1
|
Long Y, Liu J, Ju Z, Qi F, Tang W, Yan S, Dai F, Zhang S, Zhou B. Two-Photon Cellular and Intravital Imaging of Hypochlorous Acid by Fluorescent Probes That Exhibit a Synergistic Excited-State Intramolecular Proton Transfer-Intramolecular Charge Transfer Mechanism Enabling Near-Infrared Emission with a Large Stokes Shift. Anal Chem 2024; 96:18104-18112. [PMID: 39485156 DOI: 10.1021/acs.analchem.4c04075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
To develop highly effective molecular tools for intravital imaging of hypochlorous acid (HOCl), in this study, we initially designed two-photon hybrid fluorophores, SDP and P-SDP, by conjugating the classical dye 2-(2'-hydroxyphenyl)benzothiazole with the two-photon hydroxylphenyl-butadienylpyridinium fluorophore. The designed fluorophores exhibit a synergistic interaction between excited-state intramolecular proton transfer and intramolecular charge transfer mechanisms, enabling near-infrared (NIR) emission and significant Stokes shifts. Subsequently, using these fluorophores, we developed two HOCl fluorescent probes, SDP-SN and P-SDP-SN, by further incorporating N,N-dimethylthiocarbamate as a specific recognition group for HOCl. Toward HOCl, both SDP-SN and P-SDP-SN demonstrate an ultrafast response (less than 3 s), NIR emission at wavelengths of 714 and 682 nm, and remarkable Stokes shifts of 303 and 271 nm, respectively. Leveraging these advantages in conjunction with their ability to cross the blood-brain barrier, the probes find successful application in two-photon cellular and intravital imaging of HOCl. This includes visualizing endogenous generation of HOCl in cellular models related to inflammation, hyperglycemia, and ferroptosis, as well as mapping in vivo generation of HOCl within the brain and abdominal cavity using a murine model of systemic inflammation.
Collapse
Affiliation(s)
- Ying Long
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- School of Nationality Educators, Qinghai Normal University, Xining, Qinghai 810016, China
| | - Junru Liu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
- College of Medicine, Jiaxing University, Jiaxing, Zhejiang 314001, China
| | - Zhenghua Ju
- Center of Analysis and Testing of Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fujian Qi
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Wei Tang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shuai Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Fang Dai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| | - Bo Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China
| |
Collapse
|
2
|
Maiti A, Manna SK, Halder S, Ganguly R, Karak A, Ghosh P, Jana K, Mahapatra AK. Near-Infrared Fluorescent Turn-On Probe for Selective Detection of Hypochlorite in Aqueous Medium and Live Cell Imaging. Chem Res Toxicol 2024; 37:1682-1690. [PMID: 39287930 DOI: 10.1021/acs.chemrestox.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Hypochlorite, as an important reactive oxygen species (ROS), plays a vital role in many physiological and pathological processes, but an excess concentration of hypochlorite (ClO-) may become toxic to humans and cause disease. Hence, the selective and rapid detection of hypochlorite (ClO-) is necessary for human safety. Here, we report a novel near-infrared (NIR) fluorescence "turn-on" and highly selective benzophenoxazinium chloride-based fluorescent probe, BPH (benzophenoxazinium dihydroxy benzaldehyde), for hypochlorite detection. Due to hypochlorite-induced vicinal diol oxidation to the corresponding ortho benzoquinone derivative, the photoinduced electron transfer (PET) process, which was operating from vicinal diol to the benzophenoxazinium chloride receptor moiety, was suddenly inhibited, as a result of which strong NIR fluorescence "turn-on" emission was observed. The detection limit of BPH was found to be 2.39 × 10-10 M, or 0.23 nM. BPH was successfully applied for exogenous and endogenous hypochlorite detection in live MDA-MB 231 cells.
Collapse
Affiliation(s)
- Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Haldia, Purba Medinipur, Debhog, West Bengal 721657, India
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Rajdeep Ganguly
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur 711103, India
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Pintu Ghosh
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, West Bengal 711103, India
| |
Collapse
|
3
|
A water-soluble two-photon fluorescent probe for rapid and reversible monitoring of redox state. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
4
|
Chen H, Luo J, Chen S, Qi Y, Zhou T, Tian X, Ding F. Sensing Hypochlorite or pH variations in live cells and zebrafish with a novel dual-functional ratiometric and colorimetric chemosensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 271:120915. [PMID: 35121472 DOI: 10.1016/j.saa.2022.120915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/23/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Both HClO and pH are essential players in multiple biological processes, which thus need to be controlled properly. Dysregulated HClO or pH correlates with many diseases. To meet these challenges, we need to develop highly competent probes for monitoring them. Over the years, despite a rich history of the development of HClO or pH probes, those that can do both jobs are still deficient. Herein, we present a novel dual-functional chemosensor, CMHN, which exhibits a blue and red shift of its fluorescence emission upon reacting with HClO or OH-, respectively. CMHN was successfully harnessed in the imaging detection of HClO or OH- in aqueous solutions, live cells, and zebrafish. Results indicated CMHN can detect HClO with high sensitivity (LOD -132 nM), a quick response time (<70 s), and high selectivity over dozens of interfering species through a colorimetric and ratiometric response. Besides, CMHN can probe pH changes sensitively and reversibly. Its working mechanism was verified by DFT calculations. These superior features make CMHN excel among the HClO or pH probes reported so far. Taken together, CMHN replenishes the deficiency in currently developed HClO or pH probes and paves the way for developing multifunctional HClO or pH probes in the future.
