1
|
Rao Z, Cao D, Geng F, Huang H, Kang Y. Determination of the Localized Surface Plasmon Resonance Alteration of AgNPs via Multiwavelength Evanescent Scattering Microscopy for Pb(II) Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37981-37993. [PMID: 39007740 DOI: 10.1021/acsami.4c05900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
We developed multiwavelength evanescent scattering microscopy (MWESM), which can acquire plasmonic nanoparticle images at the particle level using the evanescent field as the incident source and distinguish different LSPR (localized surface plasmon resonance) spectral peaks among four wavelengths. Our microscope could be easily and simply built by modifying a commercial total internal reflection fluorescence microscope (TIRFM) with the substitution of a beamsplitter and the addition of a semicircular stop. The ultrathin depth of illumination and rejection of the reflected incident source together contribute to the high sensitivity and contrast of single nanoparticle imaging. We first validated the capability of our imaging system in distinguishing plasmonic nanoparticles bearing different LSPR spectral peaks, and the results were consistent with the scattering spectra results of hyperspectral imaging. Moreover, we demonstrated high imaging quality from the aspects of the signal/noise ratio and point spread function of the single-particle images. Meaningfully, the system can be utilized in rapidly determining the concentration of toxic lead ions in environmental and biological samples with good linearity and sensitivity, based on single-particle evanescent scattering imaging through the detection of the alteration of the LSPR of silver nanoparticles. This system holds the potential to advance the field of nanoparticle imaging and foster the application of nanomaterials as sensors.
Collapse
Affiliation(s)
- Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Fanglan Geng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Honglin Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Yuehui Kang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| |
Collapse
|
2
|
Mao L, Zhang Y, Zhang H, Liu H, Gao YP. Anti-aggregation colorimetric sensing of cysteine using silver nanoparticles in the presence of Pb 2. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2378-2385. [PMID: 38572618 DOI: 10.1039/d4ay00351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Using silver nitrate as the silver source and sodium borohydride as the reducing agent, we synthesized negatively charged silver nanoparticles (AgNPs). Subsequently, the AgNPs solution was mixed with positively charged lead ions, resulting in AgNPs aggregation via electrostatic interactions. This led to a color change in the solution from yellow to purple and eventually to blue-green. Our study focused on a colorimetric method that exhibited high selectivity and sensitivity in detecting cysteine using AgNPs-Pb2+ as a sensing probe. Upon the introduction of cysteine to the AgNPs-Pb2+ system, the absorbance of AgNPs increased at 396 nm and decreased at 520 nm. The formation of a complex between cysteine and lead ions prevented the aggregation of silver nanoparticles, enabling the colorimetric detection of cysteine. The relationship between the concentration of ΔA396/A520 and cysteine showed linearity within the range of 0.01 to 0.1 μM; the regression equation of the calibration curve is ΔA396/A520 = 9.0005c - 0.0557 (c: μM), with an R2 value of 0.9997. The detection limit was found to be 3.8 nM (S/N = 3). This method demonstrated exceptional selectivity and sensitivity for cysteine and was effectively used for the determination of cysteine in urine. Our findings offer a new perspective for the future advancement of anti-aggregation silver nanocolorimetry.
Collapse
Affiliation(s)
- Lihui Mao
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
- School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yi Zhang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Huan Zhang
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Huili Liu
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| | - Yong-Ping Gao
- School of Science and Engineering, Xinyang College, Xinyang, 464000, China.
