1
|
Adachi K, Nogami J, Hashizume D, Tauchi D, Hasegawa M, Tanaka K. Enantio- and Diastereoselective Synthesis and Spiral-Stair-Like Single Helix Assembly of Figure-Eight Cyclophenylenes. Angew Chem Int Ed Engl 2025; 64:e202502764. [PMID: 40104859 DOI: 10.1002/anie.202502764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/20/2025]
Abstract
Helix assemblies of chiral molecules can transfer microscopic unimolecular chirality to macroscopic supramolecular chirality, enhancing various chiral properties. In addition to the commonly observed spiral-column-like helix assembly, a small number of spiral-stair-like helix assemblies have also been reported in aromatic nanocarbons with multiple chirality-related irregularities. However, they require separation of diastereomers and/or enantiomers or do not have stable chirality. Here, we report the enantio- and diastereoselective synthesis of figure-eight [10]cyclophenylenes with stable helical chirality by the rhodium-catalyzed four consecutive intramolecular [2 + 2 + 2] cycloadditions of dodecaynes with two flexible biphenyl units. The chiral figure-eight [10]cyclophenylene with ethyl and methyl side chains exhibits the spiral-stair-like single helix assembly in the crystal due to CH-π and CH-O interactions and good CPL properties in solution. Experimental verification of the enantio- and diastereodetermining steps of four consecutive [2 + 2 + 2] cycloadditions is also reported.
Collapse
Affiliation(s)
- Kohei Adachi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Juntaro Nogami
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daiki Tauchi
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Hasegawa
- Graduate School of Science, Kitasato University, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Institute of Science Tokyo, O-okayama, Meguro-ku, Tokyo, 152-8550, Japan
| |
Collapse
|
2
|
Xu T, Lin F, Hu F, Song F, Shi S, Zhao J, Liu D, Zhang X, Han J, Li F. Circularly Polarized Luminescence Inversion Induced by Achiral Dyes in Organogels. Chemistry 2025; 31:e202500908. [PMID: 40192647 DOI: 10.1002/chem.202500908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/17/2025]
Abstract
Supramolecular assembly strategy is widely applied to develop circularly polarized luminescence (CPL) materials, especially for centrally chiral systems. The CPL sign of supramolecular gels based on a centrally chiral compound is generally regulated by employing the opposite chiral enantiomers. However, controlling CPL signals by regulating the interaction model between the achiral fluorophore and chiral gelator, accompanied by the adjustment of the emission wavelength, remains challenging. Herein, we have developed binary supramolecular gels based on achiral cyanostilbene derivatives and a chiral gelator. Two binary supramolecular gels have displayed achiral fluorophore-induced CPL sign inversion, attributed to the hydrogen bonding interaction between the carboxyl group of two fluorophores and the amino group of chiral gelator. This work reveals a rational approach to the design of CPL material with tunable CPL sign and CPL emission wavelength.
Collapse
Affiliation(s)
- Tianjing Xu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fanjie Lin
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fengqing Hu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fengyan Song
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Siao Shi
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jiayan Zhao
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Dou Liu
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Xinyue Zhang
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| | - Fei Li
- State Key Laboratory of Natural Medicines, College of Engineering, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
3
|
Zhao J, Dou WT, Cui W, Shi X, Li X, Fang J, Qian X, Yang HB, Xu L. Chiroptical Signal Inversion of Peptido-Coassemblies in Confined Parallel-Laminar Microfluidics. Angew Chem Int Ed Engl 2025:e202503284. [PMID: 40297962 DOI: 10.1002/anie.202503284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/25/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Chirality plays a vital role in material properties, and precise control of chiral signals is key to designing functional materials. Supramolecular self-assembly offers an efficient means to integrate chiral building blocks with chromophores, yet controlling the assembly pathway remains challenging due to the complexity of non-covalent interactions. Here, we introduce a continuous parallel-laminar-assisted self-assembly strategy that exploits solvent ordering and solute diffusion in confined environments to regulate chiral signals in multi-component peptide co-assemblies. Notably, six nonpolar amino acids exhibit significantly enhanced chiroptical responses, as confirmed by circular dichroism (CD) and circularly polarized luminescence (CPL) spectroscopy. Intriguingly, Fmoc-Ala and 1-aminopyrene (AP) co-assemblies formed in a microfluidic chip show a reversed chiroptical signal compared to those from batch reactions. Molecular dynamics (MD) simulations and COMSOL modeling suggest that velocity gradients and shear forces in microfluidics induce ordered non-covalent interactions, altering excimer stacking and modulating chiroptical properties. This study presents an effective strategy for controlling chiral optical signals in confined environments, offering an interesting approach for supramolecular chiral transfer and regulation.
Collapse
Affiliation(s)
- Jianjian Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Wanding Cui
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Xiaodong Li
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, P.R. China
| | - Junfeng Fang
- School of Physics and Electronic Science, Engineering Research Center of Nanophotonics & Advanced Instrument, Ministry of Education, East China Normal University, Shanghai, 200241, P.R. China
| | - Xuhong Qian
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P.R. China
| |
Collapse
|
4
|
Diallo O, Audibert J, Leray I, Kreher D, Bertrand GHV. Polyaromatic Cyclophanes Design and their Related Optical Properties. ChemistryOpen 2025; 14:e202400207. [PMID: 39628328 PMCID: PMC11973505 DOI: 10.1002/open.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/13/2024] [Indexed: 04/08/2025] Open
Abstract
In this article, we present several organic synthetic way to synthesize a family of five polyaromatic molecules based on a cyclophane core. Our strategies revolves around palado-catalyzed substitution on a [2.2]paracyclophane (pCp) building block. Direct formation of a cyclophane was also employed for two molecules. The polyaromatic nature of the cyclophane library we synthetized made them good fluorophores candidate, we hence performed full photophysical characterization (Absorption, Emission, TCSPC) in different solvent as well as embed in polystyrene films. We evaluate how the cyclophane moiety influence their photo physical properties compared to their corresponding homologues without pCp core, demonstrating greater stoke shift and intramolecular exciplex behavior. The general behavior among cyclophanes was also compared and show solvent dependent properties as well as consistency of the photophysics between toluene and polystyrene matrix.
Collapse
Affiliation(s)
- Oumou Diallo
- Université Paris-SaclayCEA, ListF-91120PalaiseauFrance
- Institut Lavoisier de Versailles (ILV)CNRSUniversité Paris-Saclay45 avenue des Etats-UnisF-78035VersaillesFrance
| | - Jean‐Frédéric Audibert
- Université Paris-SaclayENS Paris-SaclayCNRSPhotophysique et Photochimie Supramoléculaires et Macromoléculaires91190Gif-sur-YvetteFrance
| | - Isabelle Leray
- Université Paris-SaclayENS Paris-SaclayCNRSPhotophysique et Photochimie Supramoléculaires et Macromoléculaires91190Gif-sur-YvetteFrance
| | - David Kreher
- Institut Lavoisier de Versailles (ILV)CNRSUniversité Paris-Saclay45 avenue des Etats-UnisF-78035VersaillesFrance
| | | |
Collapse
|
5
|
Feng Z, Li J, Yang P, Xu X, Wang D, Li J, Zhang C, Li J, Zhang H, Zou G, Chen X. Dynamic multimodal information encryption combining programmable structural coloration and switchable circularly polarized luminescence. Nat Commun 2025; 16:2264. [PMID: 40050269 PMCID: PMC11885572 DOI: 10.1038/s41467-025-57649-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Multimodal optical-materials are highly desirable due to their advantages in enhancing information security, though independent modulation is challenging, especially accurately controlling the orthogonal relationship between the structural coloration (SC) and fluorescence (FL) pattern. Herein, we report a strategy which combines programmable structural coloration and switchable circularly polarized luminescence (CPL) for multimodal information encryption. Using photomask with aligned grating, programmable periodic patterns are fabricated on a polydiacetylene (PDA) gel film, which produces image in tunable structural colors. Introducing a chiral fluorescence layer containing perovskite nanocrystals and twisted-stacking Ag nanowires (NWs) bilayers, which provides stimuli-responsive FL and CPL with high dissymmetry factor (glum, up to 1.3). Importantly, the structural coloration information and FL patterns (including CPL pattern) can be independently modulated without mutual interference, even selectively concealed or exposed by varying microstructure design of the cross-linked PDA gel or by acetonitrile treatment.