Collapse
Affiliation(s)
- Hong Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Jiamin Luo
- The Sixth Affiliated Hospital, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Shijin Chen
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Tong Zhou
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang, Henan 471934, China
| | - Xiumei Tian
- The Sixth Affiliated Hospital, and School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| | - Feng Ding
- Department of Microbiology & Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
5
|
Huang T, Yan S, Yu Y, Xue Y, Yu Y, Han C. Dual-Responsive Ratiometric Fluorescent Probe for Hypochlorite and Peroxynitrite Detection and Imaging In Vitro and In Vivo. Anal Chem 2022; 94:1415-1424. [DOI: 10.1021/acs.analchem.1c04729] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tonghui Huang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Shirong Yan
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yongbo Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yunsheng Xue
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Yanyan Yu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, PR China
| | - Cuiping Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
6
|
Examinations directed to characterization within the framework of spectroscopic and DFT approach on the structural isomer of the pyridine substituted thiazole. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
7
|
Hearn KN, Ashton TD, Acharya R, Feng Z, Gueven N, Pfeffer FM. Direct Amidation to Access 3-Amido-1,8-Naphthalimides Including Fluorescent Scriptaid Analogues as HDAC Inhibitors. Cells 2021; 10:1505. [PMID: 34203745 PMCID: PMC8232238 DOI: 10.3390/cells10061505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/07/2023] Open
Abstract
Methodology to access fluorescent 3-amido-1,8-naphthalimides using direct Buchwald-Hartwig amidation is described. The protocol was successfully used to couple a number of substrates (including an alkylamide, an arylamide, a lactam and a carbamate) to 3-bromo-1,8-naphthalimide in good yield. To further exemplify the approach, a set of scriptaid analogues with amide substituents at the 3-position were prepared. The new compounds were more potent than scriptaid at a number of histone deacetylase (HDAC) isoforms including HDAC6. Activity was further confirmed in a whole cell tubulin deacetylation assay where the inhibitors were more active than the established HDAC6 selective inhibitor Tubastatin. The optical properties of these new, highly active, compounds make them amenable to cellular imaging studies and theranostic applications.
Collapse
Affiliation(s)
- Kyle N. Hearn
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- STEM College, RMIT University, Melbourne, VIC 3000, Australia;
| | - Trent D. Ashton
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia;
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rameshwor Acharya
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Zikai Feng
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, College of Health and Medicine, University of Tasmania, Hobart, TAS 7001, Australia; (R.A.); (Z.F.); (N.G.)
| | - Frederick M. Pfeffer
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC 3216, Australia
| |
Collapse
|
8
|
Photophysical properties of a coumarin amide derivative and its sensing for hypochlorite. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
9
|
He M, Sun H, Wei J, Zhang R, Han X, Ni Z. A highly sensitive, fast responsive and reversible naphthalimide-based fluorescent probe for hypochlorous acid and ascorbic acid in aqueous solution and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119138. [PMID: 33188969 DOI: 10.1016/j.saa.2020.119138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 06/11/2023]
Abstract
It is very important to exploit real-time, ultrasensitive and specific visualization detection methods for hypochlorous acid/hypochlorite (HOCl/ClO-) in biological systems as they are the guardians of the human immune system against pathogens invasion. In our work, we designed a novel reversible naphthalimide-based fluorescent probe NAP-OH to recognize HClO/ClO- with a unique selective colorimetric and fluorescent response, a short response time (<8 s) and a high sensitivity (10.3 nM). In addition, NAP-OH exhibits a novel on-off-on fluorescence response to ClO-/ascorbic acid (AA) with good cycle stability. The fluorescence signal is quenched because HClO/ClO- oxidizes the subunit of NAP-OH to the segment 2,2,6,6-tetramethyl-1-oxo-piperidinium in NAP-O, which can be reduced by AA with the recovery of fluorescence. Finally, the confocal fluorescence imaging has been performed, which proves that NAP-OH can satisfactorily monitor intracellular endogenous and exogenous HClO/AA redox cycles.
Collapse
Affiliation(s)
- Menglu He
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Hao Sun
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Jianhua Wei
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Ran Zhang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| | - Xiang'en Han
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China
| | - Zhonghai Ni
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, People's Republic of China.
| |
Collapse
|
10
|
CeO 2 Nanomaterials from Diesel Engine Exhaust Induce DNA Damage and Oxidative Stress in Human and Rat Sperm In Vitro. NANOMATERIALS 2020; 10:nano10122327. [PMID: 33255415 PMCID: PMC7760532 DOI: 10.3390/nano10122327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 01/18/2023]
Abstract
Cerium dioxide nanomaterials (CeO2 NMs) are widely used in nano-based diesel additives to decrease the emission of toxic compounds, but they have been shown to increase the emission of ultrafine particles as well as the amount of released Ce. The Organization for Economic Cooperation and Development included CeO2 NMs in the priority list of nanomaterials that require urgent evaluation, and the potential hazard of aged CeO2 NM exposure remains unexplored. Herein, human and rat sperm cells were exposed in vitro to a CeO2 NM-based diesel additive (called EnviroxTM), burned at 850 °C to mimic its release after combustion in a diesel engine. We demonstrated significant DNA damage after in vitro exposure to the lowest tested concentration (1 µg·L−1) using the alkaline comet assay (ACA). We also showed a significant increase in oxidative stress in human sperm after in vitro exposure to 1 µg·L−1 aged CeO2 NMs evaluated by the H2DCF-DA probe. Electron microscopy showed no internalization of aged CeO2 NMs in human sperm but an affinity for the head plasma membrane. The results obtained in this study provide some insight on the complex cellular mechanisms by which aged CeO2 NMs could exert in vitro biological effects on human spermatozoa and generate ROS.