| |
Collapse
|
3
|
Yao D, Bi H, Gong H, Lai H, Lu S. Determination of Pb 2+ by Colorimetric Method Based on Catalytic Amplification of Ag Nanoparticles Supported by Covalent Organic Frameworks. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2866. [PMID: 36014731 PMCID: PMC9414748 DOI: 10.3390/nano12162866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In this paper, covalent organic frameworks (COFs) are prepared by solvothermal synthesis using 1,3,5-benzenetricarboxaldehyde and benzidine as ligands. Then, using COFs as a template, AgCOFs with high catalytic activity is prepared by in situ loading silver nanoparticles (AgNC) on the surface of COFs by sodium borohydride reduction method. AgCOFs are characterized by TEM, SEM, FTIR and XRD. At the same time, the catalytic ability of AgCOFs for trisodium citrate-AgNO3 nanosilver reaction is studied. The results show that AgCOFs can catalyze the reaction of trisodium citrate-AgNO3 to generate silver nanoparticles (AgNPs). The solution color of the system gradually changes from colorless to yellow, and the absorbance value increases. Based on the catalytic reaction of AgCOFs and the regulation effect of nucleic acid aptamer reaction on AgCOFs, a new "on-off-on" colorimetric analysis platform is constructed and applied to the detection of trace Pb2+ in water samples. This analytical platform is simple, sensitive and selective. Finally, the catalytic mechanism of the system is discussed to verify the feasibility of constructing a colorimetric analysis platform.
Collapse
Affiliation(s)
- Dongmei Yao
- School of Chemical and Biological Engineering, Hechi University, Yizhou 546300, China
| | | | | | | | - Sufen Lu
- School of Chemical and Biological Engineering, Hechi University, Yizhou 546300, China
| |
Collapse
|
4
|
Yao W, Hua Y, Yan Z, Wu C, Zhou F, Liu Y. Sulfhydryl functionalized carbon quantum dots as a turn-off fluorescent probe for sensitive detection of Hg 2. RSC Adv 2021; 11:36310-36318. [PMID: 35492750 PMCID: PMC9043377 DOI: 10.1039/d1ra06527k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2021] [Indexed: 01/27/2023] Open
Abstract
Mercury ion (Hg2+) is one of the most toxic heavy metal ions and lowering the detection limit of Hg2+ is always a challenge in analytical chemistry and environmental analysis. In this work, sulfhydryl functionalized carbon quantum dots (HS-CQDs) were synthesized through a one-pot hydrothermal method. The obtained HS-CQDs were able to detect mercury ions Hg2+ rapidly and sensitively through fluorescence quenching, which may be ascribed to the formation of nonfluorescent ground-state complexes and electron transfer reaction between HS-CQDs and Hg2+. A modification of the HS-CQD surface by -SH was confirmed using Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The HS-CQDs sensing system obtained a good linear relationship over a Hg2+ concentration ranging from 0.45 μM to 2.1 μM with a detection limit of 12 nM. Delightfully, the sensor has been successfully used to detect Hg2+ in real samples with satisfactory results. This means that the sensor has the potential to be used for testing actual samples.
Collapse
Affiliation(s)
- Wei Yao
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Yingchen Hua
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
| | - Zhihong Yan
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
| | - Chunxian Wu
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
| | - Feiyan Zhou
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| | - Yi Liu
- College of Pharmacy, Guangdong Pharmaceutical University Guangzhou 510000 China
- School of Pharmaceutical and Chemical Engineering, Guangdong Pharmaceutical University Zhongshan 528400 China
- Guangzhou Baiyunshan Weiyi Industrial Co., Ltd Guangzhou 510000 China
| |
Collapse
|
5
|
Cao N, Xu J, Zhou H, Zhao Y, Xu J, Li J, Zhang S. A fluorescent sensor array based on silver nanoclusters for identifying heavy metal ions. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Xie MR, Cai Y, Liu YQ, Wu ZY. Sensitive colorimetric detection of Pb 2+ by geometric field amplification and surface plasmon resonance visualization. Talanta 2020; 212:120749. [PMID: 32113532 DOI: 10.1016/j.talanta.2020.120749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 11/15/2022]
Abstract
Pb2+ is one of the major environmental pollutants, which can be visually detected by surface plasmon resonance of nanoparticles. Paper based analytical device, as a newly developed microfluidic detection platform, is featured in cost-effective and suitable for on-site analysis. In this paper, a sensitive and portable detection method for Pb2+ was proposed, in which Pb2+ was electrokinetically stacked on the paper fluidic channel by geometric field amplification effect and visualized online by glutathione-modified silver nanoparticles. Colorimetric quantification of the visualized stacking band was conducted by smart phone camera. To avoid unfavorable influence from pH change on the surface plasmon resonance visualization, field amplification effect was introduced by geometric design of the paper fluidic channel. The enriched Pb2+ was clearly visible on the paper substrate, and the stacking band intensity was about four orders of magnitude enhanced, comparing to the intensity without stacking. A linear response to Pb2+ was observed in the range of 0.3-7.0 μM (R2 = 0.997) with a limit of detection of 86 nM and a limit of quantity of 0.28 μM. The established method was used in the detection of Pb2+ from river and lake water samples, and the results were confirmed by atomic absorption spectroscopy method.
