1
|
Varma AA, Gopinath P. Dual palladium-organophotoredox catalyzed C-H olefination-annulation of aryl carboxylic acids. Org Biomol Chem 2025; 23:4398-4402. [PMID: 40202436 DOI: 10.1039/d5ob00275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Herein, we report a dual palladium-photoredox mediated tandem C-H olefination-cyclization of aryl carboxylic acids with both terminal and internal alkenes using molecular oxygen as a green oxidant. This method offers a mild and simple route for the synthesis of various isobenzofuranone derivatives. The synthetic utility of the method was demonstrated by late stage functionalization of various carboxylic acid containing drugs. Further derivatizations of the final isobenzofuranones were performed to access other important molecular scaffolds. Mechanistic studies indicated that the final cyclization step involves an oxopalladation-protodemetallation mechanism rather than a simple oxa-Michael addition commonly employed in other methodologies at elevated temperatures.
Collapse
Affiliation(s)
- A Anagha Varma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India.
| | - Purushothaman Gopinath
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517619, India.
| |
Collapse
|
2
|
Barman M, Mandal S, Nanjegowda MV, Punniyamurthy T. Palladium-Catalyzed Directed Alkenylation of Alkyl Amides with Unactivated Alkenes: Access to γ-Alkenyl γ-Lactams. Org Lett 2025; 27:2913-2917. [PMID: 40079667 DOI: 10.1021/acs.orglett.5c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Pd(II)-catalyzed cascade C(sp3)-H alkenylation and cyclization of alkyl amides with readily accessible unactivated alkenes have been accomplished. Alkenylation and subsequent intramolecular cyclization empowered the formation of functionalized γ-lactams, which present as an active core of several bioactive and natural products. The use of catalytic Cu(OAc)2 along with molecular oxygen as the oxidant, a 2-chloropyridine ligand, site selectivity, the substrate scope, and gram-scale synthesis are important practical features.
Collapse
Affiliation(s)
- Madhab Barman
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | |
Collapse
|
3
|
Liu J, Wang K, Wan L, Yang X, Li B. Ruthenium-catalyzed C-H bond activation and annulation of phenothiazine-3-carbaldehydes: facile access to dual-emission materials. Chem Sci 2025:d4sc07825j. [PMID: 39829976 PMCID: PMC11740230 DOI: 10.1039/d4sc07825j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Reported herein is the first example of a ruthenium-catalyzed C-H activation/annulation of phenothiazine-3-carbaldehydes to construct structurally diverse pyrido[3,4-c]phenothiazin-3-iums with dual-emission characteristics. Novel organic single-molecule white-light materials based on pyrido[3,4-c]phenothiazin-3-iums with dual-emission and thermally activated delayed fluorescence (TADF) characteristics have been developed for the first time herein. Furthermore, the dual-emission molecule could be fabricated as water-dispersed NPs, which could be applied in two-channel emission intensity ratio imaging to observe the intercellular structure and can specifically target the cell membrane.
Collapse
Affiliation(s)
- Junxiang Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Kangmin Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Liqiu Wan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Xianhui Yang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| | - Bijin Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|
4
|
Chen C, Zhang Q, Huang Z, Ouyang W, Gao Y, Luo J, Liu Y, Huo Y, Chen Q, Li X. Ru(ii)-catalyzed regioselective oxidative Heck reaction with internal olefins that tolerated strongly coordinating heterocycles. Chem Sci 2024; 15:20064-20072. [PMID: 39568925 PMCID: PMC11575539 DOI: 10.1039/d4sc07036d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The oxidative Heck reaction of strongly coordinating heterocycles with internal olefins often led to elusive reactivity and regioselectivity. Herein, by judicious choice of X-type directing groups under Ru(ii) catalysis, we achieved the regioselective oxidative Heck reaction of strongly coordinating heterocycles with sterically demanding internal olefins. It was postulated that the "match/mismatch effect" of sterically demanding internal olefins as coupling partners and subsequent kinetically favoured Michael addition or oxidative aromatization act as driving forces to facilitate the desired reactivity and site-selectivity.
Collapse
Affiliation(s)
- Ci Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Qiaoya Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Zhiwei Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Wensen Ouyang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Yuan Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Qian Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology No. 100 Waihuan Xi Road Guangzhou Higher Education Mega Center Guangzhou 510006 China
| |
Collapse
|
5
|
Rallabandi J, Mohanty S, Shown I. Ruthenium(ii) catalyzed C-3 site selective alkenylation of indole derivatives via C-H activation. RSC Adv 2024; 14:37788-37796. [PMID: 39601001 PMCID: PMC11589813 DOI: 10.1039/d4ra06210h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
An efficient synthetic method has been developed for C-3 site-selective alkenylation of indole derivatives under ruthenium(ii) catalysis with an ester as a directing group. Besides the presence of two potential C(sp2)-H sites available for functionalization in the substrates, exclusive C3 selectivity was achieved in a selective manner as only mono-functionalized products were formed. The high site selectivity is attributed to the formation of an uncommon six-membered metallacycle intermediate between the ruthenium catalyst and ester directing group, enabled by the selective alkenylation at the C3 position of indole derivatives. This protocol features high site selectivity, operational simplicity, broad substrate scope, and moderate to high yields.