Collapse
|
11
|
Shi Y, Huo F, Zhang Y, Yin C. The reduction performance of double bonds regulated by the competition of push-pull electron groups to realize the colorimetric and fluorescence recognition of hypochlorous acid. Analyst 2020; 145:7297-7302. [PMID: 33164000 DOI: 10.1039/d0an01551b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on its reducibility, the double bond can act as a reaction site for hypochlorous acid (HOCl), which had been demonstrated by a great deal of work. Nevertheless, the reactivity is influenced by the adjacent chemical environment. Therefore, in this work, we constructed a probe (QI) by methoxy-substituted quinoline conjugating dicyanoisoflurone, in which dicyano and pyridine N act as electron-withdrawing groups and the methoxy acts as an electron-donating group, to regulate their adjacent C[double bond, length as m-dash]C reactivity. The "push-pull" electron effect between the methoxy group and the pyridine N led to the C[double bond, length as m-dash]C bond being passivated. On the other hand, another C[double bond, length as m-dash]C bond was activated by the strong electron-pulling effect of the dicyano group. Thus, the previously weak intramolecular charge transfer became stronger after the dicyano adjacent to the C[double bond, length as m-dash]C was oxidized by HOCl, and showed a strong emission shifted from 570 to 520 nm along with a color change. The reaction mechanism was verified by mass spectrometry, NMR and theoretical calculation, and further bioimaging demonstrated the practical application of the probe.
Collapse
Affiliation(s)
- Yan Shi
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | | | | | | |
Collapse
|
12
|
Wu M, Wu W, Duan Y, Liu X, Wang M, Phan CU, Qi G, Tang G, Liu B. HClO-Activated Fluorescence and Photosensitization from an AIE Nanoprobe for Image-Guided Bacterial Ablation in Phagocytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2005222. [PMID: 33079417 DOI: 10.1002/adma.202005222] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/06/2020] [Indexed: 06/11/2023]
Abstract
Bacteria hiding in host phagocytes are difficult to kill, which can cause phagocyte disorders resulting in local and systemic tissue damage. Effective accumulation of activatable photosensitizers (PSs) in phagocytes to realize selective imaging and on-demand photodynamic ablation of bacteria is of great scientific and practical interests for precise bacteria diagnosis and treatment. Herein, HClO-activatable theranostic nanoprobes, DTF-FFP NPs, for image-guided bacterial ablation in phagocytes are introduced. DTF-FFP NPs are prepared by nanoprecipitation of an HClO-responsive near-infrared molecule FFP and an efficient PS DTF with aggregation-induced emission characteristic using an amphiphilic polymer Pluronic F127 as the encapsulation matrix. As an energy acceptor, FFP can quench both fluorescence and production of reactive oxygen species (ROS) of DTF, thus eliminating the phototoxicity of DTF-FFP NPs in normal cells and tissues. Once delivered to the infection sites, DTF-FFP NPs light up with red fluorescence and efficiently generate ROS owing to the degradation of FFP by the stimulated release of HClO in phagocytes. The selective activation of fluorescence and photosensitization is successfully confirmed by both in vitro and in vivo results, demonstrating the effectiveness and theranostic potential of DTF-FFP NPs in precise bacterial therapy.
Collapse
Affiliation(s)
- Min Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wenbo Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yukun Duan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Xingang Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Meng Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Chi Uyen Phan
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Guping Tang
- Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| |
Collapse
|
13
|
Huang L, Chen Y, Zhao Y, Wang Y, Xiong J, Zhang J, Wu X, Zhou Y. A ratiometric near-infrared naphthalimide-based fluorescent probe with high sensitivity for detecting Fe2+ in vivo. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
14
|
Activatable red emitting fluorescent probe for rapid and sensitive detection of intracellular peroxynitrite. Talanta 2020; 217:121053. [DOI: 10.1016/j.talanta.2020.121053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022]
|
15
|
Dong S, Zhang L, Lin Y, Ding C, Lu C. Luminescent probes for hypochlorous acid in vitro and in vivo. Analyst 2020; 145:5068-5089. [PMID: 32608421 DOI: 10.1039/d0an00645a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
HClO/ClO- is the most effective antibacterial active oxygen in neutrophils. However, its excessive existence often leads to the destruction of human physiological mechanisms. In recent years, the developed luminescent probes for the detection of HClO/ClO- are not only conducive to improve the sensitivity and selectivity of HClO/ClO- detection, but also play a crucial role in understanding the biological functions of HClO/ClO-. In addition, luminescent probe-based biological imaging for HClO/ClO- at sub-cellular resolution has become a powerful tool for biopathology and medical diagnostic research. This article reviews a variety of luminescent probes for the detection of HClO/ClO-in vitro and in vivo with different design principles and mechanisms, including fluorescence, phosphorescence, and chemiluminescence. The photophysical/chemical properties and biological applications of these luminescent probes were outlined. Finally, we summarized the merits and demerits of the developed luminescent probes and discussed their challenges and future development trends. It is hoped that this review can provide some inspiration for the development of luminescent probe-based strategies and to promote the further research of biomedical luminescent probes for HClO/ClO-.
