1
|
Stulens Y, Van Hoof R, Hollanders K, Nelissen I, Szymonik M, Wagner P, Froyen G, Maes B, Hooyberghs J. Hybridization-based sensor with large dynamic range for detection of circulating tumor DNA in clinical samples. Biosens Bioelectron 2025; 281:117342. [PMID: 40215891 DOI: 10.1016/j.bios.2025.117342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
In a liquid biopsy approach, targeted mutation analysis of circulating tumor DNA (ctDNA) is a valuable tool for diagnosis, monitoring and personalization of therapy. The ctDNA usually makes up only a small fraction of the total circulating free DNA (cfDNA), and ctDNA often only differs from cfDNA at a single nucleotide. This sets strong requirements on the analytical performance of hybridization-based biosensors, which is the focus of this paper. We use clinical samples and apply the concept of wild-type target depletion. Along with this, we develop an accurate thermodynamic theory for the competitive hybridization and use it for selecting optimal experimental conditions and for data analysis. The result is a biosensor with improved quantification of ctDNA mutations, both the sensitivity and dynamic range are improved by an order of magnitude. As reference techniques, we used a clinically-validated real-time PCR assay and digital PCR for absolute quantification. Our approach can be applied to a broad range of hybridization-based biosensors, providing a robust and effective method to improve the performance of existing biosensors.
Collapse
Affiliation(s)
- Yannick Stulens
- UHasselt, Data Science Institute, Theory Lab, Agoralaan, Diepenbeek, 3590, Belgium
| | - Rebekka Van Hoof
- UHasselt, Data Science Institute, Theory Lab, Agoralaan, Diepenbeek, 3590, Belgium; Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, 2400, Belgium; KU Leuven, Faculty of Science, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
| | - Karen Hollanders
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, 2400, Belgium
| | - Inge Nelissen
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, 2400, Belgium
| | - Michal Szymonik
- Flemish Institute for Technological Research (VITO), Environmental Intelligence Unit, Mol, 2400, Belgium
| | - Patrick Wagner
- KU Leuven, Faculty of Science, Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, Celestijnenlaan 200 D, Leuven, 3001, Belgium
| | - Guy Froyen
- Jessa Hospital, Laboratory for Molecular Diagnostics, Department of Clinical Biology, Hasselt, 3500, Belgium; UHasselt, Faculty of Medicine and Life Sciences, Agoralaan, Diepenbeek, 3590, Belgium
| | - Brigitte Maes
- Jessa Hospital, Laboratory for Molecular Diagnostics, Department of Clinical Biology, Hasselt, 3500, Belgium; UHasselt, Faculty of Medicine and Life Sciences, Agoralaan, Diepenbeek, 3590, Belgium
| | - Jef Hooyberghs
- UHasselt, Data Science Institute, Theory Lab, Agoralaan, Diepenbeek, 3590, Belgium.
| |
Collapse
|
2
|
Hosseini Aghouzi SM, Yildiz E, Mordogan F, Erdem A. Biosensing of single-nucleotide polymorphism: Technological advances and their transformative applications on health. Biosens Bioelectron 2025; 279:117385. [PMID: 40163948 DOI: 10.1016/j.bios.2025.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
Single nucleotide polymorphisms (SNPs) are important genetic changes related to many diseases such as breast cancer, Alzheimer's disease, and β-thalassemia. Because of the increased interest in biosensor technologies, there has been a notable surge in the creation of new techniques to identify these changes in recent years. These new methods are highly accurate and sensitive, cost-effective and fast, making them ideal for use in clinical analysis. The non-invasive nature of biosensing techniques further enhances their integration into clinical protocols and point-of-care diagnostics. Several electrochemical, optical, and mass-based biosensors are carefully examined in this extensive review; each is distinguished by unique sensing platforms and techniques. This review presents in-depth discussions of linear dynamic ranges, detection limits, and real-world applications of contemporary research in the diagnosis of biological substrate disorders.
Collapse
Affiliation(s)
- Seyed Majid Hosseini Aghouzi
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey; The Institute of Natural and Applied Sciences, Biotechnology Department, Ege University, Bornova, 35100, Izmir, Turkey
| | - Esma Yildiz
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey; The Institute of Natural and Applied Sciences, Biotechnology Department, Ege University, Bornova, 35100, Izmir, Turkey
| | - Fulya Mordogan
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey; Faculty of Engineering, Department of Chemical Engineering, Ege University, Bornova, 35100, Izmir, Turkey
| | - Arzum Erdem
- Department of Analytical Chemistry, Faculty of Pharmacy, Ege University, Bornova, 35100, Izmir, Turkey; The Institute of Natural and Applied Sciences, Biotechnology Department, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
3
|
Pei B, Ma J, Ouyang L, Xiong Z. High-Security Data Encryption Enabled by DNA Multi-Strand Solid-Phase Hybridization and Displacement in Inkjet-Printed Microarrays. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10179-10190. [PMID: 39880406 DOI: 10.1021/acsami.4c21723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Multicolor fluorescent encryption systems that respond to specific stimuli have drawn widespread attention to data storage and encryption due to their low cost and facile data access. However, existing encryption systems are limited by encryption materials, restricting their encryption depth. This study uses DNA molecules as encryption materials that offer exceptional specificity and encryption depth within sequences. With inkjet-printed microarrays on a solid-phase interface, a multicolor fluorescent data storage system based on DNA hybridization and strand displacement is developed, achieving an encryption system with high encryption depth and flexibility. DNA strands, modified with different fluorescent labels, are delivered onto solid-phase interfaces containing a DNA self-assembled monolayer (SAM) via inkjet printing, forming multicolor fluorescent data microarrays. Data storage and encryption are achieved through the hybridization of fluorescent DNA strands for data presentation and interference with the DNA SAM at the interface between the solid phase and droplets. Interference DNA strands can be removed by DNA strand displacement for decryption. The encryption depth of this system is determined by the design of the DNA sequences and the combination of multiple DNA strands, showcasing its outstanding encryption ability. Meanwhile, high-throughput inkjet printing accelerates the data writing process, further enhancing the system efficiency. With DNA solid-phase reaction in inkjet-printed microarrays, this system provides a scalable and robust strategy for high-depth and efficient data encryption.