Collapse
Affiliation(s)
- Jithender Rallabandi
- Department of Chemistry, Hindustan Institute of Technology and Science Chennai 603103 India
- Syngene International Ltd Genome Valley Hyderabad Telangana 500078 India
| | | | - Indrajit Shown
- Department of Chemistry, Hindustan Institute of Technology and Science Chennai 603103 India
| |
Collapse
|
6
|
Liu DY, Fang DC. Theoretical Study on the Mechanism of Ru(II)-Catalyzed Intermolecular [3 + 2] Annulation between o-Toluic Acid and 3,5-Bis(trifluoromethyl)benzaldehyde: Octahedral vs Trigonal Bipyramidal. J Org Chem 2024; 89:14061-14072. [PMID: 39312811 DOI: 10.1021/acs.joc.4c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Density functional theory was utilized to investigate the mechanism of Ru(II)-catalyzed aromatic C-H activation and addition of aromatic aldehydes. The proposed catalytic cycle consists of C-H bond activation, aldehyde carbonyl insertion for C-C coupling, lactonization for the formation of the final product, product separation, and catalyst recovery. Our calculations suggest that Ru(OAc)2(PCy3) (referred to as CAT) is the most favorable active catalyst, facilitating the C-H bond activation to form a five-membered ring cycloruthenium intermediate (INT2). Subsequently, the aromatic aldehyde reactant 2a enters the Ru coordination sphere, accelerating the C-C coupling and lactonization for the formation of the final product. The involvement of acetate assists in the final product separation, while INT1 re-enters the Ru coordination sphere to initiate a new catalytic cycle. Utilizing the energetic span model, the apparent activation free energy barrier was computed to be 34.3 kcal mol-1 at 443 K. Furthermore, exploration of the reaction mechanism in the absence of phosphine ligands identified Ru(OAc)2(p-cymene) as the most favorable active catalyst. The derived apparent activation free energy barrier offers a comprehensive explanation for the experimentally observed yields. Additionally, we have examined the disparities between the octahedral and trigonal bipyramidal structures of the catalysts concerning their effects on the reaction mechanisms and apparent activation free energy barriers.
Collapse
Affiliation(s)
- Dan-Yang Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - De-Cai Fang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
7
|
Zhang X, Chang M, Ni T, Liu S, Li W, Xu X. CuBr 2-mediated dehydrogenative [4+2] annulation of 1-naphthyl-1,3-indandiones and alkenes. Chem Commun (Camb) 2024; 60:9070-9073. [PMID: 39101974 DOI: 10.1039/d4cc02386b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Intermolecular annulation reactions of 1-naphthyl-1,3-indandiones with alkenes proceed efficiently in the presence of a copper catalyst to generate spirocarbocycle compounds. Various spirocyclic molecules bearing an all-carbon quaternary center could be obtained by this novel method with good yields, excellent regioselectivity, and good functional group tolerance. A radical mechanism is proposed based on the HRMS analysis results of control experiments.
Collapse
Affiliation(s)
- Xu Zhang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Mengfan Chang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Tongtong Ni
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Shuhan Liu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Wenguang Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| | - Xuefeng Xu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China.
| |
Collapse
|
8
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
9
|
Paul T, Basak S, Nanjegowda MV, Punniyamurthy T. Biorelevant Weakly Coordinating Directing Group Assisted C-H Alkenylation with Cyclopropanols via Sequential C-H/C-C Activation. Org Lett 2023; 25:8975-8980. [PMID: 38071624 DOI: 10.1021/acs.orglett.3c03493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A weakly coordinating biorelevant intrinsic directing group (DG) assisted site-selective C-H alkenylation via sequential C-H/C-C bond activation has been accomplished under Ru(II)-catalysis using readily accessible cyclopropyl alcohol as an alkenyl surrogate. Utilization of an intrinsic DG, exclusive regioselectivity, functional group diversity, late-stage natural product and drug mutations are the important practical features.