Collapse
Affiliation(s)
- Mao-Rong Xie
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yu Cai
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yu-Qi Liu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
7
|
Recent advances in the development of responsive probes for selective detection of cysteine. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213182] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Shi Y, Sun C, Gao X, Zhao W, Zhou N. Sensitively and Selectively Detect Biothiols by Using Fluorescence Method and Resonance Light Scattering Technique Simultaneously. Molecules 2019; 24:molecules24224136. [PMID: 31731646 PMCID: PMC6891520 DOI: 10.3390/molecules24224136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
In this paper, we designed a new quantitative and qualitive detection method for biothiols by using fluorescence method and resonance light scattering (RLS) technique. Nitrogen doped carbon quantum dots (C/N-dots) were obtained from tartaric acid and ethylenediamine by hydrothermal method, and then their morphology and optical properties were characterized by different techniques. A detection system consisting of C/N-dots and Ag+ complex was established. In this system, C/N-dots possessed the photoluminescent property and the Ag+ complex owned the RLS property, so, by combining the two luminescent properties to achieve complementary advantages, we could detect biothiols and solve the problem of distinguishing between Cys and GSH. Additionally, we optimized detecting conditions and investigated the detection mechanism of fluorescence quenching and RLS detecting. Results showed that the analytical response of fluorescence was linear in the range 0–140 μM and the detection limit (LOD) was calculated to be 6.6 μM for Cys, and the addition of GSH had no effect on fluorescence. RLS response ranges were 0–167 μM for Cys and 0–200 μM for GSH, with LOD down to 64 nM and 74 nM, respectively. Furthermore, the probe was successfully used for detecting Cys in fetal bovine serum (FBS) samples by fluorescence method, and also, by RLS technique, the content of GSH in FBS samples was detected.
Collapse
Affiliation(s)
- Yanping Shi
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China; (Y.S.); (C.S.); (X.G.)
| | - Chao Sun
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China; (Y.S.); (C.S.); (X.G.)
| | - Xiaoqi Gao
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China; (Y.S.); (C.S.); (X.G.)
| | - Wei Zhao
- Department of Physiology, Hei Longjiang University of Chinese Medicine, Harbin 150040, China;
| | - Nan Zhou
- Department of Chemistry, Northeast Agricultural University, Harbin 150025, China; (Y.S.); (C.S.); (X.G.)