Collapse
Affiliation(s)
- Zeyu Feng
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jialei Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Peng Yang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
- Suzhou Laboratory, Suzhou, Jiangsu, China
| | - Xiangxiang Xu
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Di Wang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiahe Li
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Chutian Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingguo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Hongli Zhang
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
| | - Gang Zou
- State Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| | - Xin Chen
- Suzhou Laboratory, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Jia S, Yang B, Du J, Zhang J, Xie Y, Tao T, Tang J, Tang W, Gong J. Circularly Polarized Luminescence in Cellulose-Based Assemblies: Synthesis, Regulation, and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408219. [PMID: 39711311 DOI: 10.1002/smll.202408219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Currently, circularly polarized luminescence (CPL) has drawn wide interest in 3D display, information storage, and optical sensing. However, traditional synthetic paths are often accompanied by low chiral optical intensity and complex processes. Cellulose nanocrystals (CNCs), with the properties of liquid crystals, can spontaneously arrange into the left-handed layered nanofilm, which enables them candidates in the construction of CPL materials. Following this approach, this work reviews the synthesis of cellulose-based chiral luminescent materials. The co-assembly technique, in situ intercalation strategy, and defect destruction design are efficient in encapsulating the luminophores into the CNC organization. Next, various strategies on the CPL regulation, including the matching of the photonic bandgap, optical pathway design, and tailored helical structure, are summarized. These offer new sights in the CPL control, mainly focusing on the amplification and inversion of optical signals. Multimodal and convertible chiroptical signals enable the photonic films with practical values in anti-counterfeit, sensing, and handedness induction. Overall, this timely overview summarizes the synthesis, regulation, and application of cellulose-based CPL materials, and aims to inspire the development of the chiral optical materials.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Jiayin Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jiaxuan Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
7
|
Qiang Q, Luo Q, Wang H, Tian S, Su W, He H, Yang H, Li C, Zhang T. One-Pot Production of Cinnamonitriles from Lignin β-O-4 Segments Induced by Selective Oxidation of the γ-OH Group. J Org Chem 2024; 89:18424-18435. [PMID: 39655613 DOI: 10.1021/acs.joc.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of N-containing aromatic compounds from lignin is of great importance to expanding the boundary of the biorefinery and meeting the demand for value-added biorefinery. However, it remains a huge challenge due to the complex lignin structure and the incompatible catalysis for C-O/C-C bond cleavage and C-N formation. Herein, sustainable synthesis of cinnamonitrile derivatives from lignin β-O-4 model compounds in the presence of 2,2,6,6-tetramethylpiperidine oxide (TEMPO), (diacetoxyiodo)benzene (BAIB), and a strong base has been achieved in a one-pot, two-step fashion under transition-metal-free conditions. Mechanistic studies suggest that this transformation starts from selective oxidation of Cγ-OH of the β-O-4 model compound, followed by retro-aldol condensation, resulting in the cleavage of the Cα-Cβ bond to afford veratraldehyde. Whereafter, the aldol condensation reaction allows coupling of veratraldehyde with nitriles to provide cinnamonitriles. With this protocol, 3,4-dimethoxycinnamonitrile and 3,4-dimethoxyphenyl-2-phenylacrylonitrile were synthesized from lignin β-O-4 model compounds and showed good antibacterial or antifungal activity, showcasing the application potential of lignin in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huamei Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Han J, Fujikawa S, Kimizuka N. Living Hybrid Exciton Materials: Enhanced Fluorescence and Chiroptical Properties in Living Supramolecular Polymers with Strong Frenkel/Charge-Transfer Exciton Coupling. Angew Chem Int Ed Engl 2024; 63:e202410431. [PMID: 38987230 DOI: 10.1002/anie.202410431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
A family of chiral perylene diimides (PDIs) was newly developed as excellent circularly polarized luminescence (CPL) materials. They are asymmetrically derivatized with a double-alkyl-chained L- or D-glutamate unit and a linear or branched alkyl chain. When water is added to the tetrahydrofuran (THF) solution of glutamate-PDI-linear-alkyl chain compounds, kinetically formed H-aggregates are formed in globular nanoparticles (NPs). These NPs undergo spontaneous transformation into thermodynamically stable nanotubes via helical nanostructures, which showed structured broad spectra originating from the strong coupling of delocalized Frenkel excitations (FE) and charge transfer excitations (CTE). Significant enhancement of circular dichroism (CD), fluorescence quantum yield, and circularly polarized luminescence (CPL) with luminescence dissymmetry factor (glum) are observed during the transformation of NPs to the FE/CTE-coupled helical and tubular structures. This transformation process is significantly accelerated by applying physical stimuli, i.e., ultrasonication or adding helical aggregates as seed crystals, a feature unique to living supramolecular polymerization. Meanwhile, the branched chain-containing PDIs only form H-aggregates and did not show FE/CTE hybrid exciton states with living supramolecular polymerization properties. This study unveils that suitably designed chiral PDI derivatives show FE/CTE coupling accompanied by high fluorescence quantum yields, enhanced chiroptical properties, and supramolecular living polymerization characteristics.
Collapse
Affiliation(s)
- Jianlei Han
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
| | - Shigenori Fujikawa
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobuo Kimizuka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, 819-0395, Japan
- Research Center for Negative Emission Technologies, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
9
|
Zou G, Jiang Z, Li D, Li Q, Cheng Y. Efficient helical columnar emitters of chiral homoleptic Pt(ii) metallomesogens for circularly polarized electroluminescence. Chem Sci 2024:d4sc05781c. [PMID: 39430933 PMCID: PMC11488679 DOI: 10.1039/d4sc05781c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Chiral organometallic Pt(ii) complexes have been demonstrated to be excellent circularly polarized luminescence (CPL) materials due to their rich phosphorescence and strong self-assembly characteristics. However, it remains a formidable task to simultaneously achieve high luminance (L) and electroluminescence dissymmetry factor (g EL) values for circularly polarized electroluminescence (CP-EL) devices of Pt(ii) complex-based emitters. In this study, we carry out a straightforward and efficient protocol to construct highly CPL-active helical columnar () emitters by using chiral homoleptic triazolatoplatinum(ii) metallomesogens (R/S-HPt). The peripheral flexible groups can not only improve solubility but also favor the induction of chirality and liquid crystal behavior. The resultant complexes R/S-HPt can self-assemble into the mesophase over a broad temperature range (6-358 °C) and exhibit excellent phosphorescence (Φ: up to 86%), resulting in intense CPL signals after thermal annealing (λ em = 615 nm and |g em| = 0.051). Using emitting layers (EML) based on R/S-HPt in solution-processed CP-EL devices, L max and |g EL| of CP-EL can reach up to 11 379 cd m-2 and 0.014, respectively. With comprehensive consideration of L max and g EL, this investigation shows the excellent performances among Pt(ii) complex-based CP-EL devices.
Collapse
Affiliation(s)
- Guo Zou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Zhenhao Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Dong Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Qihuan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
10
|
Shi F, Xu L, Zhao J, Li Z, Zhang W, Yang Y, Li H. Efficient multicolour and white circularly polarized luminescence from liquid crystalline polymer networks. Chem Commun (Camb) 2024; 60:11096-11099. [PMID: 39279724 DOI: 10.1039/d4cc02966f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Twelve liquid crystalline polymer network films were fabricated through photopolymerization of cholesteric liquid-crystalline mixtures containing two aggregation-induced emissive-active luminogens. The films exhibit multicolour and white circularly polarized luminescence with dissymmetry factors up to 0.85 and fluorescence quantum yields up to 90%.