Collapse
Affiliation(s)
- Tripti Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Shubhajit Basak
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Maniya V Nanjegowda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | |
Collapse
|
10
|
de Carvalho RL, Diogo EBT, Homölle SL, Dana S, da Silva Júnior EN, Ackermann L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chem Soc Rev 2023; 52:6359-6378. [PMID: 37655711 PMCID: PMC10714919 DOI: 10.1039/d3cs00328k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Indexed: 09/02/2023]
Abstract
Transition-metal catalyzed C-H activation reactions have been proven to be useful methodologies for the assembly of synthetically meaningful molecules. This approach bears intrinsic peculiarities that are important to be studied and comprehended in order to achieve its best performance. One example is the use of additives for the in situ generation of catalytically active species. This strategy varies according to the type of additive and the nature of the pre-catalyst that is being used. Thus, silver(I)-salts have proven to play an important role, due to the resulting high reactivity derived from the pre-catalysts of the main transition metals used so far. While being powerful and versatile, the use of silver-based additives can raise concerns, since superstoichiometric amounts of silver(I)-salts are typically required. Therefore, it is crucial to first understand the role of silver(I) salts as additives, in order to wisely overcome this barrier and shift towards silver-free systems.
Collapse
Affiliation(s)
- Renato L de Carvalho
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Emilay B T Diogo
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Simon L Homölle
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Suman Dana
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences, Department of Chemistry, Federal University of Minas Gerais-UFMG, 31270-901, Belo Horizonte, MG, Brazil.
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie and Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Wang K, Li J, Zhang H, Chen Y, Li M, Xu J, Liao B, Yi W. DMSO-promoted direct δ-selective arylation of p-quinone methenylpiperidine bearinides to generate fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. Org Biomol Chem 2023; 21:7151-7157. [PMID: 37609782 DOI: 10.1039/d3ob01018j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Fuchsones have wide applications in modern society. Present methods for generating fuchsones have many disadvantages and there are significant limitations for further exploration of fuchsone applications. Herein, we describe a DMSO-promoted direct δ-selective arylation of p-QMs to synthesize symmetrical and unsymmetrical fuchsones under metal-free conditions by employing p-QMs themselves or substituted phenols as aryl sources. As unprecedented methods, these novel strategies present a great advantage and significance for further exploration of fuchsones and the development of new applications.
Collapse
Affiliation(s)
- Kunpeng Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Jingping Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Yan Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Mengfan Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| | - Junju Xu
- College of Tabacco Science, Yunnan Agricultural University, Kunming 650201, P. R. China.
- Key Laboratory of Sustainable Utilization of Plateau characteristic spice plant resources, Education Department of Yunnan Province 650201, P. R. China
| | - Benren Liao
- Shanghai No. 4 Reagent Chemical Co., Ltd, Shanghai 201512, P. R. China.
| | - Weiyin Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, P. R. China.
| |
Collapse
|
12
|
Yu H, Xu F. Non-noble metal-catalyzed cross-dehydrogenation coupling (CDC) involving ether α-C(sp 3)-H to construct C-C bonds. Beilstein J Org Chem 2023; 19:1259-1288. [PMID: 37701303 PMCID: PMC10494247 DOI: 10.3762/bjoc.19.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023] Open
Abstract
Ether derivatives are widespread as essential building blocks in various drugs, natural products, agrochemicals, and materials. Modern economy requires developing green strategies with improved efficiency and reduction of waste. Due to its atom and step-economy, the cross-dehydrogenative coupling (CDC) reaction has become a major strategy for ether functionalization. This review covers C-H/C-H cross-coupling reactions of ether derivatives with various C-H bond substrates via non-noble metal catalysts (Fe, Cu, Co, Mn, Ni, Zn, Y, Sc, In, Ag). We discuss advances achieved in these CDC reactions and hope to attract interest in developing novel methodologies in this field of organic chemistry.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shi zhen College of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550200, P. R. China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University, Guiyang, Guizhou 550005, P. R. China
| |
Collapse
|
13
|
Gupta SS, Gupta S, Manisha, Gupta P, Sharma U. Experimental and Computational Studies on Ru II -Catalyzed C7-Allylation of Indolines with Allyl Bromide. Chemistry 2023; 29:e202301360. [PMID: 37358247 DOI: 10.1002/chem.202301360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The selective C7-allylation of indolines with allyl bromide under ruthenium catalysis has been revealed here. Under established reaction conditions, C7-allylation of various indolines, including drug compounds, was accomplished with good selectivity and yields. Based on combined experimental and density functional theory (DFT) studies, the olefin insertion route was energetically favorable among four possible pathways. Experimental and DFT studies further revealed that the C-H activation is a reversible rate-limiting step.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Manisha
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
14
|
Panigrahi P, Ghosh S, Khandelia T, Mandal R, Patel BK. Isoxazole as a nitrile synthon: en routes to the ortho-alkenylated isoxazole and benzonitrile with allyl sulfone catalyzed by Ru(II). Chem Commun (Camb) 2023; 59:10536-10539. [PMID: 37565340 DOI: 10.1039/d3cc02996d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A Ru(II) catalyzed regioselective Heck-type C-H olefination of isoxazole with unactivated allyl phenyl sulfone is revealed. The solvent DCM offers dual sp2-sp2 C-H activation via an N-directed strategy, leading to ortho-olefinated isoxazoles with exclusive E-selectivity. On the other hand, in DCE solvent, isoxazole serves as the nitrile synthon and leads to o-olefinated benzonitrile. At a higher temperature (110 °C) in DCE, after the ortho-olefination Ru(II) mediated cleavage of isoxazoles delivered the nitrile functionality.