Collapse
Affiliation(s)
- Shaoqing Dong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | | | | | | | | |
Collapse
|
16
|
Yang J, Yao Y, Shen Y, Xu Y, Lv G, Li C. A Novel Phenoxazine-based Fluorescent Probe for the Detection of HOCl in Living Cells. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiajia Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Yusi Yao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Yang Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Yunze Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Guanglei Lv
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| | - Chunxia Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials; Zhejiang Normal University; Jinhua Zhejiang 321004 P. R. China
| |
Collapse
|
17
|
A highly selective and ultrafast near-infrared fluorescent turn-on and colorimetric probe for hypochlorite in living cells. Anal Chim Acta 2019; 1078:135-141. [DOI: 10.1016/j.aca.2019.06.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 11/22/2022]
|
18
|
Yudhistira T, Mulay SV, Kim Y, Halle MB, Churchill DG. Imaging of Hypochlorous Acid by Fluorescence and Applications in Biological Systems. Chem Asian J 2019; 14:3048-3084. [PMID: 31347256 DOI: 10.1002/asia.201900672] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Indexed: 01/06/2023]
Abstract
In recent decades, HOCl research has attracted a lot of scientists from around the world. This chemical species is well known as an important player in the biological systems of eukaryotic organisms including humans. In the human body, HOCl is produced by the myeloperoxidase enzyme from superoxide in very low concentrations (20 to 400 μm); this species is secreted by neutrophils and monocytes to help fight pathogens. However, in the condition called "oxidative stress", HOCl has the capability to attack many important biomolecules such as amino acids, proteins, nucleotides, nucleic acids, carbohydrates, and lipids; these reactions could ultimately contribute to a number of diseases such as neurodegenerative diseases (AD, PD, and ALS), cardiovascular diseases, and diabetes. In this review, we discuss recent efforts by scientists to synthesize various fluorophores which are attached to receptors to detect HOCl such as: chalcogen-based oxidation, oxidation of 4-methoxyphenol, oxime/imine, lactone ring opening, and hydrazine. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively target HOCl and to study the level of HOCl selectivity through emission responses. Virtually all the reports here deal with well-defined and small synthetic molecular systems. A large number of published compounds have been reported over the past years; this growing field has given scientists new insights regarding the design of the chemosensors. Reversibility, for example is considered important from the stand point of chemosensor reuse within the biological system; facile regenerability using secondary analytes to obtain the initial probe is a very promising avenue. Another aspect which is also important is the energy of the emission wavelength of the sensor; near-infrared (NIR) emission is favorable to prevent autofluorescence and harmful irradiation of tissue; thus, extended applicability of such sensors can be made to the mouse model or animal model to help image internal organs. In this review, we describe several well-known types of receptors that are covalently attached to the fluorophore to detect HOCl. We also discuss the common fluorophores which are used by chemist to detect HOCl, Apart from the chemical aspects, we also discuss the capabilities of the compounds to detect HOCl in living cells as measured through confocal imaging. The growing insight from HOCl probing suggests that there is still much room for improvement regarding the available molecular designs, knowledge of interplay between analytes, biological applicability, biological targeting, and chemical switching, which can also serve to further sensor and theurapeutic agent development alike.
Collapse
Affiliation(s)
- Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sandip V Mulay
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon, 305 600, Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Semiconductor Material Division, LG Chemistry, 104-1, Munji-dong, Daejeon, Republic of Korea
| | - Mahesh B Halle
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,KI for Health Science and Technology, KI Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
19
|
Liu C, Li Z, Yu C, Chen Y, Liu D, Zhuang Z, Jia P, Zhu H, Zhang X, Yu Y, Zhu B, Sheng W. Development of a Concise Rhodamine-Formylhydrazine Type Fluorescent Probe for Highly Specific and Ultrasensitive Tracing of Basal HOCl in Live Cells and Zebrafish. ACS Sens 2019; 4:2156-2163. [PMID: 31293155 DOI: 10.1021/acssensors.9b01001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hypochlorous acid (HOCl) has received special attention by virtue of its pivotal antimicrobial nature, and the appropriate amount of HOCl is beneficial to innate immunity of host to cope with microbial invasion. However, the uncontrollable accumulation of HOCl is implicated in many human diseases and even cancers. Thus, to determine its deeper biological functions, it is significantly important to specifically monitor intracellular HOCl in biosystems. Herein, we rationally designed a simple fluorescent probe FH-HA on the basis of the formylhydrazine recognition receptor and rhodamine B fluorophore. It is worth noting that the formylhydrazine moiety for the first time is adopted as the recognition receptor for specifically recognizing HOCl. Additionally, probe FH-HA also exhibited excellent performance in many areas including satisfactory water-solubility, high specificity, and excellent sensitivity. Notably, probe FH-HA could quickly respond to HOCl (within 3 s), which facilitates the tracing of transient HOCl. More importantly, probe FH-HA was capable of specifically tracing the fluctuations of endogenous HOCl in living cells and zebrafish, and it could monitor basal HOCl in cancer cells to distinguish cancer cells from normal ones.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Zilu Li
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Chen Yu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Yanan Chen