Collapse
Affiliation(s)
- Fengyun Shi
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Liting Xu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Jinghua Zhao
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Zonglin Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yonggang Yang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hongkun Li
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
11
|
Min F, He J, Zhou W, Wang D, Xie S, Chu Z, Zeng Z. Unique Fluorescence of Aggregation-Induced Emission Luminogens on Solid Surfaces Modified by Silicone Nanofilaments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14548-14554. [PMID: 38963797 DOI: 10.1021/acs.langmuir.4c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Aggregation-induced emission (AIE) has revolutionized solid-state fluorescence by overcoming the limitations of aggregation-caused quenching. While extensively studied in solutions, AIE's potential on solid surfaces remains largely unexplored, which can be fundamentally interesting and practically useful. In this work, we demonstrate the successful dispersion of tetraphenylethylene (TPE), one of the most classical AIE luminogens, on solid surfaces coated with silicone nanofilaments (SNF). The high surface area of SNF enables the uniform immobilization of TPE luminogens, replicating their dispersal behavior in solutions. Compared to unmodified surfaces, TPE dispersed on SNF-coated surfaces exhibits significantly enhanced fluorescence intensity. Moreover, a fascinating dynamic blue shift in TPE emission on SNF-coated surfaces is observed, with the velocity controllable by the surface group of SNF by up to 4 orders of magnitude, showing that TPE can be applied to the judgment of the nanoscale morphology and surface free energy of the solid surface. Owing to the superhydrophobicity and self-cleaning properties of SNF, the on-surface fluorescence can be sustained underwater and is resistant to dust contamination and rain erosion, with potential applications of information encryption presented. Our approach of uniformly dispersing AIE luminogens on nanomaterials with high surface areas provides a general methodology for creating on-surface fluorescence and saving the usage of expensive AIE luminogens in applications.
Collapse
Affiliation(s)
- Fan Min
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Jinzhi He
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenting Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Deqi Wang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Xie
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zonglin Chu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Zebing Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Shenzhen Research Institute of Hunan University, Guangzhou 518000, China
| |
Collapse
|
12
|
Gong ZL, Dan TX, Chen JC, Li ZQ, Yao J, Zhong YW. Boost the Circularly Polarized Phosphorescence of Chiral Organometallic Platinum Complexes by Hierarchical Assembly into Fibrillar Networks. Angew Chem Int Ed Engl 2024; 63:e202402882. [PMID: 38594208 DOI: 10.1002/anie.202402882] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
Circularly polarized luminescence (CPL)-active molecular materials have drawn increasing attention due to their promising applications for next-generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C-type Pt(II) complexes (L/D)-1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL-inactive, the spin-coated thin films of (L/D)-1 exhibit giantly-amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37-0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)-2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)-1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)-1 in CPL-contrast imaging and inducing CP light generation from achiral emitters and common light-emitting diode lamps have been successfully realized.
Collapse
Affiliation(s)
- Zhong-Liang Gong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ti-Xiong Dan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Jian-Cheng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Lu J, Wu W, Colombari FM, Jawaid A, Seymour B, Whisnant K, Zhong X, Choi W, Chalmpes N, Lahann J, Vaia RA, de Moura AF, Nepal D, Kotov NA. Nano-achiral complex composites for extreme polarization optics. Nature 2024; 630:860-865. [PMID: 38811736 DOI: 10.1038/s41586-024-07455-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/22/2024] [Indexed: 05/31/2024]
Abstract
Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties1,2. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions3,4. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths. Here we show that multilayer nanocomposites from 2D nanomaterials with complex textured surfaces strongly and controllably rotate light polarization, despite being nano-achiral and partially disordered. The intense circular dichroism (CD) in nanocomposite films originates from the diagonal patterns of wrinkles, grooves or ridges, leading to an angular offset between axes of linear birefringence (LB) and linear dichroism (LD). Stratification of the layer-by-layer (LBL) assembled nanocomposites affords precise engineering of the polarization-active materials from imprecise nanoplatelets with an optical asymmetry g-factor of 1.0, exceeding those of typical nanomaterials by about 500 times. High thermal resilience of the composite optics enables operating temperature as high as 250 °C and imaging of hot emitters in the near-infrared (NIR) part of the spectrum. Combining LBL engineered nanocomposites with achiral dyes results in anisotropic factors for circularly polarized emission approaching the theoretical limit. The generality of the observed phenomena is demonstrated by nanocomposite polarizers from molybdenum sulfide (MoS2), MXene and graphene oxide (GO) and by two manufacturing methods. A large family of LBL optical nanocomponents can be computationally designed and additively engineered for ruggedized optics.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Wenbing Wu
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Felippe Mariano Colombari
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Ali Jawaid
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA
- UES, Inc., Dayton, OH, USA
| | | | - Kody Whisnant
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Xiaoyang Zhong
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Wonjin Choi
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Nikolaos Chalmpes
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA
| | - Joerg Lahann
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA
| | - Richard A Vaia
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| | | | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH, USA.
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
- Center for Complex Particle Systems (COMPASS), University of Michigan, Ann Arbor, MI, USA.
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Jiang P, Mikherdov AS, Ito H, Jin M. Crystallization-Induced Chirality Transfer in Conformationally Flexible Azahelicene Au(I) Complexes with Circularly Polarized Luminescence Activation. J Am Chem Soc 2024; 146:12463-12472. [PMID: 38626915 DOI: 10.1021/jacs.4c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Flexible and twisted annulated π-systems exhibit numerous unique and desirable features, owing to their ability to display chirality. However, preventing their racemization due to the dynamic nature of their chirality remains a challenge. One promising approach to stabilize homochirality in such systems is chirality transfer from a chiral auxiliary to a moiety displaying dynamic chirality. Herein, we introduce a new approach for dynamic chirality stabilization in conformationally flexible azahelicene species via crystallization-induced intermolecular chirality transfer in Au(I) complexes featuring azahelicene (dibenzo[c,g]carbazole and benzo[c]carbazole) and enantio-pure chiral N-heterocyclic carbene (NHC) ligands with a complementary tailored shape. Crystallization of these azahelicene Au(I) complexes not only suppresses the dynamic chirality of the dibenzocarbazole species but also stabilizes their homochirality through the intermolecular conjunction between the chiral NHC and dibenzocarbazole ligands. In the Au(I) benzocarbazole complexes, the intermolecular conjunction and chirality transfer in the crystals induce chirality in the initially achiral benzocarbazole ligand. Furthermore, the crystallization of the studied complexes activates their circularly polarized luminescence (CPL) properties, which were suppressed in solution. Importantly, chirality transfer leads to significant CPL enhancement; the complexes that feature chirality transfer within the crystal structure exhibit luminescence dissymmetry factors 5 to 10 times higher than those of the complexes without chirality transfer.
Collapse
Affiliation(s)
- Pingyu Jiang
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Alexander S Mikherdov
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Hajime Ito
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
15
|
Lian M, Zhao J, Zhang D, Ye S, Li Y, Yang D, Yang XJ, Wu B. Incorporation of an Anion-Coordinated Triple Helicate into a Thin Film for Choline Recognition in an Aqueous System. Angew Chem Int Ed Engl 2024; 63:e202401228. [PMID: 38354230 DOI: 10.1002/anie.202401228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
Functional thin films, being fabricated by incorporating discrete supramolecular architectures, have potential applications in research areas such as sensing, energy storage, catalysis, and optoelectronics. Here, we have determined that an anion-coordinated triple helicate can be solution-processed into a functional thin film by incorporation into a polymethyl methacrylate (PMMA) matrix. The thin films fabricated by the incorporation of the anion-coordinated triple helicate show multiple optical properties, such as fluorescence, CD, and CPL. In addition, the film has the ability to recognize choline and choline derivatives in a water system. The successful recognition of Ch+ by the film represents the first example of utilizing 'aniono'-supramolecular architectures for biomolecule detection in aqueous solution and opens up a new route for designing biocompatible functional materials.