Collapse
Affiliation(s)
- Pritishree Panigrahi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Raju Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
15
|
Shambhavi CN, Jeganmohan M. Ru(II)-Catalyzed C-H Alkenylation of Benzimidates with Unactivated Olefins: A Route to ortho-Alkenylated Benzonitriles. Org Lett 2023; 25:358-363. [PMID: 36606744 DOI: 10.1021/acs.orglett.2c04036] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A Ru(II)-catalyzed C-H alkenylation of benzimidates with unactivated alkenes providing ortho-alkenylated benzonitriles in good to excellent yields in a highly regio- and stereoselective manner is described. In the reaction, an imidate group converted into a nitrile under the reaction conditions. The alkenylation reaction was compatible with various substituted benzimidates as well as functionalized unactivated olefins, including ibuprofen-, neproxen-, coumarin-, and cholesterol-substituted alkenes. A feasible reaction mechanism was proposed to account for the present alkenylation reaction.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
16
|
Ananda Rao G, Jamwal P, Gurubrahamam R, Chen K. Formal Alkenylation and Amination of 2‐Nitrobenzofurans with Fumaric Acid Amide Ester under Metal‐Free Conditions. ChemistrySelect 2023. [DOI: 10.1002/slct.202204467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Gunda Ananda Rao
- Department of Chemistry National Taiwan Normal University Taipei Taiwan 11677
| | - Paru Jamwal
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Ramani Gurubrahamam
- Department of Chemistry Indian Institute of Technology Jammu Jagati Jammu (J&K) 181221 India
| | - Kwunmin Chen
- Department of Chemistry National Taiwan Normal University Taipei Taiwan 11677
| |
Collapse
|
17
|
Chen W, Xu T, Zhu G, Guo B, Tang L, Wang J. Concise Total Syntheses of Amorfrutin A and B. ChemistrySelect 2022. [DOI: 10.1002/slct.202202968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenzhang Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Tingxiao Xu
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- College of Pharmacy Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Gaofeng Zhu
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Bing Guo
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| | - Jianta Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants Guizhou Medical University 9 Beijing Road 550004 Guiyang China
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D Guizhou Medical University 9 Beijing Road 550004 Guiyang China
| |
Collapse
|
18
|
Shambhavi CN, Jeganmohan M. Rh(III)-Catalyzed Enone Carbonyl/Ketone-Directed Aerobic C-H Olefination of Aromatics with Unactivated Olefins. J Org Chem 2022; 87:13236-13258. [PMID: 36128804 DOI: 10.1021/acs.joc.2c01730] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed weak enone carbonyl/ketone-assisted aerobic oxidative C-H olefination of aromatics with unactivated alkenes has been developed. This protocol involves cross-dehydrogenative Heck-type olefination reaction of various substituted biologically relevant chalcones and aromatic ketones such as acetophenones and chromones with various functionalized unactivated olefins in moderate to good yields. Further, ortho-alkylation of chalcones with norbornene is also demonstrated. A possible reaction mechanism involving weak chelation-assisted C-H activation/insertion/β-hydride elimination was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
19
|
Non-chelation-assisted Pd-catalysed novel sp3 C H/sp2 C H intermolecular oxidative coupling reaction: one-pot formation of new 5‑benzyl fluorenone. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Ruthenium-catalyzed regioselective N-directed C–H olefination of 2-phenylphthalazinone. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Das KM, Pal A, Adarsh NN, Thakur A. A novel quinoline-based NNN-pincer Cu(II) complex as a superior catalyst for oxidative esterification of allylic C(sp 3)-H bonds. Org Biomol Chem 2022; 20:3540-3549. [PMID: 35393991 DOI: 10.1039/d2ob00220e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report for the first time that the quinoline-based NNN-pincer Cu(II) complex acts as an air stable superior catalyst for the oxidative cross-coupling of the allyl sp3 C-H bond with an acid for the synthesis of allyl esters in a homogeneous system at ambient temperature. The synthesized catalyst, 1, has been well characterized by various analytical techniques (HRMS, single crystal X-ray diffraction, CV, EPR, UV-vis spectroscopy) and showed excellent catalytic activity for the oxidative esterification of allylic C(sp3)-H bonds at 40 °C within a very short period of time (1 h) using only 1 mol% of the catalyst. A wide variety of aromatic allylic esters were synthesized in moderate to good yields, which could be extended to aliphatic allyl esters as well.
