1
|
Dillemuth P, Karskela T, Ayo A, Ponkamo J, Kunnas J, Rajander J, Tynninen O, Roivainen A, Laakkonen P, Airaksinen AJ, Li XG. Radiosynthesis, structural identification and in vitro tissue binding study of [ 18F]FNA-S-ACooP, a novel radiopeptide for targeted PET imaging of fatty acid binding protein 3. EJNMMI Radiopharm Chem 2024; 9:16. [PMID: 38393497 PMCID: PMC10891031 DOI: 10.1186/s41181-024-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Fatty acid binding protein 3 (FABP3) is a target with clinical relevance and the peptide ligand ACooP has been identified for FABP3 targeting. ACooP is a linear decapeptide containing a free amino and thiol group, which provides opportunities for conjugation. This work is to develop methods for radiolabeling of ACooP with fluorine-18 (18F) for positron emission tomography (PET) applications, and evaluate the binding of the radiolabeled ACooP in human tumor tissue sections with high FABP3 expression. RESULTS The prosthetic compound 6-[18F]fluoronicotinic acid 4-nitrophenyl ester was conveniently prepared with an on-resin 18F-fluorination in 29.9% radiochemical yield and 96.6% radiochemical purity. Interestingly, 6-[18F]fluoronicotinic acid 4-nitrophenyl ester conjugated to ACooP exclusively by S-acylation instead of the expected N-acylation, and the chemical identity of the product [18F]FNA-S-ACooP was confirmed. In the in vitro binding experiments, [18F]FNA-S-ACooP exhibited heterogeneous and high focal binding in malignant tissue sections, where we also observed abundant FABP3 positivity by immunofluorescence staining. Blocking study further confirmed the [18F]FNA-S-ACooP binding specificity. CONCLUSIONS FABP3 targeted ACooP peptide was successfully radiolabeled by S-acylation using 6-[18F]fluoronicotinic acid 4-nitrophenyl ester as the prosthetic compound. The tissue binding and blocking studies together with anti-FABP3 immunostaining confirmed [18F]FNA-S-ACooP binding specificity. Further preclinical studies of [18F]FNA-S-ACooP are warranted.
Collapse
Affiliation(s)
- Pyry Dillemuth
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Tuomas Karskela
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Abiodun Ayo
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jesse Ponkamo
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Jonne Kunnas
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
- Pharmaceutical Sciences Laboratory, Faculty of Sciences and Engineering, Åbo Akademi University, Turku, Finland
| | - Johan Rajander
- Accelerator Laboratory, Åbo Akademi University, Turku, Finland
| | - Olli Tynninen
- Department of Pathology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, HiLIFE University of Helsinki, Helsinki, Finland
- iCAN Flagship Program, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre and Department of Chemistry, University of Turku, Turku, Finland.
- Turku PET Centre, University of Turku and Turku University Hospital, Kiinamyllynkatu 4-8, 20520, Turku, Finland.
- InFLAMES Research Flagship, University of Turku, Turku, Finland.
| |
Collapse
|
2
|
Hoareau R, Bach-Gansmo T, Cumming P, Olberg DE. A new automated and putatively versatile synthesis of the PSMA-ligand derivative [ 18F]DCFPyL using the FASTlab TM synthesizer. EJNMMI Radiopharm Chem 2022; 7:10. [PMID: 35507241 PMCID: PMC9068851 DOI: 10.1186/s41181-022-00157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022] Open
Abstract
Background Noninvasive molecular imaging using peptides and biomolecules labelled with positron emitters has become important for detection of cancer and other diseases with PET (positron emission tomography). The positron emitting radionuclide fluorine-18 is widely available in high yield from cyclotrons and has favorable decay (t1/2 109.7 min) and imaging properties. 18F-Labelling of biomolecules and peptides for use as radiotracers is customarily achieved in a two-step approach, which can be challenging to automate. 6-[18F]Fluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ([18F]F-Py-TFP) is a versatile 18F-prosthetic group for this purpose, which can be rapidly be produced in an one-step approach on solid support. This work details an automated procedure on the cassette-based GE FASTlab™ platform for the labeling of a peptidomimetic, exemplified by the case of using the Glu-CO-Lys motif to produce [18F]DCFPyL, a ligand targeting the prostate specific membrane antigen (PSMA). Results From fluorine-18 delivery a fully automated two-step radiosynthesis of [18F]DCFPyL was completed in 56 min with an overall end of synthesis yield as high as 37% using solid phase extraction (SPE) purification on the GE FASTlab™ platform. Conclusions Putatively, this radiolabeling methodology is inherently amenable to automation with a diverse set of synthesis modules, and it should generalize for production of a broad spectrum of biomolecule-based radiotracers for use in PET imaging.