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Dongmei Liu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Zihan Zhuang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Pan Jia
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Xue Zhang
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Yamin Yu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Shandong Provincial Engineering
Technology Research Center for Ecological Carbon Sink and Capture
Utilization, Jinan 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| |
Collapse
|
20
|
A ratiometric fluorescence probe based on a novel recognition mechanism for monitoring endogenous hypochlorite in living cells. Anal Chim Acta 2019; 1064:87-93. [DOI: 10.1016/j.aca.2019.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/01/2019] [Accepted: 03/05/2019] [Indexed: 11/22/2022]
|
21
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
22
|
Jia P, Zhuang Z, Liu C, Wang Z, Duan Q, Li Z, Zhu H, Du B, Zhu B, Sheng W, Kang B. A highly specific and ultrasensitive p-aminophenylether-based fluorescent probe for imaging native HOCl in live cells and zebrafish. Anal Chim Acta 2019; 1052:131-136. [DOI: 10.1016/j.aca.2018.11.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022]
|
23
|
A dual-channel probe with green and near-infrared fluorescence changes for in vitro and in vivo detection of peroxynitrite. Anal Chim Acta 2019; 1054:137-144. [DOI: 10.1016/j.aca.2018.12.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/03/2018] [Accepted: 12/10/2018] [Indexed: 12/21/2022]
|
24
|
Tang C, Gao Y, Liu T, Lin Y, Zhang X, Zhang C, Li X, Zhang T, Du L, Li M. Bioluminescent probe for detecting endogenous hypochlorite in living mice. Org Biomol Chem 2019; 16:645-651. [PMID: 29303203 DOI: 10.1039/c7ob02842c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a kind of biologically important reactive oxygen species (ROS), hypochlorite (ClO-) plays a crucial role in many physiological processes. As such, endogenous ClO- is a powerful antibacterial agent during pathogen invasion. Nonetheless, excessive endogenous ClO- could pose a health threat to mammalian animals including humans. However, the detection of endogenous ClO- by bioluminescence probes in vivo remains a considerable challenge. Herein, based on a caged strategy, we developed a turn-on bioluminescent probe 1 for the highly selective detection of ClO-in vitro and imaging endogenous ClO- in a mouse inflammation model. We anticipate that such a probe could help us understand the role of endogenous ClO- in a variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Chunchao Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Duan Q, Jia P, Zhuang Z, Liu C, Zhang X, Wang Z, Sheng W, Li Z, Zhu H, Zhu B, Zhang X. Rational Design of a Hepatoma-Specific Fluorescent Probe for HOCl and Its Bioimaging Applications in Living HepG2 Cells. Anal Chem 2019; 91:2163-2168. [PMID: 30592205 DOI: 10.1021/acs.analchem.8b04726] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver cancer is a kind of high mortality cancer due to the difficulty of early diagnosis. And according to the reports, the concentration of reactive oxygen species (ROS) was higher in cancer cells than normal cells. Therefore, developing an effective fluorescent probe for hepatoma-selective imaging of hypochlorous acid (HOCl) which is one of the vital ROS is of great importance for understanding the role of HOCl in liver cancer pathogenesis. However, the cell-selective fluorescent probe still remains a difficult task among current reports. Herein, a galactose-appended naphthalimide (Gal-NPA) with p-aminophenylether as a new receptor and galactose moiety as hepatoma targeting unit was synthesized and employed to detect endogenous HOCl in living HepG2 cells. This probe was proved to possess good water solubility and could respond specifically to HOCl. In addition, probe Gal-NPA could completely react to HOCl within 3 s meanwhile accompanied by tremendous fluorescence enhancement. The quantitative linear range between fluorescence intensities and the HOCl concentrations was 0 to 1 μM (detection limit = 0.46 nM). More importantly, fluorescence confocal imaging experiments showed that probe Gal-NPA could discriminate hepatoma cells over other cancer cells and simultaneously trace endogenous HOCl levels in living HepG2 cells. And we thus anticipate that probe Gal-NPA has the potential application for revealing the functions of HOCl in hepatoma cells.
Collapse
Affiliation(s)
- Qingxia Duan
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Pan Jia
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Zihan Zhuang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Caiyun Liu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Xue Zhang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Zuokai Wang
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Wenlong Sheng
- Biology Institute , Qilu University of Technology (Shandong Academy of Sciences) , Jinan , 250103 , China
| | - Zilu Li
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Hanchuang Zhu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Baocun Zhu
- School of Resources and Environment, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization , University of Jinan , Jinan 250022 , China
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of the Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry , Beijing Institute of Technology , Beijing 100081 , China
| |
Collapse
|
26
|
Li H, Ma H. New progress in spectroscopic probes for reactive oxygen species. JOURNAL OF ANALYSIS AND TESTING 2018. [DOI: 10.1007/s41664-018-0049-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
27
|
Zhang R, Song B, Yuan J. Bioanalytical methods for hypochlorous acid detection: Recent advances and challenges. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.11.015] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Zhang LJ, Ning JY, Miao JY, Liu JT, Zhao BX. A new ratiometric fluorescent probe for detecting endogenous HClO in living cells. NEW J CHEM 2018. [DOI: 10.1039/c7nj03907g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new benzimidazole-hemicyanine-based ratiometric fluorescent probe (ZBM-H) was developed, which showed high selectivity and sensitivity for detecting HClO.