Collapse
Affiliation(s)
- Mingli Lian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Jie Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, 710055, Xi'an, China
| | - Dan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Sheng Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Yidan Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Dong Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, China
| | - Biao Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710069, Xi'an, China
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, Beijing, China
| |
Collapse
|
16
|
Huang W, Zhu Y, Zhou K, Chen L, Zhao Z, Zhao E, He Z. Boosting Circularly Polarized Luminescence from Alkyl-Locked Axial Chirality Scaffold by Restriction of Molecular Motions. Chemistry 2024; 30:e202303667. [PMID: 38057693 DOI: 10.1002/chem.202303667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Boosting the circularly polarized luminescence of small organic molecules has been a stubborn challenge because of weak structure rigidity and dynamic molecular motions. To investigate and eliminate these factors, here, we carried out the structure-property relationship studies on a newly-developed axial chiral scaffold of bidibenzo[b,d]furan. The molecular rigidity was finely tuned by gradually reducing the alkyl-chain length. The environmental factors were considered in solution, crystal, and polymer matrix at different temperatures. As a result, a significant amplification of the dissymmetry factor glum from 10-4 to 10-1 was achieved, corresponding to the situation from (R)-4C in solution to (R)-1C in polymer film at room temperature. A synergistic strategy of increasing the intramolecular rigidity and enhancing the intermolecular interaction to restrict the molecular motions was thus proposed to improve circularly polarized luminescence. The though-out demonstrated relationship will be of great importance for the development of high-performance small organic chiroptical systems in the future.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yuxin Zhu
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Kang Zhou
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Letian Chen
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Engui Zhao
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zikai He
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| |
Collapse
|
17
|
Kudo R, Samitsu S, Mori H. Self-healing amino acid-bearing acrylamides/ n-butyl acrylate copolymers via multiple noncovalent bonds. RSC Adv 2024; 14:7850-7857. [PMID: 38449826 PMCID: PMC10915467 DOI: 10.1039/d4ra00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Four amino acid-bearing acrylamides, N-acryloyl-l-threonine (AThrOH), N-acryloyl-l-glutamic acid (AGluOH), N-acryloyl-l-phenylalanine (APheOH), and N-acryloyl-l, l-diphenylalanine (APhePheOH), were selected for copolymerization with n-butyl acrylate (nBA) to develop amino acid-based self-healable copolymers. A series of copolymers comprising amino acid-bearing acrylamides and nBA with tunable comonomer compositions and molecular weights were synthesized by free radical and reversible addition-fragmentation chain-transfer copolymerization. Self-healing and mechanical properties originated from the noncovalent bonds between the carboxyl, hydroxyl, and amide groups, and π-π stacking interactions among the amino acid residues in the side chains were evaluated. Among these copolymers, P(nBA-co-AGluOH) with suitable comonomer compositions and molecular weights (nBA : AGluOH = 82 : 18, Mn = 18 300, Mw/Mn = 2.58) exhibited good mechanical properties (modulus of toughness = 17.3 MJ m-3) and self-healing under ambient conditions. The multiple noncovalent bonds of P(nBA-co-AGluOH)s were also efficient in improving the optical properties with an enhanced refractive index and good transparency.
Collapse
Affiliation(s)
- Ryo Kudo
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| | - Sadaki Samitsu
- National Institute for Materials Science 1-2-1, Sengen Tsukuba 305-0047 Japan
| | - Hideharu Mori
- Department of Organic Material Science, Graduate School of Organic Materials Science, Yamagata University 4-3-16, Jonan Yonezawa City Yamagata Prefecture 992-8510 Japan
| |
Collapse
|
18
|
Jiang P, Liu Y, Ding B, Ma X. Regulation Strategies of Dynamic Organic Room-Temperature Phosphorescence Materials. CHEM & BIO ENGINEERING 2024; 1:13-25. [PMID: 39973973 PMCID: PMC11835169 DOI: 10.1021/cbe.3c00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2025]
Abstract
Recently, organic room-temperature phosphorescence (RTP) materials, especially those with reversible responses to external stimuli, have attracted extensive attention. A dynamic regulation strategy enables the materials to rapidly respond to external stimuli, gifting varied RTP performance and greater application potential in sensitive sensing, detection, and so on. For these reasons, this Review summarizes progress in the regulation of dynamic RTP in recent years. It focuses on physical regulatory factors including light, heat, and mechanical force as well as chemical regulatory factors including water, pH, and oxygen. It is expected to be beneficial for developing smart materials with dynamic RTP in the future.
Collapse
Affiliation(s)
- Ping Jiang
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiwei Liu
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bingbing Ding
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiang Ma
- Key Laboratory for Advanced
Materials and Feringa Nobel Prize Scientist Joint Research Center,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
19
|
Oka M, Kozako R, Teranishi Y, Yamada Y, Miyake K, Fujimura T, Sasai R, Ikeue T, Iida H. Chiral Supramolecular Organogel Constructed Using Riboflavin and Melamine: Its Application in Photo-Catalyzed Colorimetric Chiral Sensing and Enantioselective Adsorption. Chemistry 2024; 30:e202303353. [PMID: 38012829 DOI: 10.1002/chem.202303353] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 11/29/2023]
Abstract
The synthesis of a chiral supramolecular organogel via the hierarchical helical self-assembly of optically active riboflavin and melamine derivatives is described herein. Owing to the photocatalysis of riboflavin and the supramolecular chirality induced in the helically stacked riboflavin/melamine complex, the gel is observed to act as a light-stimulated chiral sensor of optically active alcohols by detecting the change in color from yellow to green. The gel also served as an efficient chiral adsorbent, enabling optical resolution of a racemic compound with high chiral recognition ability.
Collapse
Affiliation(s)
- Marina Oka
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Kozako
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Teranishi
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Yuta Yamada
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Kazuhiro Miyake
- Center for Material Research Platform, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujimura
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Ryo Sasai
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Takahisa Ikeue
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| | - Hiroki Iida
- Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, 690-8504, Japan
| |
Collapse
|
20
|
Gowda A, Pathak SK, Rohaley GAR, Acharjee G, Oprandi A, Williams R, Prévôt ME, Hegmann T. Organic chiral nano- and microfilaments: types, formation, and template applications. MATERIALS HORIZONS 2024; 11:316-340. [PMID: 37921354 DOI: 10.1039/d3mh01390a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Organic chiral nanofilaments are part of an important class of nanoscale chiral materials that has recently been receiving significant attention largely due to their potential use in applications such as optics, photonics, metameterials, and potentially a range of medical as well as sensing applications. This review will focus on key examples of the formation of such nano- and micro-filaments based on carbon nanofibers, polymers, synthetic oligo- and polypeptides, self-assembled organic molecules, and one prominent class of liquid crystals. The most critical aspects discussed here are the underlying driving forces for chiral filament formation, potentially answering why specific sizes and shapes are formed, what molecular design strategies are working equally well or rather differently among these materials classes, and what uses and applications are driving research in this fascinating field of materials science.
Collapse
Affiliation(s)
- Ashwathanarayana Gowda
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Suraj Kumar Pathak
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
| | - Grace A R Rohaley
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Gourab Acharjee
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Andrea Oprandi
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Ryan Williams
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA
| | - Torsten Hegmann
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA.
- Brain Health Research Institute, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
21
|
Gu Z, Ma W, Feng J, Liu Z, Xu B, Tian W. Enhancement of Circularly Polarized Luminescence from Pulsating Nanotubules. Macromol Rapid Commun 2023; 44:e2300428. [PMID: 37675646 DOI: 10.1002/marc.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Enhancing the dissymmetry factor (glum ) is a crucial issue in developing circularly polarized luminescence (CPL) materials. Herein, based on supramolecular self-assembly of diethyl l-glutamate-cyanodiarylethene (L-GC) in mixed solution of EtOH-H2 O with different water fraction, enhanced circularly polarized emission from pulsating nanotubules is realized. In the mixture of ethanol and water (30/70, v/v), L-GC self-assembles into roll-up-type dense nanotubes and shows l-CPL. Remarkably, by increasing the water fraction to 80% and 90%, the diameter of the roll-up nanotubes increases and the dissymmetry factor of the nanotubes is significantly enhanced from 6.9 × 10-3 (dense nanotubes) to 3.7 × 10-2 (loose nanotubes) because of the enhanced intermolecular interactions and more ordered supramolecular stacking when increasing the water fraction. An efficient way is provided here to realize the increase of the dissymmetry factor by only changing the composition of solvents.