- Correspondence: ; Tel.: +86-137-6687-3464
| |
Collapse
|
9
|
Kaewprom C, Sricharoen P, Limchoowong N, Nuengmatcha P, Chanthai S. Resonance light scattering sensor of the metal complex nanoparticles using diethyl dithiocarbamate doped graphene quantum dots for highly Pb(II)-sensitive detection in water sample. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 207:79-87. [PMID: 30199716 DOI: 10.1016/j.saa.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/30/2018] [Accepted: 09/01/2018] [Indexed: 05/24/2023]
Abstract
This study was aimed to detect Pb2+ using diethyl dithiocarbamate-doped graphene quantum dots (DDTC-GQDs) based pyrolysis of citric acid. The excitation maximum wavelength (λmax, ex = 337 nm) of the DDTC-GQDs solution was blue shift from bare GQDs (λmax, ex = 365 nm), with the same emission maximum wavelength (λmax, em = 459 nm) indicating differences in the desired N, S matrices decorating in the nanoparticles. Their resonance light scattering intensities were peaked at the same λmax, ex/em = 551/553 nm without any background effect of both ionic strength and masking agent. Under optimal conditions, the linear range was 1.0-10.0 μg L-1 (R2 = 0.9899), limit of detection was 0.8 μg L-1 and limit of quantification was 1.5 μg L-1. The precision, expressed as the relative standard deviations, for intra-day and inter-day analyses was 0.87% and 4.47%, respectively. The recovery study of Pb2+ for real water samples was ranged between 80.8% and 109.5%. The proposed method was also proved with certified water sample containing 60 μg L-1 Pb2+ giving an excellent accuracy and was then implied satisfactorily for ultra-trace determination of Pb2+ in drinking water and tap water samples.
Collapse
Affiliation(s)
- Chayanee Kaewprom
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Phitchan Sricharoen
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Nunticha Limchoowong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Prawit Nuengmatcha
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Saksit Chanthai
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
10
|
Vasquez G, Hernández Y, Coello Y. Portable low-cost instrumentation for monitoring Rayleigh scattering from chemical sensors based on metallic nanoparticles. Sci Rep 2018; 8:14903. [PMID: 30297809 PMCID: PMC6175918 DOI: 10.1038/s41598-018-33271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 09/21/2018] [Indexed: 01/18/2023] Open
Abstract
Using a Hg(II) sensor based on the aggregation of gold nanoparticles as a model system, we evaluated the performance of two portable low-cost devices that monitor the wavelength-ratiometric resonance Rayleigh scattering signal of the chemical sensor upon white-LED illumination. The first device uses two optical filter-photodiode combinations to detect scattered light while the second employs a novel ultra-compact (grating-free) spectral sensor. Results show that the response of the Hg(II) sensor monitored with these devices is comparable to that measured using a high-end benchtop scanning spectrofluorometer. The great potential of this new LED-spectral sensor was demonstrated with the quantification of Hg(II) in tap and spring water. Due to the promising results obtained, many reported chemical sensors based on Rayleigh scattering from metallic nanoparticles could take advantage of this compact portable instrumentation for cost-effective field-deployable applications.
Collapse
Affiliation(s)
- Glibver Vasquez
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú PUCP, Lima, Peru
| | - Yulán Hernández
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú PUCP, Lima, Peru
| | - Yves Coello
- Departamento de Ciencias, Sección Química, Pontificia Universidad Católica del Perú PUCP, Lima, Peru.
| |
Collapse
|
11
|
Maleki S, Madrakian T, Afkhami A. Application of polyacrylonitrile nanofibers decorated with magnetic carbon dots as a resonance light scattering sensor to determine famotidine. Talanta 2018; 181:286-295. [DOI: 10.1016/j.talanta.2018.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
|
12
|
Pirdadeh-Beiranvand M, Afkhami A, Madrakian T. Ag nanoparticles for determination of bisphenol A by resonance light-scattering technique. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1350-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Tsogas GZ, Kappi FA, Vlessidis AG, Giokas DL. Recent Advances in Nanomaterial Probes for Optical Biothiol Sensing: A Review. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1329833] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- George Z. Tsogas
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Foteini A. Kappi
- Department of Chemistry, University of Ioannina, Ioannina, Greece
| | | | | |
Collapse
|
14
|
Mohammadi S, Khayatian G. Colorimetric detection of biothiols based on aggregation of chitosan-stabilized silver nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 185:27-34. [PMID: 28531847 DOI: 10.1016/j.saa.2017.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
We have described a simple and reliable colorimetric method for the sensing of biothiols such as cysteine, homocysteine, and glutathione in biological samples. The selective binding of chitosan capped silver nanoparticles to biothiols induced aggregation of the chitosan-Ag NPs. But the other amino acids that do not have thiol group cannot aggregate the chitosan-Ag NPs. Aggregation of chitosan-Ag NPs has been confirmed with UV-vis absorption spectra, zeta potential and transmission electron microscopy images. Under optimum conditions, good linear relationships existed between the absorption ratios (at A500/A415) and the concentrations of cysteine, homocysteine, and glutathione in the range of 0.1-10.0μM with detection limits of 15.0, 84.6 and 40.0nM, respectively. This probe was successfully applied to detect these biothiols in biological samples (urine and plasma).
