1
|
Nishiguchi R, Tanaka T, Hayashida J, Nakagita T, Zhou W, Takeda H. Evaluation of Cell-Free Synthesized Human Channel Proteins for In Vitro Channel Research. MEMBRANES 2022; 13:48. [PMID: 36676855 PMCID: PMC9861611 DOI: 10.3390/membranes13010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Despite channel proteins being important drug targets, studies on channel proteins remain limited, as the proteins are difficult to express and require correct complex formation within membranes. Although several in vitro synthesized recombinant channels have been reported, considering the vast diversity of the structures and functions of channel proteins, it remains unclear which classes of channels cell-free synthesis can be applied to. In this study, we synthesized 250 clones of human channels, including ion channel pore-forming subunits, gap junction proteins, porins, and regulatory subunits, using a wheat cell-free membrane protein production system, and evaluated their synthetic efficiency and function. Western blotting confirmed that 95% of the channels were successfully synthesized, including very large channels with molecular weights of over 200 kDa. A subset of 47 voltage-gated potassium ion channels was further analyzed using a planar lipid bilayer assay, out of which 80% displayed a voltage-dependent opening in the assay. We co-synthesized KCNB1 and KCNS3, a known heteromeric complex pair, and demonstrated that these channels interact on a liposome. These results indicate that cell-free protein synthesis provides a promising solution for channel studies to overcome the bottleneck of in vitro protein production.
Collapse
Affiliation(s)
- Rei Nishiguchi
- Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama 790-8577, Ehime, Japan
| | - Toyohisa Tanaka
- Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama 790-8577, Ehime, Japan
| | - Jun Hayashida
- Nissan Chemical Corporation, Shiraoka 1470, Shiraoka 349-0294, Saitama, Japan
| | - Tomoya Nakagita
- Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama 790-8577, Ehime, Japan
| | - Wei Zhou
- Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama 790-8577, Ehime, Japan
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Bunkyocho 3, Matsuyama 790-8577, Ehime, Japan
| |
Collapse
|
2
|
Kageyama H, Ma T, Sato M, Komiya M, Tadaki D, Hirano-Iwata A. New Aspects of Bilayer Lipid Membranes for the Analysis of Ion Channel Functions. MEMBRANES 2022; 12:membranes12090863. [PMID: 36135882 PMCID: PMC9501126 DOI: 10.3390/membranes12090863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 05/30/2023]
Abstract
The bilayer lipid membrane (BLM) is the main structural component of cell membranes, in which various membrane proteins are embedded. Artificially formed BLMs have been used as a platform in studies of the functions of membrane proteins, including various ion channels. In this review, we summarize recent advances that have been made on artificial BLM systems for the analysis of ion channel functions. We focus on two BLM-based systems, cell-membrane mimicry and four-terminal BLM systems. As a cell-membrane-mimicking system, an efficient screening platform for the evaluation of drug side effects that act on a cell-free synthesized channel has been developed, and its prospects for use in personalized medicine will be discussed. In the four-terminal BLMs, we introduce "lateral voltage" to BLM systems as a novel input to regulate channel activities, in addition to the traditional transmembrane voltages. Such state-of-the-art technologies and new system setups are predicted to pave the way for a variety of applications, in both fundamental physiology and in drug discovery.
Collapse
Affiliation(s)
- Hironori Kageyama
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Teng Ma
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Madoka Sato
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Maki Komiya
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Daisuke Tadaki
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Graduate School of Biomedical Engineering, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-2-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
3
|
Strutt R, Hindley JW, Gregg J, Booth PJ, Harling JD, Law RV, Friddin MS, Ces O. Activating mechanosensitive channels embedded in droplet interface bilayers using membrane asymmetry. Chem Sci 2021; 12:2138-2145. [PMID: 34163978 PMCID: PMC8179348 DOI: 10.1039/d0sc03889j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
Droplet microcompartments linked by lipid bilayers show great promise in the construction of synthetic minimal tissues. Central to controlling the flow of information in these systems are membrane proteins, which can gate in response to specific stimuli in order to control the molecular flux between membrane separated compartments. This has been demonstrated with droplet interface bilayers (DIBs) using several different membrane proteins combined with electrical, mechanical, and/or chemical activators. Here we report the activation of the bacterial mechanosensitive channel of large conductance (MscL) in a dioleoylphosphatidylcholine:dioleoylphosphatidylglycerol DIB by controlling membrane asymmetry. We show using electrical measurements that the incorporation of lysophosphatidylcholine (LPC) into one of the bilayer leaflets triggers MscL gating in a concentration-dependent manner, with partial and full activation observed at 10 and 15 mol% LPC respectively. Our findings could inspire the design of new minimal tissues where flux pathways are dynamically defined by lipid composition.