Collapse
Affiliation(s)
- Zijian Gu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenyue Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jun Feng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhaoyang Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenjing Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
22
|
Das A, Ghosh S, George SJ. Chiroptical Amplification of Induced Circularly Polarized Luminescence in Nucleotide-Templated Supramolecular Polymer. Angew Chem Int Ed Engl 2023; 62:e202308281. [PMID: 37534951 DOI: 10.1002/anie.202308281] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Efficient circularly polarized luminescence (CPL) from purely organic molecules holds great promise for applications in displays, sensing, and bioimaging. However, achieving high dissymmetry values (glum ) from organic chromophores remains a significant challenge. Herein, we present a bioinspired approach using adenosine triphosphate (ATP)-triggered supramolecular polymerization of a naphthalene diimide-derived monomer (ANSG) to induce CPL with a remarkable glum value of 1.1×10-2 . The ANSG molecules undergo a templated, chiral self-assembly through a cooperative growth mechanism in the presence of ATP, resulting in scrolled nanotubes with aggregation-induced enhanced emission (AIEE) and induced CPL. Furthermore, we demonstrate the concept of chiroptical amplification of induced CPL by efficiently amplifying asymmetry using a mixture of chiral ATP and achiral pyrophosphate. This innovative approach opens numerous opportunities in the emerging field of circularly polarized luminescence.
Collapse
Affiliation(s)
- Angshuman Das
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Saikat Ghosh
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
23
|
Ye FY, Hu M, Zheng YS. Asymmetric Synthesis of Tetraphenylethylene Helicates and Their Full-Color CPL Emission with High glum and High Fluorescence Quantum Yield. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42056-42065. [PMID: 37624593 DOI: 10.1021/acsami.3c07431] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Tetraphenylethylene (TPE) helicates with single helical handedness not only owe high fluorescence quantum yield but also possess good helical chirality, showing an excellent circularly polarized luminescence active material. In this work, a new method for directly obtaining single-handed TPE helicates has been developed. By using chiral p-phenylenediamine derivatives as an intramolecular cyclization reagent of TPE, the single-handed propeller-like conformation and stable helical chirality of the TPE unit were obtained, avoiding complicated and expensive HPLC chiral column separation. The as-prepared chiral TPE helicates displayed strong emission with an almost quantitative fluorescence quantum yield (Φf) and strong circularly polarized luminescence (CPL). In addition, the chirality and CPL signals of the TPE helicates could be significantly magnified by the helical arrangement together with 4'-pentyl-4-biphenylcarbonitrile (5CB) liquid crystal molecules. Moreover, full-color CPL emissions with both a high absolute CPL dissymmetrical factor up to 0.43 and high Φf were afforded.
Collapse
Affiliation(s)
- Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
24
|
Kalluvettukuzhy NK, Sudhakar P, Eyyathiyil J, Hara N, Imai Y, Thilagar P. Chiral B-N AIEgens: Intense Blue Circularly Polarized Luminescence and Piezochromism. Org Lett 2023; 25:6067-6071. [PMID: 37540142 DOI: 10.1021/acs.orglett.3c02322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We present a new class of blue circularly polarized luminescent emitters based on tetraarylaminoborane (TAAB) with considerable dissymmetry factor in the solid state. The chiral pendant 1-phenylethylamine in BN-RR and BN-SS imparts chirality to the core chromophore, resulting in circularly polarized luminescence signals (glum = 0.8 × 10-3) with a quantum yield of 33% in the crystalline state. This novel set of compounds also showcases intriguing thermally reversible piezochromism.
Collapse
Affiliation(s)
- Neena K Kalluvettukuzhy
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Pagidi Sudhakar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Jusaina Eyyathiyil
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| | - Nobuyuki Hara
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 560012, Japan
| | - Yoshitane Imai
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae, Higashi-Osaka, Osaka 560012, Japan
| | - Pakkirisamy Thilagar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
25
|
Wang X, Zhao B, Deng J. Liquid Crystals Doped with Chiral Fluorescent Polymer: Multi-Color Circularly Polarized Fluorescence and Room-Temperature Phosphorescence with High Dissymmetry Factor and Anti-Counterfeiting Application. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2304405. [PMID: 37505074 DOI: 10.1002/adma.202304405] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Chiral nematic liquid crystals (N*-LCs) can tremendously amplify circularly polarized luminescence (CPL) signals. Doped emissive N*-LCs have been substantially explored. However, their CPL performances still need to be improved, mainly due to the unsatisfying helical twisting power (HTP) of commonly used chiral fluorescent dopants. Chiral fluorescent helical polymers (CFHPs) have outstanding optical activity and CPL performance. The present contribution reports the first success in constructing emissive N*-LCs by doping CFHP into nematic liquid crystals (5CB, N-LCs). The helical assembly structures of N*-LCs effectively amplify the CPL signals of the CFHP. Owing to the high HTP of CFHP, the selective reflection band of N*-LC can be adjusted to fully cover its emission band. A nearly pure CPL with a dissymmetry factor (glum ) up to -1.87 is realized at 9 wt% doping concentration. Taking advantage of the selective reflection mechanism, multi-color CPL-active N*-LCs with high glum are fabricated via further adding achiral fluorophores. Also noticeably, circularly polarized room-temperature phosphorescence with glum up to -1.57 is achieved. Anti-counterfeiting application is demonstrated by exploiting multi-mode optical characteristics of the created N*-LCs. The established strategy for constructing emissive N*-LCs provides a platform for future exploring of CPL-active N*-LCs.
Collapse
Affiliation(s)
- Xujie Wang
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
26
|
Nakashima K, Suizu R, Morishita S, Tsurumachi N, Funahashi M, Masu H, Ozawa R, Nakamura K, Awaga K. Enhanced Circularly Polarized Luminescence by a Homochiral Guest-Host Interaction in Gyroidal MOFs, [Ru(bpy) 3] [M 2(ox) 3] (bpy = 2,2'-Bipyridyl, ox = Oxalate, M = Zn, Mn). ACS MATERIALS AU 2023; 3:201-205. [PMID: 38089132 PMCID: PMC10176612 DOI: 10.1021/acsmaterialsau.2c00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 06/23/2025]
Abstract
We report the circularly polarized luminescence (CPL) for [Ru(bpy)3]I2 (1) and [Ru(bpy)3][M2(ox)3] (M = Zn (2), Mn (3)). Whereas compound 1 is a simple salt of [Ru(bpy)3]2+, 2 and 3 are MOFs in which the chiral [Ru(bpy)3]2+ ions are encapsulated in a homochiral gyroidal skeleton of [M2(ox)3]2-. Whereas the solution of 1 exhibited weak CPL with a luminescence dissymmetry factor of |glum| ∼ 10-4, the CPL was significantly enhanced in solid-state 1-3 with |glum| = 2 × 10-2 for 1, 4 × 10-2 for 2, and 1 × 10-1 for 3. The enhanced CPL in 3 was attributable to an energy transfer between the homochiral guest and host in 3.