Collapse
Affiliation(s)
- Somayeh Mohammadi
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, 66177-15175 Sanandaj, Iran.
| | - Gholamreza Khayatian
- Department of Chemistry, Faculty of Science, University of Kurdistan, P.O. Box 416, 66177-15175 Sanandaj, Iran
| |
Collapse
|
15
|
Ahmad I, Arshad MN, Rahman MM, Asiri AM, Sheikh TA, Aqlan FM. Crystal structure of N′-[(E)-(2-hydroxynaphthalen-1-yl) methylidene] benzenesulfonohydrazide (HNMBSH) and its application as Pb2+ ion sensor by its fabrication onto glassy carbon electrode. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Chen F, Liu Y, Liao R, Gong H, Chen C, Chen X, Cai C. Reduced graphene oxide as a resonance light-scattering probe for thrombin detection using dual-aptamer-based dsDNA. Anal Chim Acta 2017; 985:141-147. [PMID: 28864184 DOI: 10.1016/j.aca.2017.06.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022]
Abstract
This paper describes a reduced graphene oxide (RGO)-based resonance light-scattering (RLS) method for thrombin detection by using double strand DNA (dsDNA) as a binding element. dsDNA is obtained by hybridizing DNA1 and DNA2, which respectively consist of one aptamer of thrombin and the complementary strand of the other aptamer of thrombin. When thrombin is added, the specific binding of two aptamers to thrombin results in a complex (DNA1-thrombin-DNA2) and triggers the release of the complementary strand of two aptamers from dsDNA. The released ssDNA can be self-assembled on the surface of RGO to form a stable DNA1-thrombin-DNA2-RGO complex, which increases RLS signals. This simple and rapid method has enabled the detection of thrombin in the picomolar level in buffer and human serum samples. This study is the first to use RGO as a platform in RLS sensor, which can extend the application of RGO.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yi Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Rong Liao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hang Gong
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Chunyan Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoming Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Changqun Cai
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China.
| |
Collapse
|
17
|
Mehta VN, Rohit JV, Kailasa SK. Functionalization of silver nanoparticles with 5-sulfoanthranilic acid dithiocarbamate for selective colorimetric detection of Mn2+ and Cd2+ ions. NEW J CHEM 2016. [DOI: 10.1039/c5nj03454j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A schematic representation of Mn2+ and Cd2+ ion-induced aggregation of SAA-DTC-Ag NPs.