Collapse
Affiliation(s)
- Robert Strutt
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
| | - James W Hindley
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
| | - Jordan Gregg
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
| | - Paula J Booth
- FabriCELL, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Department of Chemistry, King's College London SE1 1DB London UK
| | - John D Harling
- Medicinal Chemistry, GSK Gunnels Wood Road, Stevenage SG1 2NY UK
| | - Robert V Law
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
| | - Mark S Friddin
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Dyson School of Design Engineering, Imperial College London Imperial College Road SW7 2AZ UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- Institute of Chemical Biology, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
- FabriCELL, Imperial College London, Molecular Sciences Research Hub Shepherd's Bush London W12 0BZ UK
| |
Collapse
|
4
|
Haylock S, Friddin MS, Hindley JW, Rodriguez E, Charalambous K, Booth PJ, Barter LMC, Ces O. Membrane protein mediated bilayer communication in networks of droplet interface bilayers. Commun Chem 2020; 3:77. [PMID: 34113722 PMCID: PMC7610947 DOI: 10.1038/s42004-020-0322-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Droplet interface bilayers (DIBs) are model membranes formed between lipid monolayer-encased water droplets in oil. Compared to conventional methods, one of the most unique properties of DIBs is that they can be connected together to generate multi-layered ‘tissue-like’ networks, however introducing communication pathways between these compartments typically relies on water-soluble pores that are unable to gate. Here, we show that network connectivity can instead be achieved using a water-insoluble membrane protein by successfully reconstituting a chemically activatable mutant of the mechanosensitive channel MscL into a network of DIBs. Moreover, we also show how the small molecule activator can diffuse through an open channel and across the neighbouring droplet to activate MscL present in an adjacent bilayer. This demonstration of membrane protein mediated bilayer communication could prove key toward developing the next generation of responsive bilayer networks capable of defining information flow inside a minimal tissue.
Collapse
Affiliation(s)
- Stuart Haylock
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| | - Mark S Friddin
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| | - James W Hindley
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,fabriCELL, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| | - Enrique Rodriguez
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| | - Kalypso Charalambous
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Paula J Booth
- Department of Chemistry, King's College London, Britannia House, 7 Trinity Street, London SE1 1DB, UK
| | - Laura M C Barter
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| | - Oscar Ces
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.,fabriCELL, Imperial College London, 80 Wood Lane, London W12 0BZ, UK
| |
Collapse
|
5
|
Allen-Benton M, Findlay HE, Booth PJ. Probing membrane protein properties using droplet interface bilayers. Exp Biol Med (Maywood) 2019; 244:709-720. [PMID: 31053046 PMCID: PMC6552395 DOI: 10.1177/1535370219847939] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
IMPACT STATEMENT The paper presents a comprehensive review of integral membrane protein studies utilizing droplet interface bilayers. Droplet interface bilayers are a novel method of constructing artificial lipid bilayers with enhanced stability and physicochemical complexity compared to existing methods. Their unique morphology also suggests applications in the construction of synthetic biological systems and protocells. As well as serving as a guide to in vitro membrane protein functional studies using droplet interface bilayers in the literature to date, a novel in vitro study of a flippase protein in a droplet interface bilayer is presented.
Collapse
Affiliation(s)
| | | | - Paula J Booth
- Department of Chemistry, King’s College London,
London SE1 1DB, UK
| |
Collapse
|
6
|
Trantidou T, Friddin MS, Salehi-Reyhani A, Ces O, Elani Y. Droplet microfluidics for the construction of compartmentalised model membranes. LAB ON A CHIP 2018; 18:2488-2509. [PMID: 30066008 DOI: 10.1039/c8lc00028j] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The design of membrane-based constructs with multiple compartments is of increasing importance given their potential applications as microreactors, as artificial cells in synthetic-biology, as simplified cell models, and as drug delivery vehicles. The emergence of droplet microfluidics as a tool for their construction has allowed rapid scale-up in generation throughput, scale-down of size, and control over gross membrane architecture. This is true on several levels: size, level of compartmentalisation and connectivity of compartments can all be programmed to various degrees. This tutorial review explains and explores the reasons behind this. We discuss microfluidic strategies for the generation of a family of compartmentalised systems that have lipid membranes as the basic structural motifs, where droplets are either the fundamental building blocks, or are precursors to the membrane-bound compartments. We examine the key properties associated with these systems (including stability, yield, encapsulation efficiency), discuss relevant device fabrication technologies, and outline the technical challenges. In doing so, we critically review the state-of-play in this rapidly advancing field.