Collapse
Affiliation(s)
- Kazuya Nakashima
- Department
of Chemistry and IRCCS, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Rie Suizu
- Department
of Chemistry and IRCCS, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- PRESTO, Japan Science and Technology
Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shuhei Morishita
- Program
in Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Noriaki Tsurumachi
- Program
in Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Masahiro Funahashi
- Program
in Advanced Materials Science, Faculty of Engineering and Design, Kagawa University, 2217-20 Hayashi-cho, Takamatsu, Kagawa 761-0396, Japan
| | - Hyuma Masu
- Department
of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Center
for Analytical Instrumentation, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Ryuki Ozawa
- Graduate
School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Research Fellowship of Japan Society for
the Promotion of Science
for Young Scientists, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kazuki Nakamura
- Graduate
School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kunio Awaga
- Department
of Chemistry and IRCCS, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
27
|
Qiu Y, Chen S, Hou Z, Wang J, Shen J, Li C. Chiral Metasurface for Near-Field Imaging and Far-Field Holography Based on Deep Learning. MICROMACHINES 2023; 14:789. [PMCID: PMC10143881 DOI: 10.3390/mi14040789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/29/2023]
Abstract
Chiral metasurfaces have great influence on the development of holography. Nonetheless, it is still challenging to design chiral metasurface structures on demand. As a machine learning method, deep learning has been applied to design metasurface in recent years. This work uses a deep neural network with a mean absolute error (MAE) of 0.03 to inverse design chiral metasurface. With the help of this approach, a chiral metasurface with circular dichroism (CD) values higher than 0.4 is designed. The static chirality of the metasurface and the hologram with an image distance of 3000 μm are characterized. The imaging results are clearly visible and demonstrate the feasibility of our inverse design approach.
Collapse
Affiliation(s)
- Yihang Qiu
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Sixue Chen
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Zheyu Hou
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jingjing Wang
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jian Shen
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Chaoyang Li
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| |
Collapse
|
28
|
Li M, Nizar S, Saha S, Thomas A, Azzini S, Ebbesen TW, Genet C. Strong Coupling of Chiral Frenkel Exciton for Intense, Bisignate Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2023; 62:e202212724. [PMID: 36426601 PMCID: PMC10107525 DOI: 10.1002/anie.202212724] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
We show that chiral Frenkel excitons yield intense circularly polarized luminescence with an intrinsic dissymmetry factor in emission glum as high as 0.08. This outstanding value is measured through thin films of cyanine J-aggregates that form twisted bundles. Our measurements, obtained by a Mueller polarization analysis, are artifact-free and reveal a quasi-perfect correlation between the dissymmetry factors in absorption, gabs , and in emission glum . We interpret the bisignate dissymmetry factors as the signature of a strong coupling between chiral Frenkel excitons longitudinally excited along the bundles. We further resolve by polarimetry analysis the split in energy between the excited states with a Davydov splitting as small as 28 meV. We finally show the anti-Kasha nature of the chiral emission bands with opposite optical chirality. These mirror-imaged emissive chiroptical features emerge from the structural rigidity of the bundles that preserves the ground- and excited-state chirality.
Collapse
Affiliation(s)
- Minghao Li
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France.,Quantum Sensing Laboratory, Department of Physics, University of Basel, Switzerland
| | - Shahana Nizar
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France
| | - Sudipta Saha
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France
| | - Anoop Thomas
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France.,Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru, India
| | - Stefano Azzini
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France.,Nanoscience Laboratory, Department of Physics, University of Trento, Italy
| | - Thomas W Ebbesen
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France
| | - Cyriaque Genet
- CNRS, CESQ-ISIS, University of Strasbourg, UMR 7006, 67000, Strasbourg, France
| |
Collapse
|
29
|
Lv J, Yang X, Tang Z. Rational Design of All-Inorganic Assemblies with Bright Circularly Polarized Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209539. [PMID: 36401818 DOI: 10.1002/adma.202209539] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Materials with exceptional circularly polarized luminescence (CPL) are important in multi-field applications such as 3D display, anti-counterfeiting, sensing, spin electronics, etc. Although CPL properties have been widely investigated ranging from the traditional chiral organic molecules to the emerging chiral inorganic nanomaterials and their assemblies, a trade-off between the luminescence efficiency (quantum yield, ϕ) and the luminescence dissymmetry factor (glum ) is always the bottleneck for all the chiral luminescent materials, which hinders their practical application. Herein, a new route to overcome the paradox through rationally assembling quantum nanorods and ultrathin inorganic nanowires into ordered multilayer structures is reported, achieving both high ϕ and glum . In these assembled structures, the aligned quantum nanorods emit linearly polarized light that is then transformed to CPL by the aligned ultrathin nanowire assemblies with precisely controlled phase retardation. This method is universal and readily extended to versatile 1D nanomaterials, paving the way for the practical applications of CPL active materials.
Collapse
Affiliation(s)
- Jiawei Lv
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
| | - Xuekang Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
30
|
Sonet D, Cayla M, Méreau R, Morvan E, Lacoudre A, Vanthuyne N, Albalat M, Bassani DM, Scalabre A, Pouget E, Bibal B. Chiral Anthranyl Trifluoromethyl Alcohols: Structures, Oxidative Dearomatization and Chiroptical Properties. Chemistry 2022; 28:e202202695. [PMID: 36316221 DOI: 10.1002/chem.202202695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 11/05/2022]
Abstract
Chiral trifluoromethyl alcohol groups were introduced at the hindered ortho positions of 9,10-diphenylanthracenes to investigate their effects on the physical properties and reactivity towards oxidative dearomatization. In such compact structures, the position in different quadrants and the preferred orientation of the -CH(OH)CF3 groups were determined by the relative and absolute configurations of each stereoisomer, respectively. As a consequence, the stereochemistry governs the organization of the H-bonded molecules in single crystals (homochiral dimers vs ribbon), whereas in chlorinated solvents, they all behave as discrete compounds. Concerning their reactivity, the stereospecific dearomative oxidation of these molecules leads to 9,10-bis-spiro-isobenzofuran-anthracenes, when using organic single-electron transfer oxidants. The chiroptical properties of the alcohols and the corresponding dearomatized products were compared and showed an important modulation of the intensity.
Collapse
Affiliation(s)
- Dorian Sonet
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Mattéo Cayla
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Estelle Morvan
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US001, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Aline Lacoudre
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Nicolas Vanthuyne
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Muriel Albalat
- Centrale Marseille, iSm2, Aix-Marseille Université, CNRS, 52 avenue Escadrille Normandie Niemen, 13013, Marseille, France
| | - Dario M Bassani
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets, UMR CNRS 5248, Université de Bordeaux, 2 rue Roger Escarpit, 33607, Pessac, France
| | - Brigitte Bibal
- Institut des Sciences Moléculaires UMR CNRS 5255, Univ. Bordeaux, CNRS, Bordeaux INP, 351 cours de la Libération, 33400, Talence, France
| |
Collapse
|
31
|
Duan C, Wang B, Li J, Xu J, Zeng J, Li J, Zhao Z, Gao W, Ying G, Chen K. Switchable Circularly Polarized Signals with High Asymmetric Factor Triggered by Dual Photonic Bandgap Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204199. [PMID: 36284474 DOI: 10.1002/smll.202204199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Currently, the smart photonic materials that can switch circularly polarized signals in real-time have attracted extensive attention due to numerous potential applications in information storage and photonics displays. However, the dynamically reversible switching of circularly polarized signals requires precise structural reconfiguration, which is rarely achieved in traditional biomaterials. Herein, a dual photonic bandgap (PBG) structure is constructed based on the optical propagation principle of cellulose-based photonic crystals, enabling the flexible switching of the intensity, wavelength, and direction of circularly polarized luminescence (CPL). By adjusting the fluorescence intensity and the matching degree of chiral structure, the asymmetric factor value of dual PBG structure is up to -1.47, far exceeding other cellulose-based materials. Importantly, it is demonstrated that dual CPL emission can be efficiently induced by two different PBGs, opening a new approach for on-demand switching of single and dual CPL emission. In addition, the dual PBG structure exhibits dual circularly polarized reflected signals under the circular polarizer, which perfectly embodies the applicability of multiple encryptions in QR codes. This work provides new insights into the real-time manipulation of circularly polarized signals by chiral photonic materials.