Collapse
Affiliation(s)
- Ben Pei
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Innovation International Talents Base (111 Base), Biomanufacturing and Engineering Living Systems, Beijing 100084, China
| | - Jiaxiang Ma
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Innovation International Talents Base (111 Base), Biomanufacturing and Engineering Living Systems, Beijing 100084, China
| | - Liliang Ouyang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Innovation International Talents Base (111 Base), Biomanufacturing and Engineering Living Systems, Beijing 100084, China
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing 100084, China
- Innovation International Talents Base (111 Base), Biomanufacturing and Engineering Living Systems, Beijing 100084, China
| |
Collapse
|
4
|
Wu Y, Chang Y, Sun Y, Wang Y, Li K, Lu Z, Liu Q, Wang F, Wei L. A multi-AS-PCR-coupled CRISPR/Cas12a assay for the detection of ten single-base mutations. Anal Chim Acta 2024; 1320:343027. [PMID: 39142774 DOI: 10.1016/j.aca.2024.343027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024]
Abstract
Single-nucleotide polymorphism (SNP) detection is critical for diagnosing diseases, and the development of rapid and accurate diagnostic tools is essential for treatment and prevention. Allele-specific polymerase chain reaction (AS-PCR) is widely used for detecting SNPs with multiplexing capabilities, while CRISPR-based technologies provide high sensitivity and specificity in targeting mutation sites through specific guide RNAs (gRNAs). In this study, we have integrated the high sensitivity and specificity of CRISPR technology with the multiplexing capabilities of AS-PCR, achieving the simultaneous detection of ten single-base mutations. As for Multi-AS-PCR, our research identified that competitive inhibition of primers targeting the same loci, coupled with divergent amplification efficiencies of these primers, could result in diminished amplification efficiency. Consequently, we adjusted and optimized primer combinations and ratios to enhance the amplification efficacy of Multi-AS-PCR. Finally, we successfully developed a novel nested Multi-AS-PCR-Cas12a method for multiplex SNPs detection. To evaluate the clinical utility of this method in a real-world setting, we applied it to diagnose rifampicin-resistant tuberculosis (TB). The limit of detection (LoD) for the nested Multi-AS-PCR-Cas12a was 102 aM, achieving sensitivity, specificity, positive predictive value, and negative predictive value of 100 %, 93.33 %, 90.00 %, and 100 %, respectively, compared to sequencing. In summary, by employing an innovative design that incorporates a universal reverse primer alongside ten distinct forward allele-specific primers, the nested Multi-AS-PCR-Cas12a technique facilitates the parallel detection of ten rpoB gene SNPs. This method also holds broad potential for the detection of drug-resistant gene mutations in infectious diseases and tumors, as well as for the screening of specific genetic disorders.
Collapse
Affiliation(s)
- Yaozhou Wu
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yanbin Chang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Yingying Sun
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Yulin Wang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Keke Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China
| | - Zhangping Lu
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou, 730000, PR China
| | - Qianqian Liu
- First School of Clinical Medicine, Ningxia Medical University, Yinchuan, 750000, PR China
| | - Fang Wang
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| | - Lianhua Wei
- First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, PR China; Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, 730000, PR China.
| |
Collapse
|
5
|
Wu K, Kong F, Zhang J, Tang Y, Chen Y, Chao L, Nie L, Huang Z. Recent Progress in Single-Nucleotide Polymorphism Biosensors. BIOSENSORS 2023; 13:864. [PMID: 37754098 PMCID: PMC10527258 DOI: 10.3390/bios13090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/28/2023]
Abstract
Single-nucleotide polymorphisms (SNPs), the most common form of genetic variation in the human genome, are the main cause of individual differences. Furthermore, such attractive genetic markers are emerging as important hallmarks in clinical diagnosis and treatment. A variety of destructive abnormalities, such as malignancy, cardiovascular disease, inherited metabolic disease, and autoimmune disease, are associated with single-nucleotide variants. Therefore, identification of SNPs is necessary for better understanding of the gene function and health of an individual. SNP detection with simple preparation and operational procedures, high affinity and specificity, and cost-effectiveness have been the key challenge for years. Although biosensing methods offer high specificity and sensitivity, as well, they suffer drawbacks, such as complicated designs, complicated optimization procedures, and the use of complicated chemistry designs and expensive reagents, as well as toxic chemical compounds, for signal detection and amplifications. This review aims to provide an overview on improvements for SNP biosensing based on fluorescent and electrochemical methods. Very recently, novel designs in each category have been presented in detail. Furthermore, detection limitations, advantages and disadvantages, and challenges have also been presented for each type.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| | - Zhao Huang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou 412007, China; (K.W.); (F.K.); (J.Z.); (Y.T.); (Y.C.); (L.C.)
| |
Collapse
|
6
|
Weng Z, Yu H, Luo W, Zhang L, Zhang Z, Wang T, Liu Q, Guo Y, Yang Y, Li J, Yang L, Dai L, Pu Q, Zhou X, Xie G. Specific and robust hybridization based on double-stranded nucleic acids with single-base resolution. Anal Chim Acta 2022; 1199:339568. [DOI: 10.1016/j.aca.2022.339568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/10/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022]
|
7
|
Zhang L, Ma X, Liu D, Shan J, Chu Y, Zhang J, Qi X, Huang X, Zou B, Zhou G. Visualized Genotyping from "Sample to Results" Within 25 Minutes by Coupling Recombinase Polymerase Amplification (RPA) With Allele-Specific Invasive Reaction Assisted Gold Nanoparticle Probes Assembling. J Biomed Nanotechnol 2022; 18:394-404. [PMID: 35484746 DOI: 10.1166/jbn.2022.3258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A simple and rapid genotyping method with less-instrumentation is essential for realizing point-of-care detection of personalized medicine-related gene biomarkers. Herein, we developed a rapid and visualized genotyping method by coupling recombinase polymerase amplification (RPA) with allele-specific invader reaction assisted gold nanoparticle probes assembling. In the method, the DNA targets were firstly amplified by using RPA, which is a rapid isothermal amplification technology. Then an allele-specific invasion reaction was performed to recognize the single nucleotide polymorphisms (SNPs) site in the amplicons, to produce signal molecules that caused discoloration of gold nanoparticle probes. As a result, genotyping was achieved by observing the color change of the reaction by using naked eye without the requirement for any expensive instrument. In order to achieve rapid genotyping detection, the genomic DNA from oral swab lysate samples were used for the RPA templates amplification. In this way, a visualized genotyping from "samples to results" within 25 min was realized. Two clopidogrel related SNPs CYP2C19*2 and CYP2C19*3 of 56 clinical samples were correctly genotyped by using this rapid visualized genotyping assay. In addition, the feasibility for this pathogen genotyping method was also verified by detecting plasmid DNA containing three SARS-COV-2 gene mutation sites, indicating that this method has the potential for clinical sample detection.
Collapse
Affiliation(s)
- Likun Zhang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xueping Ma
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Danni Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jingwen Shan
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, 510515, China
| | - Yanan Chu
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Jieyu Zhang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiemin Qi
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Xiaohui Huang
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| | - Bingjie Zou
- Key Laboratory of Drug Quality Control and Pharmacovigilance of Ministry of Education, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Guohua Zhou
- Department of Clinical Pharmacy, Affiliated Jinling Hospital, State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210002, China
| |
Collapse
|
8
|
Feng Z, Zhang W, Li L, Tu B, Ye W, Tang X, Wang H, Xiao X, Wu T. A cost-effective detection of low-abundance mutation with DNA three-way junction structure and lambda exonuclease. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Ang YS, Lai PS, Yung LYL. Design of Split Proximity Circuit as a Plug-and-Play Translator for Point Mutation Discrimination. Anal Chem 2020; 92:11164-11170. [PMID: 32605366 DOI: 10.1021/acs.analchem.0c01379] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Point mutations are a common form of genetic variation and have been identified as important disease biomarkers. Conventional methods for analyzing point mutations, e.g., polymerase chain reaction (PCR), are based on differences in thermal stability of the DNA duplex, which require extensive optimization of the reaction condition and nontrivial design of sequence-selective primers. This motivated the design of molecular translators to convert molecular inputs into generic output sequences, which allows for the target recognition and signal generation regions to be designed independently. In this work, we propose a translator design based on the concept of split proximity circuit (SPC) to achieve both high sequence selectivity and assay robustness using a universal reaction condition, i.e., room temperature and constant ionic concentration. We discussed the design aspects of the SPC recognition regions and demonstrated its plug-and-play capability to discriminate different point mutations for both DNA (seven G6PD mutations) and RNA (let-7 microRNA family members) targets while retaining the same signal generation region. Despite its simple design and nonstringent assay condition requirements, the SPC retained good analytical performance to detect subnanomolar target concentration within a reasonable time of an hour.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
10
|
Dong Y, Yao C, Wang Z, Luo D, Yang D. Target-Triggered Polymerization of Branched DNA Enables Enzyme-free and Fast Discrimination of Single-Base Changes. iScience 2019; 21:228-240. [PMID: 31675552 PMCID: PMC6838547 DOI: 10.1016/j.isci.2019.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 01/05/2023] Open
Abstract
Single-base changes lead to important biological and biomedical implications; however, the discrimination of single-base changes from normal DNA always remains a grand challenge. Herein we developed a DNA recognition and amplification system based on artificial branched DNA, namely, target-triggered polymerization (TTP), to realize enzyme-free and fast discrimination of single-base changes. Branched DNA as monomers rapidly polymerized into DNA nanospheres only with the trigger of specific DNA. Our TTP system worked reliably over a wide range of conditions. Remarkably, our TTP system was capable of discriminating base-changing DNA from normal DNA, including distinguishing 1-4 nucleotide changes and positions of single base, which was attributed to the significant amplification of small differences in hybridization thermodynamics and kinetics. We further proposed a theoretical method for calculating the hybridization probability of nucleic acids, which performed highly consistent with experimental results.