Collapse
Affiliation(s)
- T Trantidou
- Department of Chemistry, Imperial College London, London, SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
7
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
8
|
Elfaramawy MA, Fujii S, Uyeda A, Osaki T, Takeuchi S, Kato Y, Watanabe H, Matsuura T. Quantitative analysis of cell-free synthesized membrane proteins at the stabilized droplet interface bilayer. Chem Commun (Camb) 2018; 54:12226-12229. [DOI: 10.1039/c8cc06804f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Quantification of membrane proteins supplied by cell-free synthesis was achieved by using an easy-to-use droplet interface bilayer chamber model.
Collapse
Affiliation(s)
- Maie A. Elfaramawy
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Satoshi Fujii
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
| | - Atsuko Uyeda
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Toshihisa Osaki
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
- Institute of Industrial Science
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- 213-0012 Kawasaki
- Japan
- Institute of Industrial Science
| | - Yasuhiko Kato
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Hajime Watanabe
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| | - Tomoaki Matsuura
- Department of Biotechnology
- Division of Advance Science and Biotechnology
- Graduate School of Engineering
- Osaka University
- Suita
| |
Collapse
|
9
|
Tadaki D, Yamaura D, Araki S, Yoshida M, Arata K, Ohori T, Ishibashi KI, Kato M, Ma T, Miyata R, Tozawa Y, Yamamoto H, Niwano M, Hirano-Iwata A. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels. Sci Rep 2017; 7:17736. [PMID: 29255199 PMCID: PMC5735097 DOI: 10.1038/s41598-017-17905-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/01/2017] [Indexed: 01/08/2023] Open
Abstract
The self-assembled bilayer lipid membrane (BLM) is the basic component of the cell membrane. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for the functional analysis of ion channels and screening the effects of drugs that act on them. However, because BLMs are unstable, this limits the experimental throughput of BLM reconstitution systems. Here we report on the formation of mechanically stable solvent-free BLMs in microfabricated apertures with defined nano- and micro-tapered edge structures. The role of such nano- and micro-tapered structures on the stability of the BLMs was also investigated. Finally, this BLM system was combined with a cell-free synthesized human ether-a-go-go-related gene channel, a cardiac potassium channel whose relation to arrhythmic side effects following drug treatment is well recognized. Such stable BLMs as these, when combined with a cell-free system, represent a potential platform for screening the effects of drugs that act on various ion-channel genotypes.
Collapse
Affiliation(s)
- Daisuke Tadaki
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Daichi Yamaura
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Shun Araki
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Miyu Yoshida
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Kohei Arata
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Takeshi Ohori
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ken-Ichi Ishibashi
- Hang-Ichi Corporation, 1-7-315 Honcho, Naka-ku, Yokohama, Kanagawa, 231-0005, Japan
| | - Miki Kato
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Teng Ma
- Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Ryusuke Miyata
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| | - Yuzuru Tozawa
- Department of Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama, 338-8570, Japan
| | - Hideaki Yamamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| | - Michio Niwano
- Kansei Fukushi Research Institute, Tohoku Fukushi University, 6-149-1 Kunimi-ga-oka, Aoba-ku, Sendai, Miyagi, 989-3201, Japan
| | - Ayumi Hirano-Iwata
- Laboratory for Nanoelectronics and Spintronics, Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan. .,Advanced Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan.