Collapse
Affiliation(s)
- Krishna Mohan Das
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| | - Nayarassery N Adarsh
- Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave., Potsdam, New York, 13699, USA
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-700032, India.
| |
Collapse
|
23
|
Liu M, Yan K, Wen J, Shang W, Sui X, Wang X. Ruthenium‐Catalyzed C7‐Formylmethylation or Sequential Acetalization of Indolines with Vinylene Carbonate in Different Solvents. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Min Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Kelu Yan
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Jiangwei Wen
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Wenda Shang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Xinlei Sui
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| | - Xiu Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 People's Republic of China
| |
Collapse
|
24
|
Shan X, Gao P, Zhang S, Jia X, Yuan Y. 2,2′‐Azodi(2‐methylbutyronitrile) (AMBN) Promoted Alkenylation of Cyclic Ethers via Radical Addition to β‐Nitrostyrenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojie Shan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Pan Gao
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Shuwei Zhang
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Xiaodong Jia
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| | - Yu Yuan
- College of Chemistry and Chemical Engineering Yangzhou University Yangzhou 225002, Jiangsu Province P. R. China
| |
Collapse
|
25
|
Malapit CA, Prater MB, Cabrera-Pardo JR, Li M, Pham TD, McFadden TP, Blank S, Minteer SD. Advances on the Merger of Electrochemistry and Transition Metal Catalysis for Organic Synthesis. Chem Rev 2022; 122:3180-3218. [PMID: 34797053 PMCID: PMC9714963 DOI: 10.1021/acs.chemrev.1c00614] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic organic electrosynthesis has grown in the past few decades by achieving many valuable transformations for synthetic chemists. Although electrocatalysis has been popular for improving selectivity and efficiency in a wide variety of energy-related applications, in the last two decades, there has been much interest in electrocatalysis to develop conceptually novel transformations, selective functionalization, and sustainable reactions. This review discusses recent advances in the combination of electrochemistry and homogeneous transition-metal catalysis for organic synthesis. The enabling transformations, synthetic applications, and mechanistic studies are presented alongside advantages as well as future directions to address the challenges of metal-catalyzed electrosynthesis.
Collapse
Affiliation(s)
- Christian A Malapit
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew B Prater
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Jaime R Cabrera-Pardo
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Min Li
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Tammy D Pham
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Timothy Patrick McFadden
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Skylar Blank
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
26
|
Xi JM, Liao WW. Radical addition to the CC bond meets (1, n)-HAT: recent advances in the remote C(sp 3)–H or C(sp 2)–H functionalization of alkenes. Org Chem Front 2022. [DOI: 10.1039/d2qo00793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the recent development of remote C(sp3)–H bond or aldehydic C(sp2)–H functionalizations enabled by intermolecular radical addition to CC bond/(1,n)-HAT tandem sequences.
Collapse
Affiliation(s)
- Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
27
|
Shchepochkin AV, Antipin FV, Charushin VN, Chupakhin ON. Oxidative C–H Functionalization of Arenes: Main Tool of 21st Century Green Chemistry. A Review. DOKLADY CHEMISTRY 2021. [DOI: 10.1134/s0012500821070016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Yogananda Chary D, Aashritha K, Sridhar B, Subba Reddy BV. Rh(III)-catalyzed ortho-C–H bond functionalization of 2-arylquinoxalines with vinyl arenes. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Saraswat A, Sharma A. Mini-review on the functionalization of C–H bond to C-X linkage via metalla-electrocatalyzed tool. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Qiao J, Mao H, Lu S, Zhang X, Ni H, Lu Y. Redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4 + 1] annulation between benzamides and alkenes for the synthesis of functionalized isoindolinones. Org Biomol Chem 2021; 19:9946-9952. [PMID: 34746943 DOI: 10.1039/d1ob01792f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, using electron-deficient alkenes embedded with an oxidizing function/leaving group as a rare and nontraditional C1 synthon, we have achieved the redox-neutral Rh(III)-catalyzed chemo- and regioselective [4 + 1] annulation of benzamides for the synthesis of functionalized isoindolinones. This method features broad substrate scope, good to excellent yields, excellent chemo- and regioselectivity, good tolerance of functional groups and mild external-oxidant-free conditions.