Collapse
Affiliation(s)
| | | | - Paul Cumming
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia.,Institute of Nuclear Medicine, Inelspital, University of Bern, Bern, Switzerland
| | - Dag Erlend Olberg
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950, 0424, Nydalen, Oslo, Norway. .,School of Pharmacy, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Sweetening Pharmaceutical Radiochemistry by 18F-Fluoroglycosylation: Recent Progress and Future Prospects. Pharmaceuticals (Basel) 2021; 14:ph14111175. [PMID: 34832957 PMCID: PMC8621802 DOI: 10.3390/ph14111175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
In the field of 18F-chemistry for the development of radiopharmaceuticals for positron emission tomography (PET), various labeling strategies by the use of prosthetic groups have been implemented, including chemoselective 18F-labeling of biomolecules. Among those, chemoselective 18F-fluoroglycosylation methods focus on the sweetening of pharmaceutical radiochemistry by offering a highly valuable tool for the synthesis of 18F-glycoconjugates with suitable in vivo properties for PET imaging studies. A previous review covered the various 18F-fluoroglycosylation methods that were developed and applied as of 2014 (Maschauer and Prante, BioMed. Res. Int. 2014, 214748). This paper is an updated review, providing the recent progress in 18F-fluoroglycosylation reactions and the preclinical application of 18F-glycoconjugates, including small molecules, peptides, and high-molecular-weight proteins.
Collapse
|
4
|
Tu C, Zhou J, Peng L, Man S, Ma L. Self-assembled nano-aggregates of fluorinases demonstrate enhanced enzymatic activity, thermostability and reusability. Biomater Sci 2020; 8:648-656. [PMID: 31761913 DOI: 10.1039/c9bm00402e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three SAP (self-assembling peptide)-tagged fluorinases (FLAs), namely, FLA-ELK16, FLA-L6KD and FLA-18A (named after the SAP used for tagging FLA) were successfully engineered. All three SAP-tagged FLAs could be highly over-expressed using engineered E. coli host cells despite being in the form of aggregates (inclusion bodies). It was noted that all three SAP-tagged FLAs exhibited enzymatic activity. It was also observed that all three SAP-tagged FLAs were capable of self-assembly to form nano-sized particles with different dimensions in aqueous solutions. Strikingly, one of the SAP-tagged FLA (FLA-L6KD) displayed improved enzyme activity, thermostability and reusability, which is potentially ideal for bio-transformation. FLA is an exotic enzyme that is capable of catalysing the formation of C-F bonds using inorganic fluorine ions as substrates. This significant feature enables it to incorporate [18F]-fluoride into different small molecules to generate radiopharmaceuticals in PET (positron emission tomography) labeling. In addition, fluorinase is greatly valuable in synthetic biology for incorporating the fluorine element into building blocks to produce non-natural organofluorines or as a biocatalyst for transforming non-native substrates. Our method would be a further step in making FLA-based biocatalysis even 'greener' by enhancing the enzymatic activity, thermostability and reusability of FLA through the introduction of nano-sized aggregates. Enzymes are such nontrivial biomaterials, which can be manifested in different scenarios. Our research expands their reach and tunes their properties by tagging SAP partners. Thus, this methodology can be put into the 'toolbox' of enzymologists, which can be further explored and generalised for others.