Collapse
Affiliation(s)
- Yuhang Dong
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Chi Yao
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Zhi Wang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dan Luo
- Department of Biological & Environmental Engineering, Cornell University, Ithaca, NY 14853, USA; CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Dayong Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
| |
Collapse
|
11
|
Lores Lareo P, Linscheid MW, Seitz O. Nucleic acid and SNP detection via template-directed native chemical ligation and inductively coupled plasma mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:676-683. [PMID: 31240800 DOI: 10.1002/jms.4382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
Detection of nucleic acids and single nucleotide polymorphisms (SNPs) is of pivotal importance in biology and medicine. Given that the biological effect of SNPs often is enhanced in combination with other SNPs, multiplexed SNP detection is desirable. We show proof of concept of the multiplexed detection of SNPs based on the template-directed native chemical ligation (NCL) of PNA-probes carrying a metal tag allowing detection using ICP-MS. For the detection of ssDNA oligonucleotides (30 bases), two probes, one carrying the metal tag and a second one carrying biotin for purification, are covalently ligated. The methodological limit of detection is of 29 pM with RSD of 6.7% at 50 pM (n = 5). Detection of SNPs is performed with the combination of two sets of reporter probes. The first probe set targets the SNP, and its yield is compared with a second set of probes targeting a neighboring sequence. The assay was used to simultaneously differentiate between alleles of three SNPs at 5-nM concentration.
Collapse
Affiliation(s)
- Pablo Lores Lareo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Michael W Linscheid
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Strasse 2, 12489, Berlin, Germany
| |
Collapse
|
12
|
Wolfe MG, Ali MM, Brennan JD. Enzymatic Litmus Test for Selective Colorimetric Detection of C-C Single Nucleotide Polymorphisms. Anal Chem 2019; 91:4735-4740. [PMID: 30869875 DOI: 10.1021/acs.analchem.9b00235] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A paper based litmus test has been developed using modulation of urease enzyme activity for detection of C-C mismatch single nucleotide polymorphisms (SNPs) by the naked eye. Urease is first inactivated with silver ions and printed onto paper microzones. Addition of DNA containing C-C mismatches reactivates urease via binding of Ag(I), allowing restoration of urease activity, hydrolysis of urea to produce ammonia, and an increase in pH, which is monitored colorimetrically using a pH indicator with a limit of detection of 11 nM DNA in 40 min. The assay system is easy to use, portable, and stable for at least 30 days at ambient temperature. To assess the versatility and practical application of the paper sensor, we used it to identify a G > C transversion present in human genomic DNA from a ductal carcinoma cell line, a mutation commonly found in breast cancer. We believe this new assay system has the potential to be a low-cost method for rapidly identifying DNA with the C-C mismatch SNP as a means of cancer screening in resource-limited areas.
Collapse
Affiliation(s)
- Michael G Wolfe
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - M Monsur Ali
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| | - John D Brennan
- Biointerfaces Institute , McMaster University , 1280 Main Street West , Hamilton , ON L8S 4O3 , Canada
| |
Collapse
|
13
|
Tortajada-Genaro LA, Niñoles R, Mena S, Maquieira Á. Digital versatile discs as platforms for multiplexed genotyping based on selective ligation and universal microarray detection. Analyst 2019; 144:707-715. [DOI: 10.1039/c8an01830h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of a high-performance assay readout using integrated detectors is a current challenge in the implementation of DNA tests in diagnostic laboratories, particularly for supporting pharmacogenetic tests.
Collapse
Affiliation(s)
- Luis A. Tortajada-Genaro
- Departamento de Química
- Universitat Politècnica de València
- Valencia
- Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
| | - Regina Niñoles
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Universitat de València
- Valencia
- Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)
| | - Salvador Mena
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
- Universitat Politècnica de València-Universitat de València
- Valencia
- Spain
| | - Ángel Maquieira
- Departamento de Química
- Universitat Politècnica de València
- Valencia
- Spain
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM)
| |
Collapse
|
14
|
Shi R, Nejad MI, Zhang X, Gu LQ, Gates KS. Generation and Single-Molecule Characterization of a Sequence-Selective Covalent Cross-Link Mediated by Mechlorethamine at a C–C Mismatch in Duplex DNA for Discrimination of a Disease-Relevant Single Nucleotide Polymorphism. Bioconjug Chem 2018; 29:3810-3816. [DOI: 10.1021/acs.bioconjchem.8b00663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ruicheng Shi
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Xinyue Zhang
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Li-Qun Gu
- Department of Bioengineering and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | | |
Collapse
|
15
|
Amplified detection of single base mismatches with the competing-strand assay reveals complex kinetic and thermodynamic behavior of strand displacement at the electrode surface. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Kikuchi N, Kolpashchikov DM. A universal split spinach aptamer (USSA) for nucleic acid analysis and DNA computation. Chem Commun (Camb) 2018; 53:4977-4980. [PMID: 28425510 DOI: 10.1039/c7cc01540b] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We demonstrate how a single universal spinach aptamer (USSA) probe can be used to detect multiple (potentially any) nucleic acid sequences. USSA can be used for cost-efficient and highly selective analysis of even folded DNA and RNA analytes, as well as for the readout of outputs of DNA logic circuits.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA
| | | |
Collapse
|
17
|
Duprey JLHA, Bassani DM, Hyde EI, Jonusauskas G, Ludwig C, Rodger A, Spencer N, Vyle JS, Wilkie J, Zhao ZY, Tucker JHR. Rationalisation of a mechanism for sensing single point variants in target DNA using anthracene-tagged base discriminating probes. Org Biomol Chem 2018; 16:6576-6585. [DOI: 10.1039/c8ob01710g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The fluorescence sensing mechanism for identifying single base changes in target DNA strands has been established through detailed biophysical measurements.