Collapse
Affiliation(s)
- Jin Qiao
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, P. R. China. .,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.
| | - Hui Mao
- College of Pharmacy, Jinhua Polytechnic, Jinhua 321007, P. R. China.
| | - Shiyao Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China.
| |
Collapse
|
31
|
Jadhav PP, Kahar NM, Dawande SG. Ruthenium(II)-Catalyzed Highly Chemo- and Regioselective Oxidative C6 Alkenylation of Indole-7-carboxamides. Org Lett 2021; 23:8673-8677. [PMID: 34723545 DOI: 10.1021/acs.orglett.1c02948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We disclosed the first efficient method for highly chemo- and regioselective C6 alkenylation of indole-7-carboxamides using inexpensive Ru(II) catalyst through chelation assisted C-H bond activation. Electronically diverse indole-7-carboxamides and alkenes react efficiently to produce a wide range of C6 alkenyl indole derivatives. Further the C6 alkenyl indole-7-carboxamides modified to their derivatives through simple chemical transformations. The observed regioselectivity and kinetics has been evidenced by deuterium incorporation and intermolecular competitive studies. In addition, for mechanistic insights, the intermediates were analyzed by HRMS.
Collapse
Affiliation(s)
- Pankaj P Jadhav
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Nilesh M Kahar
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| | - Sudam G Dawande
- Department of Chemistry, Institute of Chemical Technology, Mumbai, Maharashtra 400019, India
| |
Collapse
|
32
|
Mao Z, Jiang Y, Liu M, Zhang X. Unique regioselective C H diacetoxylation of pyrrolo[2,3-d]pyrimidine derivatives promoted by sodium iodide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Sand P, Schmidt B. Ruthenium‐Catalyzed Sulfoalkenylation of Acetanilides and Dual‐Use of the Catalyst Directing Group. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Patrick Sand
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam-Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 14476 Potsdam-Golm Germany
| |
Collapse
|
34
|
Hagui W, Periasamy K, Soulé J. Synthesis of 2,2’‐Bipyridines through Catalytic C−C Bond Formations from C−H Bonds. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wided Hagui
- Univ Rennes CNRS UMR6226 F-3500 Rennes France
| | | | | |
Collapse
|
35
|
Mao Z, Liu M, Qian H, Jiang Y, Zhang X. Pd-Catalyzed solvent-controlled site-selective arene C-H monoacyloxylation of pyrrolo[2,3- d]pyrimidine derivatives. Org Biomol Chem 2021; 19:8591-8596. [PMID: 34568881 DOI: 10.1039/d1ob01486b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient and highly regioselective Pd-catalyzed direct arene C(sp2)-H acyloxylation of pyrrolo[2,3-d]pyrimidine derivatives is reported. The key strategy involves the utilization of the unique reactivity of pyrrolo[2,3-d]pyrimidine and the employment of pyrrolo[2,3-d]pyrimidine as the directing group. A variety of monoacyloxylated pyrrolo[2,3-d]pyrimidine derivatives can be achieved by switching the solvents under mild conditions, and they can be further modified and exhibit various biological activities.
Collapse
Affiliation(s)
- Zhengtong Mao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Min Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Hongjie Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yunfeng Jiang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
36
|
Rhodium(III)‐Catalyzed Cascade C−H Activation/Annulation of
N
‐carbamoylindoles with Silyl Enol Ethers for the Construction of Dihydropyrimidoindolone Skeletons. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Wang Z, Zheng Z, Li P, Zhou C, Cai S, Xiao B, Wang L. Rhodium‐Catalyzed
Direct C—H Alkenylation of Indoles with Alkenyl Borates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ze‐Tian Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Zi‐Ang Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Peng‐Jie Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Chun‐Ni Zhou
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Shao‐Jun Cai
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Biao Xiao
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| | - Liang Wang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Chemical and Environmental Engineering, Jianghan University 8 Sanjiaohu Road Wuhan Hubei 430056 China
| |
Collapse
|
38
|
Hu JL, Bauer F, Breit B. Ruthenium-Catalyzed Enantioselective Addition of Carboxylic Acids to Allenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jiang-Lin Hu
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Felix Bauer
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität 21, 79104 Freiburg, Germany
| |
Collapse
|
39
|
Massignan L, Zhu C, Hou X, Oliveira JCA, Salamé A, Ackermann L. Manganaelectro-Catalyzed Azine C–H Arylations and C–H Alkylations by Assistance of Weakly Coordinating Amides. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Leonardo Massignan
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Cuiju Zhu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Xiaoyan Hou
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - João C. A. Oliveira
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Aude Salamé
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen37077, Germany
| |
Collapse
|
40
|
Dana S, Giri CK, Baidya M. Ruthenium(II)-Catalyzed Regioselective C-H Olefination of Aromatic Ketones and Amides with Allyl Sulfones. Org Lett 2021; 23:6855-6860. [PMID: 34428069 DOI: 10.1021/acs.orglett.1c02424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A Ru(II)-catalyzed cross-dehydrogenative Heck-type olefination of arenes with allyl sulfones leveraging the assistance of weakly coordinating ketone and amide functional groups is reported. It features a distinct reactivity profile in comparison to other allylic congeners, where β-sulfonyl elimination was not detected. The ambiphilic nature of the allyl sulfone side chain has also been demonstrated through intramolecular aza-Michael addition and aldol condensation. Mechanistic studies indicated the involvement of a reversible metalation step, where β-hydride elimination takes place selectively from the benzylic position.