Collapse
Affiliation(s)
- Chengliang Duan
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Bin Wang
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Jinpeng Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Jun Xu
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Jinsong Zeng
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Jun Li
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Wu Shan, Guangzhou, 510640, China
| | - Wenhua Gao
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| | - Guangdong Ying
- Shandong Sun Holdings Group, No. 1 Youyi Road, Yanzhou District, Jining, 272100, China
| | - Kefu Chen
- Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Wu Shan, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou University City, Guangzhou, 510006, China
| |
Collapse
|
32
|
Binaphthanol-derived Emitters with Aggregation-Induced Emission, Acidochromic and Chiral Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt
II
Complexes That Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022; 61:e202207310. [DOI: 10.1002/anie.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Seok Gyu Kang
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Yumi Cho
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Ji Ha Lee
- Chemical Engineering Program Graduate School of Advanced Science and Engineering Hiroshima University Hiroshima 739-8527 Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials Faculty of Textile Science and Technology Shinshu University Nagano 386-8567 Japan
| | - Shim Sung Lee
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Enginerring School of Energy and Chemical Engineering Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science Graduate Program in System Health Science and Engineering Ewha Womans University Seoul 03760 Republic of Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institution of Natural Sciences Gyeongsang National University (GNU) Jinju 52828 Republic of Korea
| |
Collapse
|
34
|
Li J, Peng X, Chen D, Shi S, Ma J, Lai WY. Tuning the Circularly Polarized Luminescence of Supramolecules via Self-Assembly Morphology Control. ACS Macro Lett 2022; 11:1174-1182. [DOI: 10.1021/acsmacrolett.2c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junfeng Li
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xuelei Peng
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Dong Chen
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shunan Shi
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiamian Ma
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi’an 710072, China
| |
Collapse
|
35
|
Aggregation-induced electrochemiluminescence and molecularly imprinted polymer based sensor with Fe3O4@Pt nanoparticle amplification for ultrasensitive ciprofloxacin detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
Liu J, Molard Y, Prévôt ME, Hegmann T. Highly Tunable Circularly Polarized Emission of an Aggregation-Induced Emission Dye Using Helical Nano- and Microfilaments as Supramolecular Chiral Templates. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29398-29411. [PMID: 35713169 DOI: 10.1021/acsami.2c05012] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-based circularly polarized luminescence (CPL) has been recognized as a promising pathway for developing chiroptical materials with high luminescence dissymmetry factors (|glum|). Here, we propose a method for the construction of a thermally tunable CPL-active system based on a supramolecular self-assembly approach that utilizes helical nano- or microfilament templates in conjunction with an AIE dye. The CPL properties of the ensuing ensembles are predominantly determined by the intrinsic geometric differences among the various filament templates such as their overall dimensions (width, height, and helical pitch) and the area fraction of the exposed aromatic segments or sublayers. The proposed mechanism is based on the collective data acquired by absorption, steady state and time-resolved fluorescence, absolute quantum yield, and CPL measurements. The highest |glum| value for the most promising dual-modulated helical nanofilament templates in the present series was further enhanced, reaching up to |glum| = 0.25 by confinement in the appropriate diameter of anodized aluminum oxide (AAO) nanochannels. It is envisioned that this methodology will afford new insights into the design of temperature-rate indicators or anti-counterfeiting tags using a combination of structural color by the nano- and microfilament templates and the AIE property of the guest dye.
Collapse
Affiliation(s)
- Jiao Liu
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Yann Molard
- Univ Rennes, ISCR - UMR 6226, ScanMAT - UAR 2025, F-35000 Rennes, France
| | - Marianne E Prévôt
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
| | - Torsten Hegmann
- Materials Science Graduate Program, Kent State University, Kent, Ohio 44242-0001, United States
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242-0001, United States
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242-0001, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio 44242-0001, United States
| |
Collapse
|
37
|
Kang SG, Kim KY, Cho Y, Jeong DY, Lee JH, Nishimura T, Lee SS, Kwak SK, You Y, Jung JH. Circularly Polarized Luminescence Active Supramolecular Nanotubes Based on Pt(II) Complexes that Undergo Dynamic Morphological Transformation and Helicity Inversion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seok Gyu Kang
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Ka Young Kim
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Yumi Cho
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Dong Yeun Jeong
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Ji Ha Lee
- Hiroshima University: Hiroshima Daigaku Chemical Engineering Program KOREA, REPUBLIC OF
| | - Tomoki Nishimura
- Shinshu Daigaku Department of Chemistry and Materials KOREA, REPUBLIC OF
| | - Shim Sung Lee
- Gyeongsang National University Department of Chemistry KOREA, REPUBLIC OF
| | - Sang Kyu Kwak
- Ulsan National Institute of Science and Technology Department of Energy Enginerring KOREA, REPUBLIC OF
| | - Youngmin You
- Ewha Womans University Division of Chemical Engineering and Materials Science KOREA, REPUBLIC OF
| | - Jong Hwa Jung
- Gyeongsang National University Department of Chemistry Gyeongsang National University 501 jinjudaero 52828 Jinju KOREA, REPUBLIC OF
| |
Collapse
|
38
|
Organic donor-acceptor heterojunctions for high performance circularly polarized light detection. Nat Commun 2022; 13:3454. [PMID: 35705562 PMCID: PMC9200767 DOI: 10.1038/s41467-022-31186-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Development of highly efficient and stable lateral organic circularly polarized light photodetector is a fundamental prerequisite for realization of circularly polarized light integrated applications. However, chiral semiconductors with helical structure are usually found with intrinsically low field-effect mobilities, which becomes a bottleneck for high-performance and multi-wavelength circularly polarized light detection. To address this problem, here we demonstrate a novel strategy to fabricate multi-wavelength circularly polarized light photodetector based on the donor-acceptor heterojunction, where efficient exciton separation enables chiral acceptor layer to provide differentiated concentration of holes to the channel of organic field-effect transistors. Benefitting from the low defect density at the semiconductor/dielectric interface, the photodetectors exhibit excellent stability, enabling current roll-off of about 3–4% over 500 cycles. The photocurrent dissymmetry value and responsivity for circularly polarized light photodetector in air are 0.24 and 0.28 A W−1, respectively. We further demonstrate circularly polarized light communication based on a real-time circularly polarized light detector by decoding the light signal. As the proof-of-concept, the results hold the promise of large-scale circularly polarized light integrated photonic applications. Here, the authors report a strategy to fabricate multi-wavelength circularly polarized light photodetectors consisting of bilayer donor-acceptor heterojunctions with chiral active layers.
Collapse
|
39
|
Jiang S, Zhou S, Chen Y, Guo H, Yang F. Circularly polarized luminescence based on cholesterol-tetraphenylethylene-perylene liquid crystal. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
40
|
Yang K, Ma S, Zhang Y, Zhao B, Deng J. Helix‐Sense‐Selective Polymerization of Achiral Monomers for the Preparation of Chiral Helical Polyacetylenes Showing Intense CPL in Solid Film State. Macromol Rapid Commun 2022; 43:e2200111. [DOI: 10.1002/marc.202200111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Kai Yang
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shuo Ma
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Yingjie Zhang
- Synthetic Resin Laboratory Petrochemical Research Institute Petro China Beijing 102206 China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering College of Materials Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
41
|
Wu H, Tan H, Zheng S, Guo H, Yang F. Novel fluorescence liquid crystals with high circularly polarized luminescence based on cholesterol-decorated dicyanodistyrylbenzene. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Gong J, Zhang X. Coordination-based circularly polarized luminescence emitters: Design strategy and application in sensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214329] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
43
|
Xia Q, Zhang Y, Li Y, Li Y, Li Y, Feng Z, Fan X, Qian J, Lin H. A historical review of aggregation‐induced emission from 2001 to 2020: A bibliometric analysis. AGGREGATE 2022; 3. [DOI: 10.1002/agt2.152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
AbstractAggregation‐induced emission (AIE) is a photophysical phenomenon that a certain group of luminescent materials that become highly luminous when aggregated in a bad solvent or solid state. This year is the 20th anniversary since the AIE concept firstly proposed in 2001. Many advanced applications were gradually being explored, covering optics, electronics, energy, and bioscience and so on. At present, bibliometrics can enlighten the researchers with comprehensive sights of the achievements and trends of a specific field, which is critical for academic investigations. Herein, we presented a general bibliometric overview of AIE covering 20 years of evolution. With the assistance of Web of Science Core Collection database and several bibliometric software tools, the annual publication and citation, most influential countries/regions, most contributing authors, journals and institutions, second near‐infrared (NIR‐II) related hotspots, as well as the forecast of frontiers were demonstrated and systematically analyzed. This study summarizes the current research status in AIE research field and provides a reference for future research directions.