Collapse
Affiliation(s)
| | - Dario M. Bassani
- Institut des Sciences Moléculaires, CNRS UMR 5255
- Université Bordeaux
- Talence 33405
- France
| | - Eva I. Hyde
- School of Biosciences
- The University of Birmingham
- Edgbaston
- UK
| | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine
- UMR CNRS 5798
- Université Bordeaux
- Talence 33405
- France
| | - Christian Ludwig
- Henry Wellcome Building for Biomolecular NMR Spectroscopy
- Institute of Cancer & Genomic Sciences
- College of Medical & Dental Sciences
- University of Birmingham
- Edgbaston
| | - Alison Rodger
- Department of Molecular Sciences
- Faculty of Science and Engineering
- Macquarie University
- North Ryde
- Australia
| | - Neil Spencer
- School of Chemistry
- University of Birmingham
- Edgbaston
- UK
| | - Joseph S. Vyle
- School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - John Wilkie
- School of Chemistry
- University of Birmingham
- Edgbaston
- UK
| | | | | |
Collapse
|
18
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
19
|
Kamar O, Sun SC, Lin CH, Chung WY, Lee MS, Liao YC, Kolpashchikov DM, Chuang MC. A mutation-resistant deoxyribozyme OR gate for highly selective detection of viral nucleic acids. Chem Commun (Camb) 2017; 53:10592-10595. [PMID: 28900642 PMCID: PMC5645154 DOI: 10.1039/c7cc05576e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Highly selective probes hybridize only to fully complementary DNA or RNA sequences and, therefore, often fail to recognize mutated viral genomes. Here we designed a probe that possesses two seemingly incompatible properties: it tolerates some point mutations in genome, while it remains selective towards others. An OR deoxyribozyme logic gate was designed to fluorescently report the sequences of enterovirus 71 (EV71) covering ∼90% of all known EV71 strains. Importantly, sequences of closely related coxsackieviruses that differed by single nucleotides were reliably differentiated in 7 out of 8 cases.
Collapse
Affiliation(s)
- Ola Kamar
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nejad MI, Shi R, Zhang X, Gu LQ, Gates KS. Sequence-Specific Covalent Capture Coupled with High-Contrast Nanopore Detection of a Disease-Derived Nucleic Acid Sequence. Chembiochem 2017; 18:1383-1386. [PMID: 28422400 PMCID: PMC6139021 DOI: 10.1002/cbic.201700204] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 01/12/2023]
Abstract
Hybridization-based methods for the detection of nucleic acid sequences are important in research and medicine. Short probes provide sequence specificity, but do not always provide a durable signal. Sequence-specific covalent crosslink formation can anchor probes to target DNA and might also provide an additional layer of target selectivity. Here, we developed a new crosslinking reaction for the covalent capture of specific nucleic acid sequences. This process involved reaction of an abasic (Ap) site in a probe strand with an adenine residue in the target strand and was used for the detection of a disease-relevant T→A mutation at position 1799 of the human BRAF kinase gene sequence. Ap-containing probes were easily prepared and displayed excellent specificity for the mutant sequence under isothermal assay conditions. It was further shown that nanopore technology provides a high contrast-in essence, digital-signal that enables sensitive, single-molecule sensing of the cross-linked duplexes.
Collapse
Affiliation(s)
- Maryam Imani Nejad
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Ruicheng Shi
- Department of Bioengineering and, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Xinyue Zhang
- Department of Bioengineering and, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Li-Qun Gu
- Department of Bioengineering and, Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, 65211, USA
| | - Kent S Gates
- Departments of Chemistry and Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
21
|
Rizzi G, Dufva M, Hansen MF. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor. LAB ON A CHIP 2017; 17:2256-2263. [PMID: 28593203 DOI: 10.1039/c7lc00485k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying temperature as well as salt concentration. The salt concentration melting curves were found to be more reliable than temperature melting curves. We performed a two-dimensional mapping of the melting profiles of a target to probes targeting its wild type (WT) and mutant type (MT) variants in the temperature-salt concentration plane. This map clearly showed a region of optimum ability to differentiate between the two variants. We finally demonstrated single nucleotide polymorphysm (SNP) genotyping using both denaturation methods on both separate sensors but also using a differential measurement on a single sensor. The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition.
Collapse
Affiliation(s)
- Giovanni Rizzi
- Department of Micro- and Nanotechnology, DTU Nanotech, Building 345B, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | | | | |
Collapse
|
22
|
Jain P, Chakma B, Singh N, Patra S, Goswami P. Metal-DNA Interactions Improve signal in High-Resolution Melting of DNA for Species Differentiation of Plasmodium Parasite. Mol Biotechnol 2017; 59:179-191. [PMID: 28421327 DOI: 10.1007/s12033-017-0004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The success of high-resolution melting (HRM) analysis for distinguishing similar DNAs with minor base mismatch differences is limited. Here, metal-mediated structural change in DNA has been exploited to amplify HRM signals leading to differentiation of target DNAs in an orthologous gene corresponding to four Plasmodium species. Conserved 26-mer ssDNAs from ldh gene of the four Plasmodium species were employed as targets. A capture probe (CP) that is fully complementary to the Plasmodium falciparum target (FT) and has two base mismatches each, with the targets of Plasmodium vivax (VT), Plasmodium malariae, (MT), and Plasmodium ovale (OT), was considered. The DNA duplexes were treated with metal ions for structural perturbation and analyzed by HRM. Distinct resolution of melting fluorescence signal in otherwise identical HRM profiles for each of the DNA duplexes was achieved by using Ca+2 or Mg+2 ions, where, Ca+2 conferred higher resolution. The increase in resolution for CP-FT versus CP-OT, CP-FT versus CP-VT, CP-FT versus CP-MT, CP-VT versus CP-OT, and CP-MT versus CP-OT with Ca-DNA as compared to control was 67.3-, 20.4-, 22.0-, 10.9-, and 8.3-fold, respectively. The signal resolution was the highest at pH 8. The method could detect 0.25 pmol/µl of the target DNA. Structural analysis showed that Ca+2 and Mg+2 ions perturbed the structure of DNA. This perturbation helped to improve HRM signal resolution among DNA targets corresponding to the orthologous gene of four Plasmodium species. This novel approach has potential application not only for Plasmodium species-specific diagnosis but also for differentiation of DNAs with minor sequence variation.
Collapse
Affiliation(s)
- Priyamvada Jain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Babina Chakma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Naveen Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Sanjukta Patra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
23
|
Obliosca JM, Cheng SY, Chen YA, Llanos MF, Liu YL, Imphean DM, Bell DR, Petty JT, Ren P, Yeh HC. LNA Thymidine Monomer Enables Differentiation of the Four Single-Nucleotide Variants by Melting Temperature. J Am Chem Soc 2017; 139:7110-7116. [PMID: 28463488 DOI: 10.1021/jacs.7b03395] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High-resolution melting (HRM) analysis of DNA is a closed-tube single-nucleotide polymorphism (SNP) detection method that has shown many advantages in point-of-care diagnostics and personalized medicine. While recently developed melting probes have demonstrated significantly improved discrimination of mismatched (mutant) alleles from matched (wild-type) alleles, no effort has been made to design a simple melting probe that can reliably distinguish all four SNP alleles in a single experiment. Such a new probe could facilitate the discovery of rare genetic mutations at lower cost. Here we demonstrate that a melting probe embedded with a single locked thymidine monomer (tL) can reliably differentiate the four SNP alleles by four distinct melting temperatures (termed the "4Tm probe"). This enhanced discriminatory power comes from the decreased melting temperature of the tL·C mismatched hybrid as compared to that of the t·C mismatched hybrid, while the melting temperatures of the tL-A, tL·G and tL·T hybrids are increased or remain unchanged as compared to those of their canonical counterparts. This phenomenon is observed not only in the HRM experiments but also in the molecular dynamics simulations.