Collapse
Affiliation(s)
- Suman Dana
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Chandan Kumar Giri
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
41
|
Mantry L, Maayuri R, Kumar V, Gandeepan P. Photoredox catalysis in nickel-catalyzed C-H functionalization. Beilstein J Org Chem 2021; 17:2209-2259. [PMID: 34621388 PMCID: PMC8451005 DOI: 10.3762/bjoc.17.143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/18/2021] [Indexed: 01/24/2023] Open
Abstract
Catalytic C‒H functionalization has become a powerful strategy in organic synthesis due to the improved atom-, step- and resource economy in comparison with cross-coupling or classical organic functional group transformations. Despite the significant advances in the metal-catalyzed C‒H activations, recent developments in the field of metallaphotoredox catalysis enabled C‒H functionalizations with unique reaction pathways under mild reaction conditions. Given the relative earth-abundance and cost-effective nature, nickel catalysts for photoredox C‒H functionalization have received significant attention. In this review, we highlight the developments in the field of photoredox nickel-catalyzed C‒H functionalization reactions with a range of applications until summer 2021.
Collapse
Affiliation(s)
- Lusina Mantry
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Rajaram Maayuri
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Vikash Kumar
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| | - Parthasarathy Gandeepan
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati – Renigunta Road, Settipalli Post, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
42
|
Ko GH, Maeng C, Jeong H, Han SH, Han GU, Lee K, Noh HC, Lee PH. Rhodium(III)-Catalyzed Sequential C-H Activation and Cyclization from N-Methoxyarylamides and 3-Diazooxindoles for the Synthesis of Isochromenoindolones. Chem Asian J 2021; 16:3179-3187. [PMID: 34387948 DOI: 10.1002/asia.202100797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Indexed: 12/22/2022]
Abstract
An efficient synthetic method for structurally various isochromenoindolones has been demonstrated through Rh(III)-catalyzed C-H activation followed by a cyclization reaction of N-methoxyarylamides with 3-diazooxindoles. The sequential reaction involves the streamlined formation of C-C and C-O bonds in one pot. The present method provides a broad range of isochromenoindolones as a new privileged scaffold in moderate to good yields with the release of methoxyamine and molecular nitrogen and has the benefits of a broad substrate scope and good functional group tolerance.
Collapse
Affiliation(s)
- Gi Hoon Ko
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Chanyoung Maeng
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Haneal Jeong
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Sang Hoon Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Gi Uk Han
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Kyungsup Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Hee Chan Noh
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| | - Phil Ho Lee
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, Korea
| |
Collapse
|
43
|
Singh P, Kumar Chouhan K, Mukherjee A. Ruthenium Catalyzed Intramolecular C-X (X=C, N, O, S) Bond Formation via C-H Functionalization: An Overview. Chem Asian J 2021; 16:2392-2412. [PMID: 34251077 DOI: 10.1002/asia.202100513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/09/2021] [Indexed: 01/12/2023]
Abstract
Ruthenium catalyzed C-H activation is well known for its high tolerance towards the functional group and broad applicability in organic synthesis and molecular sciences, with significant applications in pharmaceutical industries, material sciences, and polymer industry. In the last few decades, enormous progress has been observed with ruthenium-catalyzed C-H activation chemistry. Notably, the vast majority of the C-H functionalization known in the literature are intermolecular, although the intramolecular variant provides fascinating new structural facet starting from the simple molecular scaffolds. Intramolecular C-H functionalization is atom economical and step efficient, results in less formation of undesired products which is easy to purify. This has created a lot of interest in organic chemistry in developing new synthetic strategies for such functionalization. The focus of this review is to present the relatively unexplored intramolecular functionalization of C-H bonds into C-X (X=C, N, O, S) bonds utilizing versatile ruthenium catalysts, their scope, and brief mechanistic discussion.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Kishor Kumar Chouhan
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, Chhattisgarh, 492015, India
| |
Collapse
|
44
|
Zhao F, Qiao J, Lu Y, Zhang X, Dai L, Liu S, Ni H, Jia X, Wu X, Lu S. Redox-Neutral Rhodium(III)-Catalyzed Chemospecific and Regiospecific [4+1] Annulation between Indoles and Alkenes for the Synthesis of Functionalized Imidazo[1,5- a]indoles. J Org Chem 2021; 86:10591-10607. [PMID: 34297561 DOI: 10.1021/acs.joc.1c01256] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Exploiting internal alkenes embedded with an oxidizing function/leaving group as a rare and unconventional one-carbon unit, a redox-neutral rhodium(III)-catalyzed chemo- and regiospecific [4+1] annulation between indoles and alkenes for the synthesis of functionalized imidazo[1,5-a]indoles has been achieved. Internal alkenes employed here can fulfill an unusual [4+1] annulation rather than normal [4+2] annulation/C-H alkenylation. This method is characterized by excellent chemo- and regioselectivity, broad substrate scope, good functional group tolerance, good to high yields, and redox-neutral conditions.