Collapse
Affiliation(s)
- Chunhao Tu
- Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin Key Laboratory of Industry Microbiology, School of Biotechnology, State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
5
|
Clinical Nononcologic Applications of PET/CT and PET/MRI in Musculoskeletal, Orthopedic, and Rheumatologic Imaging. AJR Am J Roentgenol 2019; 210:W245-W263. [PMID: 29787313 DOI: 10.2214/ajr.17.18523] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE With improvements in PET/CT and PET/MRI over the last decade, as well as increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic conditions. CONCLUSION We discuss the role of PET/CT and PET/MRI in nononcologic musculoskeletal disorders, including inflammatory and infectious conditions and postoperative complications. There is great potential for an increased role for PET to serve as a primary or complementary modality in the management of orthopedic and rheumatologic disorders.
Collapse
|
6
|
Jeppesen TE, Kristensen LK, Nielsen CH, Petersen LC, Kristensen JB, Behrens C, Madsen J, Kjaer A. Oxime Coupling of Active Site Inhibited Factor Seven with a Nonvolatile, Water-Soluble Fluorine-18 Labeled Aldehyde. Bioconjug Chem 2019; 30:775-784. [PMID: 30676028 DOI: 10.1021/acs.bioconjchem.8b00900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A nonvolatile fluorine-18 aldehyde prosthetic group was developed from [18F]SFB, and used for site-specific labeling of active site inhibited factor VII (FVIIai). FVIIai has a high affinity for tissue factor (TF), a transmembrane protein involved in angiogenesis, proliferation, cell migration, and survival of cancer cells. A hydroxylamine N-glycan modified FVIIai (FVIIai-ONH2) was used for oxime coupling with the aldehyde [18F]2 under mild and optimized conditions in an isolated RCY of 4.7 ± 0.9%, and a synthesis time of 267 ± 5 min (from EOB). Retained binding and specificity of the resulting [18F]FVIIai to TF was shown in vitro. TF-expression imaging capability was evaluated by in vivo PET/CT imaging in a pancreatic human xenograft cancer mouse model. The conjugate showed exceptional stability in plasma (>95% at 4 h) and a binding fraction of 90%. In vivo PET/CT imaging showed a mean tumor uptake of 3.8 ± 0.2% ID/g at 4 h post-injection, a comparable uptake in liver and kidneys, and low uptake in normal tissues. In conclusion, FVIIai was labeled with fluorine-18 at the N-glycan chain without affecting TF binding. In vitro specificity and a good in vivo imaging contrast at 4 h postinjection was demonstrated.
Collapse
Affiliation(s)
- Troels E Jeppesen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| | - Lotte K Kristensen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark.,Minerva Imaging ApS , Copenhagen , DK-2200 , Denmark
| | - Carsten H Nielsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark.,Minerva Imaging ApS , Copenhagen , DK-2200 , Denmark
| | | | | | | | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular Imaging, Department of Biomedical Sciences , Rigshospitalet and University of Copenhagen , Copenhagen , DK-2100 , Denmark
| |
Collapse
|
7
|
Abstract
Significance: Vascular adhesion protein-1 (VAP-1) is an ectoenzyme that oxidates primary amines in a reaction producing also hydrogen peroxide. VAP-1 on the blood vessel endothelium regulates leukocyte extravasation from the blood into tissues under physiological and pathological conditions. Recent Advances: Inhibition of VAP-1 by neutralizing antibodies and by several novel small-molecule enzyme inhibitors interferes with leukocyte trafficking and alleviates inflammation in many experimental models. Targeting of VAP-1 also shows beneficial effects in several other diseases, such as ischemia/reperfusion, fibrosis, and cancer. Moreover, soluble VAP-1 levels may serve as a new prognostic biomarker in selected diseases. Critical Issues: Understanding the contribution of the enzyme activity-independent and enzyme activity-dependent functions, which often appear to be mediated by the hydrogen peroxide production, in the VAP-1 biology will be crucial. Similarly, there is a pressing need to understand which of the VAP-1 functions are regulated through the modulation of leukocyte trafficking, and what is the role of VAP-1 synthesized in adipose and smooth muscle cells. Future Directions: The specificity and selectivity of new VAP-1 inhibitors, and their value in animal models under therapeutic settings need to be addressed. Results from several programs studying the therapeutic potential of VAP-1 inhibition, which now are in clinical trials, will reveal the relevance of this amine oxidase in humans.