Collapse
Affiliation(s)
- Vaibhavkumar N. Mehta
- Applied Chemistry Department
- S. V. National Institute of Technology
- Surat-395 007
- India
| | - Jigneshkumar V. Rohit
- Applied Chemistry Department
- S. V. National Institute of Technology
- Surat-395 007
- India
| | - Suresh Kumar Kailasa
- Applied Chemistry Department
- S. V. National Institute of Technology
- Surat-395 007
- India
| |
Collapse
|
18
|
Gupta RK, Dubey M, Li PZ, Xu Q, Pandey DS. Size-Controlled Synthesis of Ag Nanoparticles Functionalized by Heteroleptic Dipyrrinato Complexes Having meso-Pyridyl Substituents and Their Catalytic Applications. Inorg Chem 2015; 54:2500-11. [DOI: 10.1021/ic502848a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rakesh Kumar Gupta
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (U.P.), India
| | - Mrigendra Dubey
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (U.P.), India
| | - Pei Zhou Li
- National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Qiang Xu
- National Institute of Advanced Industrial Science and Technology, 1-8-31, Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Daya Shankar Pandey
- Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221 005 (U.P.), India
| |
Collapse
|
19
|
A highly sensitive resonance light scattering probe for Alzheimer׳s amyloid-β peptide based on Fe3O4@Au composites. Talanta 2015; 131:475-9. [DOI: 10.1016/j.talanta.2014.07.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/17/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023]
|
20
|
Berlina AN, Sharma AK, Zherdev AV, Gaur MS, Dzantiev BB. Colorimetric Determination of Lead Using Gold Nanoparticles. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.961641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Jana J, Ganguly M, Pal T. Intriguing cysteine induced improvement of the emissive property of carbon dots with sensing applications. Phys Chem Chem Phys 2014; 17:2394-403. [PMID: 25489717 DOI: 10.1039/c4cp04982a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A simple fluorometric technique has been adopted for cysteine (Cys) sensing in alkaline medium down to the nM level. The huge fluorescent signal of the solution is a consequence of fluorescent carbon dots (CDs) produced in situ from modified hydrothermal (MHT) reaction between Cys and dopamine (DA). It has been observed that the inherent fluorescence of DA is drastically quenched in alkaline solution. Cys can selectively rescue the fluorescence of DA. Thus, Cys determination in a straightforward way, but only to a micro molar (10(-7) M i.e. 0.1 μM) level is possible through such fluorescence enhancement. Sensitive Cys determination remains associated with the in situ generated CDs, but the external addition of pre-formed CDs to Cys solution fails miserably towards Cys detection. However, CDs prepared from the Cys-DA system in alkaline solution admirably increase the limit of detection (LOD) of Cys at least two orders higher (10(-9) M) than that observed without hydrothermal technique i.e., without CDs. This method finds applications for Cys determination in biological samples and pharmaceutical preparations.
Collapse
Affiliation(s)
- Jayasmita Jana
- Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India.
| | | | | |
Collapse
|
22
|
Ahmadi M, Madrakian T, Afkhami A. Molecularly imprinted polymer coated magnetite nanoparticles as an efficient mefenamic acid resonance light scattering nanosensor. Anal Chim Acta 2014; 852:250-6. [DOI: 10.1016/j.aca.2014.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/30/2022]
|
23
|
Han G, Ferranco A, Feng X, Chen Z, Kraatz H. Synthesis, Characterization of Some Ferrocenoyl Cysteine and Histidine Conjugates, and Their Interactions with Some Metal Ions. Eur J Inorg Chem 2014. [DOI: 10.1002/ejic.201402470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guo‐Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Annaleizle Ferranco
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| | - Xiao‐Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, P. R. China, http://rsc.guet.edu.cn/RSC/public/show.aspx?par2=0014&par=864
| | - Heinz‐Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada, http://www.utsc.utoronto.ca/~bkraatz/
| |
Collapse
|
24
|
Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Nanoparticles and core–shell nanocomposite based new generation water remediation materials and analytical techniques: A review. Microchem J 2014. [DOI: 10.1016/j.microc.2014.04.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
25
|
Selective visual detection of Pb(II) ion via gold nanoparticles coated with a dithiocarbamate-modified 4′-aminobenzo-18-crown-6. Mikrochim Acta 2014. [DOI: 10.1007/s00604-014-1287-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Biosens Bioelectron 2014; 53:71-5. [DOI: 10.1016/j.bios.2013.09.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/28/2022]
|
27
|
|
28
|
Zhai D, Xu W, Zhang L, Chang YT. The role of "disaggregation" in optical probe development. Chem Soc Rev 2014; 43:2402-11. [PMID: 24514005 DOI: 10.1039/c3cs60368g] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
"Aggregation-caused signal change" is a well-established mechanism by now and has been widely used as the basis for optical probe and sensor development. Compared to aggregation, its reverse process, disaggregation, has received much less attention and is not properly discussed in the literature so far. With the less established paradigm or mechanism, although some of the reported sensors and probes seem to work through disaggregation phenomena, the proper interpretation of the results and applying the concept to novel probe development is seriously hampered. The process from aggregation to disaggregation generally causes a recovery or enhancement of fluorescence signals, and thus provides an interesting new path to design "turn-on" probes. This tutorial review will provide the balanced comparison between aggregation and disaggregation mechanism, and focuses on the less explored advantages of "disaggregation" as a novel sensing mechanism and its recent applications in probe development.