Collapse
Affiliation(s)
- Judy M Obliosca
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Sara Y Cheng
- Department of Physics, College of Natural Sciences, University of Texas at Austin , Austin, Texas 78712, United States
| | - Yu-An Chen
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Mariana F Llanos
- Department of Chemistry, Department of Chemistry, Furman University , Greenville, South Carolina 29613, United States
| | - Yen-Liang Liu
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Darren M Imphean
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - David R Bell
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Jeffrey T Petty
- Department of Chemistry, Department of Chemistry, Furman University , Greenville, South Carolina 29613, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, Cockrell School of Engineering, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
24
|
Li MC, Chang YF, Wang HY, Lin YX, Kuo CC, Annie Ho JA, Lee CC, Su LC. An innovative application of time-domain spectroscopy on localized surface plasmon resonance sensing. Sci Rep 2017; 7:44555. [PMID: 28281689 PMCID: PMC5345092 DOI: 10.1038/srep44555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 12/20/2022] Open
Abstract
White-light scanning interferometry (WLSI) is often used to study the surface profiles and properties of thin films because the strength of the technique lies in its ability to provide fast and high resolution measurements. An innovative attempt is made in this paper to apply WLSI as a time-domain spectroscopic system for localized surface plasmon resonance (LSPR) sensing. A WLSI-based spectrometer is constructed with a breadboard of WLSI in combination with a spectral centroid algorithm for noise reduction and performance improvement. Experimentally, the WLSI-based spectrometer exhibits a limit of detection (LOD) of 1.2 × 10-3 refractive index units (RIU), which is better than that obtained with a conventional UV-Vis spectrometer, by resolving the LSPR peak shift. Finally, the bio-applicability of the proposed spectrometer was investigated using the rs242557 tau gene, an Alzheimer's and Parkinson's disease biomarker. The LOD was calculated as 15 pM. These results demonstrate that the proposed WLSI-based spectrometer could become a sensitive time-domain spectroscopic biosensing platform.
Collapse
Affiliation(s)
- Meng-Chi Li
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ying-Feng Chang
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Huai-Yi Wang
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Xen Lin
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Chien-Cheng Kuo
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Ja-An Annie Ho
- BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chung Lee
- Thin Film Technology Center/Department of Optics and Photonics, National Central University, Taoyuan 32001, Taiwan
| | - Li-Chen Su
- Department of Optoelectric Physics, Chinese Culture University, Taipei 11114, Taiwan
| |
Collapse
|
25
|
Single-Molecule Counting of Point Mutations by Transient DNA Binding. Sci Rep 2017; 7:43824. [PMID: 28262827 PMCID: PMC5338343 DOI: 10.1038/srep43824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/01/2017] [Indexed: 12/20/2022] Open
Abstract
High-confidence detection of point mutations is important for disease diagnosis and clinical practice. Hybridization probes are extensively used, but are hindered by their poor single-nucleotide selectivity. Shortening the length of DNA hybridization probes weakens the stability of the probe-target duplex, leading to transient binding between complementary sequences. The kinetics of probe-target binding events are highly dependent on the number of complementary base pairs. Here, we present a single-molecule assay for point mutation detection based on transient DNA binding and use of total internal reflection fluorescence microscopy. Statistical analysis of single-molecule kinetics enabled us to effectively discriminate between wild type DNA sequences and single-nucleotide variants at the single-molecule level. A higher single-nucleotide discrimination is achieved than in our previous work by optimizing the assay conditions, which is guided by statistical modeling of kinetics with a gamma distribution. The KRAS c.34 A mutation can be clearly differentiated from the wild type sequence (KRAS c.34 G) at a relative abundance as low as 0.01% mutant to WT. To demonstrate the feasibility of this method for analysis of clinically relevant biological samples, we used this technology to detect mutations in single-stranded DNA generated from asymmetric RT-PCR of mRNA from two cancer cell lines.
Collapse
|
26
|
Yamanaka ES, Tortajada-Genaro LA, Maquieira Á. Low-cost genotyping method based on allele-specific recombinase polymerase amplification and colorimetric microarray detection. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2144-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Fernández‐Torres J, Martínez‐Nava GA, Gutiérrez‐Ruíz MC, Gomez‐Quiroz LE, Gutiérrez M. Papel da via de sinalização do HIF‐1α na osteoartrite: revisão sistemática. REVISTA BRASILEIRA DE REUMATOLOGIA 2017. [DOI: 10.1016/j.rbr.2016.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
28
|
Tortajada-Genaro LA, Puchades R, Maquieira Á. Primer design for SNP genotyping based on allele-specific amplification—Application to organ transplantation pharmacogenomics. J Pharm Biomed Anal 2017; 136:14-21. [DOI: 10.1016/j.jpba.2016.12.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
|
29
|
Rapisarda A, Giamblanco N, Marletta G. Kinetic discrimination of DNA single-base mutations by localized surface plasmon resonance. J Colloid Interface Sci 2017; 487:141-148. [DOI: 10.1016/j.jcis.2016.10.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/12/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
|
30
|
Daems D, Knez K, Delport F, Spasic D, Lammertyn J. Real-time PCR melting analysis with fiber optic SPR enables multiplex DNA identification of bacteria. Analyst 2017; 141:1906-11. [PMID: 26881275 DOI: 10.1039/c5an02342d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fiber optic surface plasmon resonance (FO-SPR) technology was developed that enables simultaneous quantification and identification of multiple DNA targets on the same platform. The bioassay was based on the hybridization/melting of DNA-coated Au nanoparticles on the FO-SPR sensor when targets are present. The multiplex concept was successfully demonstrated on two related bacteria and for detection of multiple mutations in sequences. In conclusion, FO-SPR technology shows a great potential as a next generation in vitro diagnostics tool.
Collapse
Affiliation(s)
- D Daems
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - K Knez
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - F Delport
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - D Spasic
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| | - J Lammertyn
- KU Leuven - University of Leuven, BIOSYST-MeBioS, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|
31
|
Cox AJ, Bengtson HN, Rohde KH, Kolpashchikov DM. DNA nanotechnology for nucleic acid analysis: multifunctional molecular DNA machine for RNA detection. Chem Commun (Camb) 2016; 52:14318-14321. [PMID: 27886299 PMCID: PMC5645153 DOI: 10.1039/c6cc06889h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Nobel prize in chemistry in 2016 was awarded for 'the design and synthesis of molecular machines'. Here we designed and assembled a molecular machine for the detection of specific RNA molecules. An association of several DNA strands, named multifunctional DNA machine for RNA analysis (MDMR1), was designed to (i) unwind RNA with the help of RNA-binding arms, (ii) selectively recognize a targeted RNA fragment, (iii) attract a signal-producing substrate and (iv) amplify the fluorescent signal by catalysis. MDMR1 enabled detection of 16S rRNA at concentrations ∼24 times lower than that by a traditional deoxyribozyme probe.