| |
Collapse
|
10
|
Ivica J, Williamson PTF, de Planque MRR. Salt Gradient Modulation of MicroRNA Translocation through a Biological Nanopore. Anal Chem 2017; 89:8822-8829. [DOI: 10.1021/acs.analchem.7b01246] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Josip Ivica
- Electronics
and Computer Science, ‡Centre for Biological Sciences, and §Institute for
Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip T. F. Williamson
- Electronics
and Computer Science, ‡Centre for Biological Sciences, and §Institute for
Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Maurits R. R. de Planque
- Electronics
and Computer Science, ‡Centre for Biological Sciences, and §Institute for
Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
11
|
Barlow NE, Smpokou E, Friddin MS, Macey R, Gould IR, Turnbull C, Flemming AJ, Brooks NJ, Ces O, Barter LMC. Engineering plant membranes using droplet interface bilayers. BIOMICROFLUIDICS 2017; 11:024107. [PMID: 28396711 PMCID: PMC5367087 DOI: 10.1063/1.4979045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 05/31/2023]
Abstract
Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana, tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - C Turnbull
- Department of Life Sciences, Imperial College London , Sir Alexander Fleming Building, South Kensington SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Toshihisa Osaki
- Artificial Cell
Membrane
Systems Group, Kanagawa Academy of Science and Technology, 3-2-1
Sakado, Takatsu, 213-0012 Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, 153-8505 Tokyo, Japan
| | - Shoji Takeuchi
- Artificial Cell
Membrane
Systems Group, Kanagawa Academy of Science and Technology, 3-2-1
Sakado, Takatsu, 213-0012 Kawasaki, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro, 153-8505 Tokyo, Japan
| |
Collapse
|
13
|
Friddin MS, Bolognesi G, Elani Y, Brooks NJ, Law RV, Seddon JM, Neil MAA, Ces O. Optically assembled droplet interface bilayer (OptiDIB) networks from cell-sized microdroplets. SOFT MATTER 2016; 12:7731-7734. [PMID: 27722718 DOI: 10.1039/c6sm01357k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a new platform technology to systematically assemble droplet interface bilayer (DIB) networks in user-defined 3D architectures from cell-sized droplets using optical tweezers. Our OptiDIB platform is the first demonstration of optical trapping to precisely construct 3D DIB networks, paving the way for the development of a new generation of modular bio-systems.
Collapse
Affiliation(s)
- Mark S Friddin
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Guido Bolognesi
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK.
| | - Yuval Elani
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Robert V Law
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - John M Seddon
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Mark A A Neil
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK and Photonics Group, Department of Physics, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK. and Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| |
Collapse
|
14
|
Ando M, Akiyama M, Okuno D, Hirano M, Ide T, Sawada S, Sasaki Y, Akiyoshi K. Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method. Biomater Sci 2016; 4:258-64. [DOI: 10.1039/c5bm00285k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chaperoning functions of liposomes were investigated using cell-free membrane protein synthesis.
Collapse
Affiliation(s)
- M. Ando
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - M. Akiyama
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - D. Okuno
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - M. Hirano
- Laboratory for Cell Dynamics Observation
- Quantitative Biology Center
- RIKEN
- Osaka 565-0874
- Japan
| | - T. Ide
- Graduate School of Natural Science and Technology
- Okayama University
- Okayama 700-8530
- Japan
| | - S. Sawada
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - Y. Sasaki
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| | - K. Akiyoshi
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
15
|
Hirano-Iwata A, Ishinari Y, Yamamoto H, Niwano M. Micro- and Nano-Technologies for Lipid Bilayer-Based Ion-Channel Functional Assays. Chem Asian J 2015; 10:1266-74. [DOI: 10.1002/asia.201403391] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Ayumi Hirano-Iwata
- CREST (Japan) Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Graduate School of Biomedical Engineering; Tohoku University; 6-6 Aoba Aramaki, Aoba-ku Sendai 980-8579 Japan
| | - Yutaka Ishinari
- CREST (Japan) Science and Technology Agency (JST); 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- Graduate School of Biomedical Engineering; Tohoku University; 6-6 Aoba Aramaki, Aoba-ku Sendai 980-8579 Japan
| | - Hideaki Yamamoto
- Graduate School of Biomedical Engineering; Tohoku University; 6-6 Aoba Aramaki, Aoba-ku Sendai 980-8579 Japan
- Frontier Research Institute for Interdisciplinary Sciences; Tohoku University; 6-3 Aoba Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Michio Niwano
- Graduate School of Biomedical Engineering; Tohoku University; 6-6 Aoba Aramaki, Aoba-ku Sendai 980-8579 Japan