Collapse
Affiliation(s)
- Duanting Zhai
- Department of Chemistry and MedChem Program, Life Sciences Institude, National University of Singapore, 3 Science Drive 3, Singapore117543.
| | | | | | | |
Collapse
|
29
|
Mehta VN, Kailasa SK, Wu HF. Sensitive and selective colorimetric sensing of Fe3+ion by using p-amino salicylic acid dithiocarbamate functionalized gold nanoparticles. NEW J CHEM 2014. [DOI: 10.1039/c3nj01468a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DTC-PAS-Au NPs successfully acted as probes for the selective and sensitive colorimetric sensing of Fe3+ions in biological samples.
Collapse
Affiliation(s)
- Vaibhavkumar N. Mehta
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007, India
| | - Suresh Kumar Kailasa
- Department of Applied Chemistry
- S. V. National Institute of Technology
- Surat-395007, India
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- Institute of Medical Science and Technology
- Doctoral Degree Program in Marine Biotechnology
- National Sun Yat-Sen University
- Kaohsiung, Taiwan
| |
Collapse
|
30
|
Bothra S, Solanki JN, Sahoo SK, Callan JF. Anion-driven selective colorimetric detection of Hg2+and Fe3+using functionalized silver nanoparticles. RSC Adv 2014. [DOI: 10.1039/c3ra44945a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
31
|
Mu Q, Li Y, Ma Y, Zhong X. Visual detection of biological thiols based on lightening quantum dot–TiO2 composites. Analyst 2014; 139:996-9. [DOI: 10.1039/c3an01957h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Yao D, Liang A, Yin W, Jiang Z. Resonance light scattering determination of trace bisphenol A with signal amplification by aptamer-nanogold catalysis. LUMINESCENCE 2013; 29:516-21. [PMID: 24123862 DOI: 10.1002/bio.2578] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/12/2013] [Accepted: 08/05/2013] [Indexed: 01/02/2023]
Abstract
HAuCl4 was reduced by sodium citrate to prepare 10 nm gold nanoparticles (AuNPs) that were modified by the bisphenol A aptamer (Apt) to obtain an aptamer-nanogold probe (Apt-AuNP) for bisphenol A (BPA). The probes were aggregated nonspecifically to form large clusters, which showed a strong resonance light scattering (RLS) peak at 520 nm, under preparation conditions (pH 7.6 Na2HPO4-NaH2PO4 buffer and ultrasonication). Upon addition of BPA, the probe reacted specifically to form dispersed BPA-Apt-AuNP conjugates that exhibited strong catalysis of the two particle reactions of glucose-Cu(II) and hydrazine hydrochloride-Cu(II) with a strong RLS peak at 360 nm and 510 nm respectively. When the BPA concentration increased, the RLS intensity at 360 nm and 510 nm increased respectively. Accordingly, two new and highly-sensitive RLS methods were established for the detection of BPA, using the Apt-AuNP catalytic amplification.
Collapse
Affiliation(s)
- Dongmei Yao
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | | | | | | |
Collapse
|