Collapse
Affiliation(s)
- A J Cox
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - H N Bengtson
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - K H Rohde
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| | - D M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, 32816, Florida, USA and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, 32816, Florida, USA.
| |
Collapse
|
32
|
Stancescu M, Fedotova TA, Hooyberghs J, Balaeff A, Kolpashchikov DM. Nonequilibrium Hybridization Enables Discrimination of a Point Mutation within 5-40 °C. J Am Chem Soc 2016; 138:13465-13468. [PMID: 27681667 PMCID: PMC5645261 DOI: 10.1021/jacs.6b05628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Detection of point mutations and single nucleotide polymorphisms in DNA and RNA has a growing importance in biology, biotechnology, and medicine. For the application at hand, hybridization assays are often used. Traditionally, they differentiate point mutations only at elevated temperatures (>40 °C) and in narrow intervals (ΔT = 1-10 °C). The current study demonstrates that a specially designed multistranded DNA probe can differentiate point mutations in the range of 5-40 °C. This unprecedentedly broad ambient-temperature range is enabled by a controlled combination of (i) nonequilibrium hybridization conditions and (ii) a mismatch-induced increase of equilibration time in respect to that of a fully matched complex, which we dub "kinetic inversion".
Collapse
Affiliation(s)
- Maria Stancescu
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Tatiana A. Fedotova
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
| | - Jef Hooyberghs
- Flemish Institute for Technological Research, VITO, Boeretang 200, Mol B-2400, Belgium
- Theoretical Physics, Hasselt University, Campus Diepenbeek, Agoralaan - Building D, Diepenbeek B-3590, Belgium
| | - Alexander Balaeff
- NanoScience Technology Center, 12424 Research Parkway, Suite 400, Orlando, Florida 32826, United States
| | - Dmitry M. Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, United States
- National Center for Forensic Science and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
33
|
Joda H, Sedova A, Awan W, Flechsig GU. The Osmium Tetroxide Bipyridine-labeled DNA Probe: Hairpin Conformations and Characterization of Redox-label Behavior. ELECTROANAL 2016. [DOI: 10.1002/elan.201600523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hamdi Joda
- University at Albany; State University of New York; 1400 Washington Ave. Albany NY 12222 US
- Current affiliation: Department of Biochemistry and Molecular Biology; Miller School of Medicine; University of Miami; 1011 NW 15th Street Miami FL 33136 US
| | - Ada Sedova
- University at Albany; State University of New York; 1400 Washington Ave. Albany NY 12222 US
- Current affiliation: Scientific Computing Group; National Center for Computational Sciences; Oak Ridge National Laboratory; 1 Bethel Valley Rd. Oak Ridge TN 37831 US
| | - Waqas Awan
- University at Albany; State University of New York; 1400 Washington Ave. Albany NY 12222 US
| | - Gerd-Uwe Flechsig
- University at Albany; State University of New York; 1400 Washington Ave. Albany NY 12222 US
| |
Collapse
|
34
|
Fernández-Torres J, Martínez-Nava GA, Gutiérrez-Ruíz MC, Gómez-Quiroz LE, Gutiérrez M. Role of HIF-1α signaling pathway in osteoarthritis: a systematic review. REVISTA BRASILEIRA DE REUMATOLOGIA 2016; 57:162-173. [PMID: 28343622 DOI: 10.1016/j.rbre.2016.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/28/2016] [Indexed: 12/20/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and is frequently diagnosed and managed in primary care; it is characterized by loss of articular hyaline cartilage, which is a unique connective tissue that physiologically lacks blood vessels. Articular cartilage survives in a microenvironment devoid of oxygen, which is regulated by hypoxia inducible factor (HIF-1α). HIF-1α is considered the main transcriptional regulator of cellular and developmental response to hypoxia. To date, the relevance of HIF-1α in the assessment of cartilage has increased since its participation is essential in the homeostasis of this tissue. Taking into account the new emerging insights of HIF-1α in the scientific literature in the last years, we focused the present review on the potential role of HIF-1α signaling pathway in OA development, especially in how some genetic factors may influence the maintenance or breakdown of articular cartilage.
Collapse
Affiliation(s)
- Javier Fernández-Torres
- Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Laboratorio de Líquido Sinovial, Mexico City, Mexico; Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico.
| | | | - María Concepción Gutiérrez-Ruíz
- Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| | - Luis Enrique Gómez-Quiroz
- Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| | - Marwin Gutiérrez
- Instituto Nacional de Rehabilitación "Luis Guillermo Ibarra Ibarra", Laboratorio de Líquido Sinovial, Mexico City, Mexico; Universidad Autónoma Metropolitana Iztapalapa, Programa de Doctorado de Ciencias Biológicas y de la Salud, Mexico City, Mexico
| |
Collapse
|
35
|
Reverte M, Vasseur JJ, Smietana M. Nuclease stability of boron-modified nucleic acids: application to label-free mismatch detection. Org Biomol Chem 2016; 13:10604-8. [PMID: 26441029 DOI: 10.1039/c5ob01815c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5'-End boronic acid-modified oligonucleotides were evaluated against various nucleases at single and double stranded levels. The results show that these modifications induce a high resistance to degradation by calf-spleen and snake venom phosphodiesterases. More importantly, this eventually led to the development of a new label-free enzyme-assisted fluorescence-based method for single mismatch detection.
Collapse
Affiliation(s)
- Maëva Reverte
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université de Montpellier-ENSCM, Place Bataillon, 34095 Montpellier, France.
| |
Collapse
|
36
|
Haga SB. Challenges of development and implementation of point of care pharmacogenetic testing. Expert Rev Mol Diagn 2016; 16:949-60. [PMID: 27402403 DOI: 10.1080/14737159.2016.1211934] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Just as technology was the underlying driver of the sequencing of the human genome and subsequent generation of volumes of genome sequence data from healthy and affected individuals, animal, plant, and microbial species alike, so too will technology revolutionize diagnostic testing. One area of intense interest is the use of genetic data to inform decisions regarding drug selection and drug dosing, known as pharmacogenetic (PGx) testing, to improve likelihood of successful treatment outcomes with minimal risks. AREAS COVERED This commentary will provide an overview of implementation research of PGx testing, the benefits of point-of-care (POC) testing and overview of POC testing platforms, available PGx tests, and barriers and facilitators to the development and integration of POC-PGx testing into clinical settings. Sources include the published literature, and databases from the Centers for Medicaid and Medicare Services, Food and Drug Administration. Expert commentary: The utilization of POC PGx testing may enable more routine test use, but the development and implementation of such tests will face some barriers before personalized medicine is available to every patient. In particular, provider training, availability of clinical decision supports, and connectivity will be key areas to facilitate routine use.
Collapse
Affiliation(s)
- Susanne B Haga
- a Department of Medicine, Center for Applied Genomics and Precision Medicine , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
37
|
Kikuchi N, Kolpashchikov DM. Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures. Chembiochem 2016; 17:1589-92. [PMID: 27305425 DOI: 10.1002/cbic.201600323] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 12/25/2022]
Abstract
Split spinach aptamer (SSA) probes for fluorescent analysis of nucleic acids were designed and tested. In SSA design, two RNA or RNA/DNA strands hybridized to a specific nucleic acid analyte and formed a binding site for low-fluorescent 3,5-difluoro-4-hydroxybenzylidene imidazolinone (DFHBI) dye, which resulted in up to a 270-fold increase in fluorescence. The major advantage of the SSA over state-of-the art fluorescent probes is high selectivity: it produces only background fluorescence in the presence of a single-base-mismatched analyte, even at room temperature. SSA is therefore a promising tool for label-free analysis of nucleic acids at ambient temperatures.