Collapse
Affiliation(s)
- Qiming Xia
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
| | - Yiyin Zhang
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
| | - Yiling Li
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
| | - Yirun Li
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
| | - Yixuan Li
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
| | - Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou P. R. China
| | - Xiaoxiao Fan
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou P. R. China
| | - Jun Qian
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
- State Key Laboratory of Modern Optical Instrumentations Centre for Optical and Electromagnetic Research College of Optical Science and Engineering International Research Center for Advanced Photonics Zhejiang University Hangzhou P. R. China
| | - Hui Lin
- Department of General Surgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Zhejiang Province Hangzhou P. R. China
- College of Biomedical Engineering and Instrument Science Zhejiang University Hangzhou P. R. China
| |
Collapse
|
44
|
Liu C, Yang JC, Lam JWY, Feng HT, Tang BZ. Chiral assembly of organic luminogens with aggregation-induced emission. Chem Sci 2022; 13:611-632. [PMID: 35173927 PMCID: PMC8771491 DOI: 10.1039/d1sc02305e] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Chirality is important to chemistry, biology and optoelectronic materials. The study on chirality has lasted for more than 170 years since its discovery. Recently, chiral materials with aggregation-induced emission (AIE) have attracted increasing interest because of their fascinating photophysical properties. In this review, we discussed the recent development of chiral materials with AIE properties, including their molecular structures, self-assembly and functions. Generally, the most effective strategy to design a chiral AIE luminogen (AIEgen) is to attach a chiral scaffold to an AIE-active fluorophore through covalent bonds. Moreover, some propeller-like or shell-like AIEgens without chiral units exhibit latent chirality upon mirror image symmetry breaking. The chirality of achiral AIEgens can also be induced by some optically active molecules through non-covalent interactions. The introduction of an AIE unit into chiral materials can enhance the efficiency of their circularly polarized luminescence (CPL) in the solid state and the dissymmetric factors of their helical architectures formed through self-assembly. Thus, highly efficient circularly polarized organic light-emitting diodes (CPOLEDs) with AIE characteristics are developed and show great potential in 3D displays. Chiral AIEgens are also widely utilized as "turn on" sensors for rapid enantioselective determination of chiral reagents. It is anticipated that the present review can entice readers to realize the importance of chirality and attract much more chemists to contribute their efforts to chirality and AIE study.
Collapse
Affiliation(s)
- Chenchen Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Jun-Cheng Yang
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Hai-Tao Feng
- AIE Research Center, Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences Baoji 721013 China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Department of Chemical and Biomedical Engineering, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, Center for Aggregation-Induced Emission China
- AIE Institute Guangzhou Development District Guangzhou 510530 China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials China
| |
Collapse
|
45
|
Liu L, Yang Y, Wei Z. Chiral Organic Optoelectronic Materials and Circularly Polarized Light Luminescence and Detection. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Guo H, Wang X, Zhou W, Yang F. Chiral diphenylacrylonitrile–perylene liquid crystal with circularly polarized luminescence in the aggregated state. NEW J CHEM 2022. [DOI: 10.1039/d1nj05531c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel chiral diphenylacrylonitrile–perylene liquid crystal with excellent CPL propertyin aggregated state was reported.
Collapse
Affiliation(s)
- Hongyu Guo
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, P. R. China
| | - Xue Wang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Wenchao Zhou
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Fujian Key Laboratory of Polymer Materials, Fuzhou 350007, P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, P. R. China
- Fujian provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fuzhou 350007, P. R. China
| |
Collapse
|
47
|
Han J, Shi Y, Jin X, Yang X, Duan P. Regulating the Excited State Chirality to Fabricate High-Performance-Solid-State Circularly Polarized Luminescence Materials. Chem Sci 2022; 13:6074-6080. [PMID: 35685809 PMCID: PMC9132027 DOI: 10.1039/d2sc01846b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/21/2022] Open
Abstract
Developing solid-state materials and greatly improving the luminescence dissymmetry factors (glum) are the key issues for the future oriented practical application in the field of circularly polarized luminescence (CPL). However, most of the solid-state CPL-active materials suffer from aggregation caused emission quenching and relatively small glum values, which intensively restrict the development and application. In this work, high-performance CPL-active solid-state materials were achieved by regulating the excited state chirality of a series of bi-pyrene based chiral emitters. Due to the reversible mechanochromic luminescence under external stimuli, their excited state chirality can also be switched. It was found that the pristine amorphous powder possessed weak but obvious chiroptical properties because of the inherently chiral structures. Mechanical grinding could switch the fluorescence color and eliminate the CPL activity. Subsequently, by carrying out solvent fumigation, instant crystallization with well-defined microcrystal formation occurred, which could activate the CPL emission. Due to the chiral supramolecular arrangement of chromophores in the crystalline state, the resulting excimer emission in microcrystals showed chirality amplification not only in the excited state but also in the ground state. These findings not only provide a new method to fabricate high-performance CPL-active solid-state materials, but also clarify the chirality origin of pyrene-excimer-based chiral luminophores in various states which showed the importance of CPL as a probe of excited state chirality. In situ instant crystallization significantly boosts the CPL performance in which both large circular polarization and high luminescence efficiency are achieved due to the chiral supramolecular arrangement of chromophores in the crystalline state.![]()
Collapse
Affiliation(s)
- Jianlei Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Yonghong Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xue Jin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
| | - Xuefeng Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST) No. 11 ZhongGuanCun BeiYiTiao Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
48
|
Gong ZL, Zhu X, Zhou Z, Zhang SW, Yang D, Zhao B, Zhang YP, Deng J, Cheng Y, Zheng YX, Zang SQ, Kuang H, Duan P, Yuan M, Chen CF, Zhao YS, Zhong YW, Tang BZ, Liu M. Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1146-6] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
49
|
Kitahara M, Mishima K, Hara N, Shizuma M, Kanesaka A, Nishikawa H, Imai Y. Circularly Polarized Luminescence from π‐Conjugated Chiral Perylene Diimide Luminophores: The Bay Position Effect. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Maho Kitahara
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Kohei Mishima
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Nobuyuki Hara
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Motohiro Shizuma
- Department of Biochemistry Osaka Research Institute of Industrial Science and Technology 1-6-50 Morinomiya, Joto-ku Osaka 536-8553 Japan
| | - Aoba Kanesaka
- Graduate School of Science and Engineering Ibaraki University 2-1-1 Bunkyo Mito Ibaraki 310-8512 Japan
| | - Hiroyuki Nishikawa
- Graduate School of Science and Engineering Ibaraki University 2-1-1 Bunkyo Mito Ibaraki 310-8512 Japan
| | - Yoshitane Imai
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
50
|
Ji L, Liu Y, Li Z, Ouyang G, Liu M. Solvent-regulated chiral exciton coupling and CPL sign inversion of an amphiphilic glutamide-cyanostilbene. Chem Commun (Camb) 2021; 57:11314-11317. [PMID: 34635884 DOI: 10.1039/d1cc04471k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chiral exciton couplings within a Y-shaped amphiphilic glutamide-cyanostilbene (GCS) could be significantly biased by solvent polarity and hydration effects, which led to sign inversion of both the circular dichroism and circularly polarized luminescence of the GCS assemblies.
Collapse
Affiliation(s)
- Lukang Ji
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China.,Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yiran Liu
- Hebei Key Laboratory of Organic Functional Molecules, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Zujian Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|