Collapse
Affiliation(s)
- Li-Jie Zhang
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Jun-Ya Ning
- Institute of Developmental Biology
- School of Life Science, Shandong University
- Jinan 250100
- P. R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science, Shandong University
- Jinan 250100
- P. R. China
| | - Jin-Ting Liu
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
29
|
Zhang Z, Pei K, Yang Q, Dong J, Yan Z, Chen J. A nanosensor made of sulfur–nitrogen co-doped carbon dots for “off–on” sensing of hypochlorous acid and Zn(ii) and its bioimaging properties. NEW J CHEM 2018. [DOI: 10.1039/c8nj03159b] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this study, we present a facile one-step solvothermal strategy for the fabrication of sulfur–nitrogen co-doped carbon dots (SNCDs) using p-phenylenediamine and cysteamine hydrochloride as the precursors.
Collapse
Affiliation(s)
- Zhengwei Zhang
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ke Pei
- Institute of Pharmaceutical and Food Engineering
- Shanxi University of Chinese Medicine
- Jinzhong 030619
- China
| | - Qiulian Yang
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jiayu Dong
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhengyu Yan
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jianqiu Chen
- School of Science
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
30
|
Lv X, Yuan X, Wang Y, Guo W. A naphthalimide based fast and selective fluorescent probe for hypochlorous acid/hypochlorite and its application for bioimaging. NEW J CHEM 2018. [DOI: 10.1039/c8nj03208d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reversible and mitochondria targetable fluorescent probe (Nap-Se) bearing 1,8-naphthalimide and a selenomorpholine fragment was designed and synthesized.
Collapse
Affiliation(s)
- Xin Lv
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Xia Yuan
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Yue Wang
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| | - Wei Guo
- School of Chemistry and Chemical Engineering
- Shanxi University
- Taiyuan 030006
- P. R. China
| |
Collapse
|
31
|
Wu D, Ryu JC, Chung YW, Lee D, Ryu JH, Yoon JH, Yoon J. A Far-Red-Emitting Fluorescence Probe for Sensitive and Selective Detection of Peroxynitrite in Live Cells and Tissues. Anal Chem 2017; 89:10924-10931. [DOI: 10.1021/acs.analchem.7b02707] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Di Wu
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | - Dayoung Lee
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| | | | | | - Juyoung Yoon
- Department
of Chemistry and Nano Science, Ewha Womans University, Seoul, 120-750, Korea
| |
Collapse
|
32
|
Zhang B, Yang X, Zhang R, Liu Y, Ren X, Xian M, Ye Y, Zhao Y. Lysosomal-Targeted Two-Photon Fluorescent Probe to Sense Hypochlorous Acid in Live Cells. Anal Chem 2017; 89:10384-10390. [PMID: 28868883 DOI: 10.1021/acs.analchem.7b02361] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A two-photon reversible fluorescent probe L1 was designed and synthesized. The fluorescence intensity of the probe solution was strong, while the fluorescence of the solution was obviously quenched and the color of the solution was changed after the addition of hypochlorous acid, indicating this is "naked-eye sensor" for the detection of HClO. The probe showed great selectivity for hypochlorous acid over other reactive oxygen species (ROS) and anions. Fluorescence titration experiments showed that the probe has a low detection limit of 0.674 μM. Because of a morpholine group introduced to the naphathalimide framework, probe L1 was successfully applied to detect intracellular HClO in lysosome.
Collapse
Affiliation(s)
- Beibei Zhang
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Xiaopeng Yang
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Rui Zhang
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450001, Henan China
| | - Yao Liu
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China
| | - Xueling Ren
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, School of Pharmaceutical Sciences, Zhengzhou University , Zhengzhou 450001, Henan China
| | - Ming Xian
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | - Yong Ye
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China.,The Key Laboratory for Chemical Biology of Fujian Province (Xiamen University) , Xiamen 361005, Fujian China
| | - Yufen Zhao
- Phosphorus Chemical Engineering Research Center of Henan Province, The College of Chemistry and Molecular Engineering, Zhengzhou University , Zhengzhou 450001, China.,The Key Laboratory for Chemical Biology of Fujian Province (Xiamen University) , Xiamen 361005, Fujian China
| |
Collapse
|
33
|
Zhang Q, Wang Q, Sun Y, Zuo L, Fetz V, Hu HY. Superior Fluorogen-Activating Protein Probes Based on 3-Indole–Malachite Green. Org Lett 2017; 19:4496-4499. [DOI: 10.1021/acs.orglett.7b02055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | | | | | - Limin Zuo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Verena Fetz
- Department
of Chemical Biology, Helmholtz-Zentrum für Infektionsforschung (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | |
Collapse
|
34
|
Lin QS, Huang YL, Fan XX, Zheng XL, Chen XL, Zhan XQ, Zheng H. A ratiometric fluorescent probe for hypochlorous acid determination: Excitation and the dual-emission wavelengths at NIR region. Talanta 2017; 170:496-501. [DOI: 10.1016/j.talanta.2017.04.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/30/2017] [Accepted: 04/09/2017] [Indexed: 10/19/2022]
|
35
|
Affiliation(s)
- Jun Jacob Hu
- Morningside Laboratory for Chemical Biology and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
36
|
Qiao L, Nie H, Wu Y, Xin F, Gao C, Jing J, Zhang X. An ultrafast responsive BODIPY-based fluorescent probe for the detection of endogenous hypochlorite in live cells. J Mater Chem B 2017; 5:525-530. [DOI: 10.1039/c6tb02774a] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ultrafast responsive BODIPY-based fluorescent probe was synthesized to selectively detect endogenous hypochlorite in live cells.