Collapse
Affiliation(s)
- Fei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Jin Qiao
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Yangbin Lu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiaoning Zhang
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Long Dai
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Siyu Liu
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Hangcheng Ni
- Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| | - Xiuwen Jia
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China
| | - Xiaowei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.,Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528400, P. R. China
| | - Shiyao Lu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, P. R. China.,Jinhua Branch, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Jinhua 321007, P. R. China
| |
Collapse
|
45
|
Jagtap RA, Punji B. Nickel-Catalyzed C-H Bond Functionalization of Azoles and Indoles. CHEM REC 2021; 21:3573-3588. [PMID: 34075686 DOI: 10.1002/tcr.202100113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Direct C-H functionalization of privileged and biologically relevant azoles and indoles represents an important chemical transformation in molecular science. Despite significant progress in the palladium-catalyzed regioselective C-H functionalization of azoles and indoles, the use of abundant and less expensive nickel catalyst is underdeveloped. In the recent past, the nickel-catalyzed regioselective C-H alkylation, arylation, alkenylation and alkynylation of azoles and indoles have been substantially explored, which can be applied to the complex organic molecule synthesis. In this Account, we summarize the developments in nickel-catalyzed regioselective functionalization of azoles and indoles with a considerable focus on the reaction mechanism.
Collapse
Affiliation(s)
- Rahul A Jagtap
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
46
|
Atia AA, Kimura M. Pd-porphyrin complex-catalyzed allylation of indole with allylic alcohols through C3–C2 coupling. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
47
|
Hu Z, Belitz F, Zhang G, Papp F, Gooßen LJ. Ru-Catalyzed ( E)-Specific ortho-C-H Alkenylation of Arenecarboxylic Acids by Coupling with Alkenyl Bromides. Org Lett 2021; 23:3541-3545. [PMID: 33885311 DOI: 10.1021/acs.orglett.1c00956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the presence of [p-cymene)RuCl2]2, (E)-configured alkenyl bromides couple with aromatic carboxylates to form ortho-vinylbenzoic acids. This C-H vinylation proceeds in high yields without any activating phosphine ligands and has an excellent functional group tolerance. Starting from commonly available (E/Z )-mixtures of alkenyl bromides, (E)-configured vinyl arenes or dienes are formed exclusively. Mechanistic studies show that this selectivity is achieved because the (E)-configured alkenyl bromides undergo a smooth coupling, whereas the (Z)-isomers are rapidly eliminated with the formation of alkynes.
Collapse
Affiliation(s)
- Zhiyong Hu
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Belitz
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Guodong Zhang
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Florian Papp
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Lukas J Gooßen
- Evonik Chair of Organic Chemistry, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Khake SM, Yamazaki K, Ano Y, Chatani N. Iridium(III)-Catalyzed Branch-Selective C–H Alkenylation of Aniline Derivatives with Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shrikant M. Khake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
49
|
Jambu S, Shambhavi CN, Jeganmohan M. Aerobic Oxidative C-H Olefination of Arylamides with Unactivated Olefins via a Rh(III)-Catalyzed C-H Activation. Org Lett 2021; 23:2964-2970. [PMID: 33818094 DOI: 10.1021/acs.orglett.1c00646] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient Rh(III)-catalyzed aerobic oxidative C-H alkenylation of arylamides with unactivated alkenes is described. The olefination reaction was compatible with various substituted arylamides including primary, secondary, and tertiary as well as functionalized unactivated olefins. Meanwhile, ortho mono/bis-alkylated arylamides were synthesized in the reaction of arylamides with norbornene. In the alkenylation reaction, molecular oxygen along with organic acid was used to regenerate the active catalyst for the next catalytic cycle. A possible reaction mechanism involving C-H activation/insertion/β-hydride elimination followed by aerobic oxidation was proposed and supported by the deuterium labeling studies.
Collapse
Affiliation(s)
- Subramanian Jambu
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | | | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
50
|
Sand P, Schmidt B. Pd‐Catalyzed Oxidative Sulfoalkenylation of Acetanilides and Traceless Removal of the Catalyst Directing Group. ChemistrySelect 2021. [DOI: 10.1002/slct.202101009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Patrick Sand
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 D-14476 Potsdam-Golm Germany
| | - Bernd Schmidt
- Institut für Chemie Universtität Potsdam Karl-Liebknecht-Straße 24–25 D-14476 Potsdam-Golm Germany
| |
Collapse
|