycans of bilirubin oxidase on direct electron transfer-type bioelectrocatalysis. Bioelectrochemistry 2022; 146:108141. [PMID: 35594729 DOI: 10.1016/j.bioelechem.2022.108141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 12/24/2022]
Abstract
Bilirubin oxidase from Myrothecium verrucaria (mBOD) is a promising enzyme for catalyzing the four-electron reduction of dioxygen into water and realizes direct electron transfer (DET)-type bioelectrocatalysis. It has two N-linked glycans (N-glycans), and N472 and N482 are known as binding sites. Both binding sites located on opposite side of the type I (T1) Cu, which is the electrode-active site of BOD. We investigated the effect of N-glycans on DET-type bioelectrocatalysis by performing electrochemical measurements using electrodes with controlled surface charges. Two types of BODs with different N-glycans, mBOD and recombinant BOD overexpressed in Pichia pastoris (pBOD), and their deglycosylated forms (dg-mBOD and dg-pBOD) were used in this study. Kinetic analysis of the steady-state catalytic waves revealed that both size and composition of N-glycans affected the orientation of adsorbed BODs on the electrodes. Interestingly, the most favorable orientation was achieved with pBOD, which has the largest N-glycans. Furthermore, the effect of the orientation control by the N-glycans is cooperative with electrostatic interaction.
Collapse
Affiliation(s)
- Yohei Suzuki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Itoh
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kunishige Kataoka
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Satoshi Yamashita
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Kenji Kano
- Office of Society Academia Collaboration for Innovation, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Keisei Sowa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yuki Kitazumi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Osamu Shirai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
50
|
The Impact of the Functional Layer Composition of Glucose Test-Strips on the Stability of Electrochemical Response. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Herein, the impact of the chemical stability of RedOx mediator ferricyanide, K3[Fe(CN)6] (FC), a type of buffer solution used for bioreceptor preparation, gel composition (carboxymethylcellulose, CMC, Aerosile, AS, and alginate, ALG) on the long term stability of glucose test-strips and their analytical performance was examined. By simple addition of ALG to the functional gel aiming to improve its viscosity, we managed to enhance the sensitivity of conventional CMC-containing amperometric glucose test-strips from 3.3 µA/mM to 3.9 µA/mM and extend their shelf life from 8 months to 1.7 years. Moreover, during the course of investigations, it was revealed that the activity of enzyme in dependence with the used buffer did not linearly correlate with its activity in a dried functional layer, and the entire long-term electrochemical signal of glucose test-strips was determined by RedOx mediator FC chemical stability. The most stable and sensitive test-strips were obtained by the screen-printing approach from a gel containing 24 mg/mL GOx prepared in citrate buffer with pH 6, 200 mg/mL of FC and 10 mg/mL of CMC supplemented with 25 mg/mL of ALG.
Collapse
|