Collapse
Affiliation(s)
- Liang Qiao
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Hailiang Nie
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Yulong Wu
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Fangyun Xin
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Congcong Gao
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Jing Jing
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| | - Xiaoling Zhang
- Key Laboratory of Cluster Science of Ministry of Education
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials
- Analytical and Testing Center
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
| |
Collapse
|
37
|
A unique iridium(III) complex-based chemosensor for multi-signal detection and multi-channel imaging of hypochlorous acid in liver injury. Biosens Bioelectron 2017; 87:1005-1011. [DOI: 10.1016/j.bios.2016.09.067] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/09/2016] [Accepted: 09/19/2016] [Indexed: 11/19/2022]
|
38
|
Kwon N, Cho MK, Park SJ, Kim D, Nam SJ, Cui L, Kim HM, Yoon J. An efficient two-photon fluorescent probe for human NAD(P)H:quinone oxidoreductase (hNQO1) detection and imaging in tumor cells. Chem Commun (Camb) 2017; 53:525-528. [DOI: 10.1039/c6cc08971b] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The probe TPQ, which displays high selectivity and anti-interference ability, was successfully applied to endogenous hNQO1 imaging and for the identification of different cancer cells.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Myoung Ki Cho
- Department of Energy Systems Research
- Ajou University
- Suwon 443-749
- Korea
| | - Sang Jun Park
- Department of Energy Systems Research
- Ajou University
- Suwon 443-749
- Korea
| | - Dayoung Kim
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| | - Lei Cui
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
- College of Science
| | - Hwan Myung Kim
- Department of Energy Systems Research
- Ajou University
- Suwon 443-749
- Korea
| | - Juyoung Yoon
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 120-750
- Korea
| |
Collapse
|
39
|
Chen H, Tang Y, Shang H, Kong X, Guo R, Lin W. Development of a unique family of two-photon full-color-tunable fluorescent materials for imaging in live subcellular organelles, cells, and tissues. J Mater Chem B 2017; 5:2436-2444. [DOI: 10.1039/c7tb00174f] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We outline the rational design, synthesis, optical property studies, and biological imaging studies of a unique family of two-photon full-color-tunable functional fluorescent materials.
Collapse
Affiliation(s)
- Hua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- Hunan 410082
| | - Yonghe Tang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Huiming Shang
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Xiuqi Kong
- Institute of Fluorescent Probes for Biological Imaging
- School of Materials Science and Engineering
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
| | - Rui Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- Hunan 410082
| | - Weiying Lin
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha
- Hunan 410082
| |
Collapse
|
40
|
Abd-El-Aziz AS, Agatemor C, Etkin N, Wagner B. Photoinduced Synthesis of Dual-Emissive Tetraphenylethene-Based Dendrimers with Tunable Aggregates and Solution States Emissions. Macromol Rapid Commun 2016; 37:1235-41. [DOI: 10.1002/marc.201600207] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/01/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Alaa S. Abd-El-Aziz
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue; Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Christian Agatemor
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue; Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Nola Etkin
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue; Charlottetown Prince Edward Island C1A 4P3 Canada
| | - Brian Wagner
- Department of Chemistry; University of Prince Edward Island; 550 University Avenue; Charlottetown Prince Edward Island C1A 4P3 Canada
| |
Collapse
|
41
|
Yue Y, Huo F, Yin C, Escobedo JO, Strongin RM. Recent progress in chromogenic and fluorogenic chemosensors for hypochlorous acid. Analyst 2016; 141:1859-73. [PMID: 26883493 PMCID: PMC4789306 DOI: 10.1039/c6an00158k] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Due to the biological and industrial importance of hypochlorous acid, the development of optical probes for HOCl has been an active research area. Hypochlorous acid and hypochlorite can oxidize electron-rich analytes with accompanying changes in molecular sensor spectroscopic profiles. Probes for such processes may monitor HOCl levels in the environment or in an organism and via bio-labeling or bioimaging techniques. This review summarizes recent developments in the area of chromogenic and fluorogenic chemosensors for HOCl.
Collapse
Affiliation(s)
- Yongkang Yue
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan 030006, China
| | - Caixia Yin
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China.
| | - Jorge O Escobedo
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| | - Robert M Strongin
- Department of Chemistry, Portland State University, Portland, OR 97201, USA.
| |
Collapse
|
42
|
Wang X, Zhou L, Qiang F, Wang F, Wang R, Zhao C. Development of a BODIPY-based ratiometric fluorescent probe for hypochlorous acid and its application in living cells. Anal Chim Acta 2016; 911:114-120. [PMID: 26893093 DOI: 10.1016/j.aca.2016.01.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/06/2016] [Accepted: 01/11/2016] [Indexed: 11/27/2022]
Abstract
A BODIPY-based ratiometric fluorescent probe for HOCl has been designed based on the transduction of thioether to sulfoxide function. This probe features a marked absorption and emission blue-shift upon the HOCl-promoted rapid transduction, enabling the highly selective and ratiometric detection. In addition, the probe works excellently within a wide pH range of 4-10, addressing the existing pH dependency issue. Living cells studies demonstrate that the probe is cell membrane permeable and can be employed successfully to image endogenous HOCl generation in macrophage cells.