- Laboratory for Nanoelectronics and Spintronics; Research Institute of Electrical Communication; Tohoku University; 6-6 Aoba Aramaki, Aoba-ku Sendai 980-8579 Japan
| |
Collapse
|
16
|
Dörr JM, Koorengevel MC, Schäfer M, Prokofyev AV, Scheidelaar S, van der Cruijsen EAW, Dafforn TR, Baldus M, Killian JA. Detergent-free isolation, characterization, and functional reconstitution of a tetrameric K+ channel: the power of native nanodiscs. Proc Natl Acad Sci U S A 2014; 111:18607-12. [PMID: 25512535 PMCID: PMC4284610 DOI: 10.1073/pnas.1416205112] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A major obstacle in the study of membrane proteins is their solubilization in a stable and active conformation when using detergents. Here, we explored a detergent-free approach to isolating the tetrameric potassium channel KcsA directly from the membrane of Escherichia coli, using a styrene-maleic acid copolymer. This polymer self-inserts into membranes and is capable of extracting membrane patches in the form of nanosize discoidal proteolipid particles or "native nanodiscs." Using circular dichroism and tryptophan fluorescence spectroscopy, we show that the conformation of KcsA in native nanodiscs is very similar to that in detergent micelles, but that the thermal stability of the protein is higher in the nanodiscs. Furthermore, as a promising new application, we show that quantitative analysis of the co-isolated lipids in purified KcsA-containing nanodiscs allows determination of preferential lipid-protein interactions. Thin-layer chromatography experiments revealed an enrichment of the anionic lipids cardiolipin and phosphatidylglycerol, indicating their close proximity to the channel in biological membranes and supporting their functional relevance. Finally, we demonstrate that KcsA can be reconstituted into planar lipid bilayers directly from native nanodiscs, which enables functional characterization of the channel by electrophysiology without first depriving the protein of its native environment. Together, these findings highlight the potential of the use of native nanodiscs as a tool in the study of ion channels, and of membrane proteins in general.
Collapse
Affiliation(s)
- Jonas M Dörr
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands;
| | - Martijn C Koorengevel
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Marre Schäfer
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Alexander V Prokofyev
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; and
| | - Stefan Scheidelaar
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Elwin A W van der Cruijsen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; and
| | - Timothy R Dafforn
- School of Bio Sciences, University of Birmingham, Edgbaston Birmingham B15 2TT, United Kingdom
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands; and
| | - J Antoinette Killian
- Membrane Biochemistry and Biophysics, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Dondapati SK, Kreir M, Quast RB, Wüstenhagen DA, Brüggemann A, Fertig N, Kubick S. Membrane assembly of the functional KcsA potassium channel in a vesicle-based eukaryotic cell-free translation system. Biosens Bioelectron 2014; 59:174-83. [DOI: 10.1016/j.bios.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
18
|
King PH, Jones G, Morgan H, de Planque MRR, Zauner KP. Interdroplet bilayer arrays in millifluidic droplet traps from 3D-printed moulds. LAB ON A CHIP 2014; 14:722-9. [PMID: 24336841 DOI: 10.1039/c3lc51072g] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In droplet microfluidics, aqueous droplets are typically separated by an oil phase to ensure containment of molecules in individual droplets of nano-to-picoliter volume. An interesting variation of this method involves bringing two phospholipid-coated droplets into contact to form a lipid bilayer in-between the droplets. These interdroplet bilayers, created by manual pipetting of microliter droplets, have proved advantageous for the study of membrane transport phenomena, including ion channel electrophysiology. In this study, we adapted the droplet microfluidics methodology to achieve automated formation of interdroplet lipid bilayer arrays. We developed a 'millifluidic' chip for microliter droplet generation and droplet packing, which is cast from a 3D-printed mould. Droplets of 0.7-6.0 μL volume were packed as homogeneous or heterogeneous linear arrays of 2-9 droplets that were stable for at least six hours. The interdroplet bilayers had an area of up to 0.56 mm(2), or an equivalent diameter of up to 850 μm, as determined from capacitance measurements. We observed osmotic water transfer over the bilayers as well as sequential bilayer lysis by the pore-forming toxin melittin. These millifluidic interdroplet bilayer arrays combine the ease of electrical and optical access of manually pipetted microdroplets with the automation and reproducibility of microfluidic technologies. Moreover, the 3D-printing based fabrication strategy enables the rapid implementation of alternative channel geometries, e.g. branched arrays, with a design-to-device time of just 24-48 hours.
Collapse
Affiliation(s)
- Philip H King
- Electronics and Computer Science & Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| | | | | | | | | |
Collapse
|