Collapse
Affiliation(s)
- Marko Salmi
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- 1 MediCity , Turku, Finland .,2 Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Keinänen O, Partelová D, Alanen O, Antopolsky M, Sarparanta M, Airaksinen AJ. Efficient cartridge purification for producing high molar activity [ 18F]fluoro-glycoconjugates via oxime formation. Nucl Med Biol 2018; 67:27-35. [PMID: 30380464 DOI: 10.1016/j.nucmedbio.2018.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/29/2018] [Accepted: 10/07/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION 18F-fluoroglycosylation via oxime formation is a chemoselective and mild radiolabeling method for sensitive molecules. Glycosylation can also improve the bioavailability, in vivo kinetics, and stability of the compound in blood, as well as accelerate clearance of biomolecules. A typical synthesis procedure for 18F-fluoroglycosylation with [18F]FDG (2-deoxy-2-[18F]fluoro-d-glucose) and [18F]FDR (5-deoxy-5-[18F]fluoro-d-ribose) involves two HPLC (high performance liquid chromatography) purifications: one after 18F-fluorination of the carbohydrate to remove its labeling precursor, and a second one after the oxime formation step to remove the aminooxy precursor. The two HPLC purifications can be time consuming and complicate the adaptation of the synthetic strategy in nuclear medicine applications and automated synthesis. We have developed a procedure in which SPE (solid phase extraction) and resin purification methods replace both of the needed HPLC purification steps. METHODS We used [18F]FDR and [18F]FDG as prosthetic groups to radiolabel two aminooxy-modified model molecules, a tetrazine and a PSMA (prostate specific membrane antigen) inhibitor. After fluorination, the excess carbohydrate precursor was removed by derivatizing it with 4,4'-dimethoxytrityl chloride (DMT-Cl). The DMT moiety increases the hydrophobicity of the unreacted precursor making the separation from the fluorinated precursor possible with simple C18 Sep-Pak cartridge. For removal of the aminooxy precursor, we used a commercially available aldehyde resin (AminoLink, Thermo Fisher Scientific). C18 Sep-Pak SPE cartridge was used to separate [18F]FDR and [18F]FDG from the 18F-fluoroglycoconjugate end product. RESULTS [18F]FDR and [18F]FDG were efficiently purified from their precursors, free fluorine-18, and other impurities. The aldehyde resin quantitatively removed the unreacted aminooxy precursors after the oxime formation. The fluorine-18 labeled oxime end products were obtained with high radiochemical purity (>99%) and molar activity (>600 GBq μmol-1). CONCLUSIONS We have developed an efficient cartridge purification method for producing high molar activity 18F-glycoconjugates synthesized via oxime formation.