Collapse
Affiliation(s)
- Nanami Kikuchi
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL, 32816-2366, USA.
| |
Collapse
|
38
|
Kaura M, Hrdlicka PJ. Efficient Discrimination of Single Nucleotide Polymorphisms (SNPs) Using Oligonucleotides Modified with C5-Pyrene-Functionalized DNA and Flanking Locked Nucleic Acid (LNA) Monomers. Chem Asian J 2016; 11:1366-9. [PMID: 26994858 DOI: 10.1002/asia.201600200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 11/07/2022]
Abstract
Oligodeoxyribonucleotides modified with 5-[3-(1-pyrenecarboxamido)propynyl]-2'-deoxyuridine monomer X and proximal LNA monomers display higher affinity for complementary DNA, more pronounced increases in fluorescence emission upon DNA binding, and improved discrimination of SNPs at non-stringent conditions, relative to the corresponding LNA-free probes across a range of sequence contexts. The results reported herein suggest that the introduction of LNA monomers influences the position of nearby fluorophores via indirect conformational restriction, a characteristic that can be utilized to develop optimized fluorophore-labeled probes for SNP-discrimination studies.
Collapse
Affiliation(s)
- Mamta Kaura
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID, 83844-2343, USA
| | - Patrick J Hrdlicka
- Department of Chemistry, University of Idaho, 875 Perimeter Dr, MS 2343, Moscow, ID, 83844-2343, USA.
| |
Collapse
|
39
|
Yu Y, Wu T, Johnson-Buck A, Li L, Su X. A two-layer assay for single-nucleotide variants utilizing strand displacement and selective digestion. Biosens Bioelectron 2016; 82:248-54. [PMID: 27100949 DOI: 10.1016/j.bios.2016.03.070] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022]
Abstract
Point mutations have emerged as prominent biomarkers for disease diagnosis, particularly in the case of cancer. Discovering single-nucleotide variants (SNVs) is also of great importance for the identification of single-nucleotide polymorphisms within the population. The competing requirements of thermodynamic stability and specificity in conventional nucleic acid hybridization probes make it challenging to achieve highly precise detection of point mutants. Here, we present a fluorescence-based assay for low-abundance mutation detection based on toehold-mediated strand displacement and nuclease-mediated strand digestion that enables highly precise detection of point mutations. We demonstrate that this combined assay provides 50-1000-fold discrimination (mean value: 255) between all possible single-nucleotide mutations and their corresponding wild-type sequence for a model DNA target. Using experiments and kinetic modeling, we investigate probe properties that obtain additive benefits from both strand displacement and nucleolytic digestion, thus providing guidance for the design of enzyme-mediated nucleic acid assays in the future.
Collapse
Affiliation(s)
- Yingjie Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Materials Science and Engineering, Stony Brook University, Stony Brook, NY 11790, USA
| | - Tongbo Wu
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | | | - Lidan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Su
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
40
|
Yan Y, Samai S, Bischoff KL, Zhang J, Ginger DS. Photocontrolled DNA Hybridization Stringency with Fluorescence Detection in Heterogeneous Assays. ACS Sens 2016. [DOI: 10.1021/acssensors.5b00233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | | | - Kristi L. Bischoff
- Mel
and Enid Zuckerman College of Public Heath, University of Arizona, Tucson, Arizona 85724, United States
| | | | | |
Collapse
|
41
|
Ngavouka MDN, Capaldo P, Ambrosetti E, Scoles G, Casalis L, Parisse P. Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:220-227. [PMID: 26977379 PMCID: PMC4778512 DOI: 10.3762/bjnano.7.20] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/25/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND DNA hybridization is at the basis of most current technologies for genotyping and sequencing, due to the unique properties of DNA base-pairing that guarantee a high grade of selectivity. Nonetheless the presence of single base mismatches or not perfectly matched sequences can affect the response of the devices and the major challenge is, nowadays, to distinguish a mismatch of a single base and, at the same time, unequivocally differentiate devices read-out of fully and partially matching sequences. RESULTS We present here two platforms based on different sensing strategies, to detect mismatched and/or perfectly matched complementary DNA strands hybridization into ssDNA oligonucleotide monolayers. The first platform exploits atomic force microscopy-based nanolithography to create ssDNA nano-arrays on gold surfaces. AFM topography measurements then monitor the variation of height of the nanostructures upon biorecognition and then follow annealing at different temperatures. This strategy allowed us to clearly detect the presence of mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self-assembled monolayers we followed in real-time the variation of capacitance, being able to distinguish, through the difference in hybridization kinetics, not only the presence of single, double or triple mismatches in the complementary sequence, but also the position of the mismatched base pair with respect to the electrode surface. CONCLUSION We demonstrate here two platforms based on different sensing strategies as sensitive and selective tools to discriminate mismatches. Our assays are ready for parallelization and can be used in the detection and quantification of single nucleotide mismatches in microRNAs or in genomic DNA.
Collapse
Affiliation(s)
- Maryse D Nkoua Ngavouka
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Pietro Capaldo
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Elena Ambrosetti
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- University of Trieste, Via Valerio 9, Trieste, Italy
| | - Giacinto Scoles
- Department of Medical and Biological Sciences, University of Udine, Udine, Italy
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste S.C.p.A., s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
- INSTM – ST Unit, s.s. 14 km 163.5 in Area Science Park, Basovizza, Trieste, Italy
| |
Collapse
|
42
|
Chen X, Zhou D, Shen H, Chen H, Feng W, Xie G. A universal probe design for colorimetric detection of single-nucleotide variation with visible readout and high specificity. Sci Rep 2016; 6:20257. [PMID: 26830326 PMCID: PMC4735751 DOI: 10.1038/srep20257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/31/2015] [Indexed: 01/02/2023] Open
Abstract
Single-nucleotide variation (SNV) is a crucial biomarker for drug resistance-related detection in cancer and bacterial infection. However, the unintended binding of DNA probes limits the specificity of SNV detection, and the need for redesigned sequences compromise the universality of SNV assay. Herein, we demonstrated a universal and low-cost assay for the colorimetric discrimination of drug-resistance related point mutation. By the use of a universal DNA probe and a split G-quadruplex, the signal could be recognized by naked eye at room temperature. The DNA probe was used as a signal reporter which not only improved the universality, but also enabled high specificity of probe hybridization. This assay was successfully applied in the detection of cancer-related SNV in the epidermal growth factor receptor (EGFR) gene, kirsten rat sarcoma viral oncogene homologue (KRAS), and tuberculosis drug-resistance related point mutation in RNA polymerase beta subunit gene (rpoB) with high specificity and visible readout. This method was simple, rapid, high-throughput and effective, which was suitable for point-of-care applications.