Collapse
Affiliation(s)
- Xuzhe Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, PR China
| | - Li Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, PR China
| | - Fei Qiang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, PR China
| | - Feiyi Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, PR China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science & Technology, Shanghai 200237, PR China.
| | - Chunchang Zhao
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science & Technology, Shanghai 200237, PR China.
| |
Collapse
|
43
|
Zhang L, Lei K, Zhang J, Song W, Zheng Y, Tan S, Gao Y, Xu Y, Liu J, Qian X. One small molecule as a theranostic agent: naphthalimide dye for subcellular fluorescence localization and photodynamic therapy in vivo. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00104a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A small single-molecule theranostic agent based on naphthalimide was developed, which possessed both bright fluorescence imaging and effective photodynamic therapeutic treatment.
Collapse
|
44
|
Xu J, Yuan H, Qin C, Zeng L, Bao GM. A mitochondria-targeted near-infrared probe for colorimetric and ratiometric fluorescence detection of hypochlorite in living cells. RSC Adv 2016. [DOI: 10.1039/c6ra22868b] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A mitochondria-targeted near-infrared probe for rapid, sensitive and specific detection of hypochlorite with colorimetric and ratiometric fluorescence dual responses.
Collapse
Affiliation(s)
- Junchao Xu
- Department of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan 432100
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Houqun Yuan
- College of Animal Science and Technology
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| | - Caiqin Qin
- Department of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan 432100
- P. R. China
| | - Lintao Zeng
- Department of Chemistry and Materials Science
- Hubei Engineering University
- Xiaogan 432100
- P. R. China
- School of Chemistry and Chemical Engineering
| | - Guang-Ming Bao
- College of Animal Science and Technology
- Jiangxi Agricultural University
- Nanchang 330045
- P. R. China
| |
Collapse
|
45
|
Zhang YR, Zhao ZM, Su L, Miao JY, Zhao BX. A ratiometric fluorescence sensor for HOCl based on a FRET platform and application in living cells. RSC Adv 2016. [DOI: 10.1039/c5ra26027b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A ratiometric fluorescent probe CRSH based on a FRET platform for detecting HOCl. CRSH showed high selectivity, excellent sensitivity and a fast response toward HOCl.
Collapse
Affiliation(s)
- Yan-Ru Zhang
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Zhi-Min Zhao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Le Su
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Jun-Ying Miao
- Institute of Developmental Biology
- School of Life Science
- Shandong University
- Jinan 250100
- P. R. China
| | - Bao-Xiang Zhao
- Institute of Organic Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
46
|
Pang L, Zhou Y, Gao W, Song H, Wang X, Wang Y. A highly selective and sensitive fluorescence probe for rapid detection of hypochlorite in tap water and cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra23548d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A fluorescence probe for the rapid detection of hypochlorite in tap water and cancer cells.
Collapse
Affiliation(s)
- Lanfang Pang
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Wenli Gao
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Haohan Song
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Xiao Wang
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Yong Wang
- Institute of Environmental and Analytical Sciences
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| |
Collapse
|
47
|
Liang L, Liu C, Jiao X, Zhao L, Zeng X. A highly selective and sensitive photoinduced electron transfer (PET) based HOCl fluorescent probe in water and its endogenous imaging in living cells. Chem Commun (Camb) 2016; 52:7982-5. [DOI: 10.1039/c6cc02603f] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A probe based on the phenothiazine–acridine orange conjugate (Ptz–AO) has been designed and synthesized for the sensitive and selective detection of HOCl.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Chang Liu
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
- Tianjin Key Laboratory for Photoelectric Materials and Devices
| | - Xiaojie Jiao
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- Tianjin University of Technology
- Tianjin 300384
- China
| | - Liancheng Zhao
- School of Materials Science and Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Xianshun Zeng
- Tianjin Key Laboratory for Photoelectric Materials and Devices
- Tianjin University of Technology
- Tianjin 300384
- China
| |
Collapse
|
48
|
Ha Y, Murale DP, Manjare ST, Kim M, Jeong JA, Churchill DG. Solvent-controlled Novel Cu+and Cu+/2+Fluorescent “Turn-ON” Probing. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yonghwang Ha
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Dhiraj P. Murale
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Sudesh T. Manjare
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| | - Minseong Kim
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - Jeong A. Jeong
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
| | - David G. Churchill
- Department of Chemistry; Korea Advanced Institute of Science and Technology (KAIST); Daejeon 305-701 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations; Institute for Basic Science (IBS); Daejeon 305-701 Republic of Korea
| |
Collapse
|
49
|
Gong HL, Jiang Y, Hou RC, Ding XQ. A Sensitive and Selective Fluorescent Coumarin-Based Probe for Detection of Hypochlorite ion and its Application to Cellular Imaging. J Fluoresc 2015; 26:403-6. [DOI: 10.1007/s10895-015-1726-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
|
50
|
Synthesis, structural elucidation and bioevaluation of 4-amino-1,2,4-triazole-3-thione’s Schiff base derivatives. Arch Pharm Res 2015; 39:161-171. [DOI: 10.1007/s12272-015-0688-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022]
|