Collapse
Affiliation(s)
- Xueping Chen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Dandan Zhou
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huawei Shen
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Hui Chen
- Clinical Laboratories, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wenli Feng
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Guoming Xie
- Key Laboratory of Medical Diagnostics of Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
43
|
Genotyping of single nucleotide polymorphisms related to attention-deficit hyperactivity disorder. Anal Bioanal Chem 2016; 408:2339-45. [DOI: 10.1007/s00216-016-9332-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 01/04/2023]
|
44
|
Ma L, Lei Z, Liu X, Liu D, Wang Z. Surface ligation-based resonance light scattering analysis of methylated genomic DNA on a microarray platform. Analyst 2016; 141:3084-9. [DOI: 10.1039/c6an00488a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A surface ligation-based RLS method is developed on a microarray platform for a sensitive and specific assay of methylated genomic DNA.
Collapse
Affiliation(s)
- Lan Ma
- Analysis and Testing Center
- Ningxia University
- Yinchuan
- P. R. China
- State Key Laboratory of Electroanalytical Chemistry
| | - Zhen Lei
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Xia Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Dianjun Liu
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- P. R. China
| |
Collapse
|
45
|
Long JB, Liu YX, Cao QF, Guo QP, Yan SY, Meng XX. Sensitive and enzyme-free detection for single nucleotide polymorphism using microbead-assisted toehold-mediated strand displacement reaction. CHINESE CHEM LETT 2015. [DOI: 10.1016/j.cclet.2015.05.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Yu H, Lee JY, Angupillai S, Wang S, Feng S, Matsumoto S, Son YA. A new dual fluorogenic and chromogenic "turn-on" chemosensor for Cu²⁺/F⁻ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:48-55. [PMID: 26125982 DOI: 10.1016/j.saa.2015.06.078] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 06/04/2023]
Abstract
Turn "off-on" chemosensor 2-(-2-((3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)imino)ethylidene)-N-phenylhydrazine-1-carbothioamide (RBS) was designed and synthesized. Using the naked eye, RBS showed favorable observation characteristics with both Cu(2+) and F(-) ions. The various modes of sensitivity shown by RBS toward the Cu(2+) and F(-) ions were investigated by spectral techniques, including UV-Vis, fluorescence and (1)H NMR spectroscopy. The Job's plot indicated the formation of 1:1 complex between RBS and Cu(2+)/F(-). The binding constant of the RBS-guest(-) complexes were found to be 1.3×10(4) and 6.2×10(3)M(-1) for the RBS-Cu(2+) and RBS-F(-), respectively.
Collapse
Affiliation(s)
- Hyungwook Yu
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Jae-Young Lee
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Satheshkumar Angupillai
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea
| | - Sheng Wang
- School of Chemistry Science & Technology, Zhanjiang Normal University, Development Center for New Material Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, PR China.
| | - Shuhang Feng
- School of Chemistry Science & Technology, Zhanjiang Normal University, Development Center for New Material Engineering & Technology in Universities of Guangdong, Zhanjiang 524048, PR China
| | - Shinya Matsumoto
- Graduate School of Environment and Information Sciences Yokohama National University, 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Young-A Son
- Department of Advanced Organic Materials and Textile System Engineering, Chungnam National University, Daejeon 305-764, South Korea.
| |
Collapse
|
47
|
Shen W, Tian Y, Ran T, Gao Z. Genotyping and quantification techniques for single-nucleotide polymorphisms. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Yan L, Liu K, Sintim HO. Convenient detection of HPV virus in a clinical sample using concurrent rolling circle and junction probe amplifications. Chem Commun (Camb) 2015; 50:7147-9. [PMID: 24852020 DOI: 10.1039/c4cc02532f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein we show that two isothermal amplification strategies, rolling circle amplification and junction probe strategy, can be used in tandem in the same tube under isothermal conditions to detect HPV16 in clinical cervical swabs. It was discovered that the prior treatment of the clinical sample with a cocktail of restriction endonucleases (REAses) to digest the genomic DNA facilitated the isothermal detection assay.
Collapse
Affiliation(s)
- Lei Yan
- Changzhou Fangyuan Pharmaceutical Co., Ltd., 108 Hehaixi Road, Xinbei District, Changzhou, Jiangsu 213022, China.
| | | | | |
Collapse
|
49
|
Liu Y, Xu H, Xu Z, Kudinha T, Fan X, Xiao M, Kong F, Sun H, Xu Y. High-Level Macrolide-Resistant Moraxella catarrhalis and Development of an Allele-Specific PCR Assay for Detection of 23S rRNA Gene A2330T Mutation: A Three-Year Study at a Chinese Tertiary Hospital. Microb Drug Resist 2015; 21:507-11. [PMID: 25923017 DOI: 10.1089/mdr.2014.0217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies indicate that macrolide resistance in Moraxella catarrhalis isolates is less common in adults than in children. However, few studies have investigated M. catarrhalis macrolide resistance mechanisms in adult patients. In this study, 124 M. catarrhalis isolates were collected from adult patients in a Chinese tertiary hospital, between 2010 and 2013, and investigated for antimicrobial resistance. We found that only seven isolates were macrolide resistant and all exhibited high-level macrolide resistance (minimum inhibitory concentrations >256 μg/ml). Multilocus sequence typing (MLST) suggested that M. catarrhalis has a diverse population; in particular, both pulsed-field gel electrophoresis and MLST revealed that all the seven high-level macrolide-resistant M. catarrhalis belonged to different clones. A 934-bp 23S rRNA gene sequencing showed that only nine isolates (including all the seven macrolide-resistant isolates) had mutations within the studied region, and only the seven macrolide-resistant isolates had mutation of A2330T. No other known macrolide-resistance determinant genes (ermA, ermB, mefA, or mefE) were detected. These findings support previous studies in children on M. catarrhalis macrolide-resistant isolates and suggest that the 23S rRNA gene A2330T mutation is responsible for the high M. catarrhalis macrolide resistance. The findings prompted us to successfully develop a simple allele-specific polymerase chain reaction assay for high-level macrolide-resistant 23S rRNA gene A2330T mutation for future clinical and further surveillance use.
Collapse
Affiliation(s)
- Yali Liu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Heping Xu
- 2 Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University , Xiamen, China
| | - Zhipeng Xu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Timothy Kudinha
- 3 Charles Sturt University , Orange, New South Wales, Australia .,4 Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney , Westmead, New South Wales, Australia
| | - Xin Fan
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Meng Xiao
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Fanrong Kong
- 4 Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney , Westmead, New South Wales, Australia
| | - Hongli Sun
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| | - Yingchun Xu
- 1 Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College , Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Protected DNA strand displacement for enhanced single nucleotide discrimination in double-stranded DNA. Sci Rep 2015; 5:8721. [PMID: 25735213 PMCID: PMC4348642 DOI: 10.1038/srep08721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/23/2015] [Indexed: 12/18/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are a prime source of genetic diversity. Discriminating between different SNPs provides an enormous leap towards the better understanding of the uniqueness of biological systems. Here we report on a new approach for SNP discrimination using toehold-mediated DNA strand displacement. The distinctiveness of the approach is based on the combination of both 3- and 4-way branch migration mechanisms, which allows for reliable discrimination of SNPs within double-stranded DNA generated from real-life human mitochondrial DNA samples. Aside from the potential diagnostic value, the current study represents an additional way to control the strand displacement reaction rate without altering other reaction parameters and provides new insights into the influence of single nucleotide substitutions on 3- and 4-way branch migration efficiency and kinetics.
Collapse
|