Collapse
Affiliation(s)
- Outi Keinänen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Denisa Partelová
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland; Department of Ecochemistry and Radioecology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Osku Alanen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Maxim Antopolsky
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mirkka Sarparanta
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland
| | - Anu J Airaksinen
- Department of Chemistry - Radiochemistry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
9
|
Mapping the interaction site and effect of the Siglec-9 inflammatory biomarker on human primary amine oxidase. Sci Rep 2018; 8:2086. [PMID: 29391504 PMCID: PMC5794975 DOI: 10.1038/s41598-018-20618-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/22/2018] [Indexed: 12/21/2022] Open
Abstract
Human primary amine oxidase (hAOC3), also known as vascular adhesion protein 1, mediates leukocyte rolling and trafficking to sites of inflammation by a multistep adhesion cascade. hAOC3 is absent on the endothelium of normal tissues and is kept upregulated during inflammatory conditions, which is an applicable advantage for imaging inflammatory diseases. Sialic acid binding immunoglobulin like-lectin 9 (Siglec-9) is a leukocyte ligand for hAOC3. The peptide (CARLSLSWRGLTLCPSK) based on the region of Siglec-9 that interacts with hAOC3, can be used as a specific tracer for hAOC3-targeted imaging of inflammation using Positron Emission Tomography (PET). In the present study, we show that the Siglec-9 peptide binds to hAOC3 and triggers its amine oxidase activity towards benzylamine. Furthermore, the hAOC3 inhibitors semicarbazide and imidazole reduce the binding of wild type and Arg/Ala mutated Siglec-9 peptides to hAOC3. Molecular docking of the Siglec-9 peptide is in accordance with the experimental results and predicts that the R3 residue in the peptide interacts in the catalytic site of hAOC3 when the topaquinone cofactor is in the non-catalytic on-copper conformation. The predicted binding mode of Siglec-9 peptide to hAOC3 is supported by the PET studies using rodent, rabbit and pig AOC3 proteins.
Collapse
|
10
|
Exploring Alternative Radiolabeling Strategies for Sialic Acid-Binding Immunoglobulin-Like Lectin 9 Peptide: [ 68Ga]Ga- and [ 18F]AlF-NOTA-Siglec-9. Molecules 2018; 23:molecules23020305. [PMID: 29385091 PMCID: PMC6017478 DOI: 10.3390/molecules23020305] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
Amino acid residues 283–297 from sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) form a cyclic peptide ligand targeting vascular adhesion protein-1 (VAP-1). VAP-1 is associated with the transfer of leukocytes from blood to tissues upon inflammation. Therefore, analogs of Siglec-9 peptide are good candidates for visualizing inflammation non-invasively using positron emission tomography (PET). Gallium-68-labeled 1,4,7,10-tetraazacyclododecane-N,N′,N″,N‴-tetraacetic acid (DOTA)-conjugated Siglec-9 has been evaluated extensively for this purpose. Here, we explored two alternative strategies for radiolabeling Siglec-9 peptide using a 1,4,7-triazacyclononane-triacetic acid (NOTA)-chelator to bind [68Ga]Ga or [18F]AlF. The radioligands were evaluated by in vivo PET imaging and ex vivo γ-counting of turpentine-induced sterile skin/muscle inflammation in Sprague-Dawley rats. Both tracers showed clear accumulation in the inflamed tissues. The whole-body biodistribution patterns of the tracers were similar.
Collapse
|
11
|
Käkelä M, Luoto P, Viljanen T, Virtanen H, Liljenbäck H, Jalkanen S, Knuuti J, Roivainen A, Li XG. Adventures in radiosynthesis of clinical grade [ 68Ga]Ga-DOTA-Siglec-9. RSC Adv 2018; 8:8051-8056. [PMID: 35542034 PMCID: PMC9078465 DOI: 10.1039/c7ra12423f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/08/2018] [Indexed: 01/16/2023] Open
Abstract
[68Ga]Ga-DOTA-Siglec-9 is the first vascular adhesion protein-1 targeting radiopharmaceutical for positron emission tomography imaging of inflammation, and here we present its long-awaited clinical grade radiosynthesis.
Collapse
Affiliation(s)
- Meeri Käkelä
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
| | - Pauliina Luoto
- Turku PET Centre
- Turku University Hospital
- FI-20521 Turku
- Finland
| | - Tapio Viljanen
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
| | | | - Heidi Liljenbäck
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
- Turku Center for Disease Modeling
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Department of Medical Microbiology and Immunology
- University of Turku
- FI-20014 Turku
- Finland
| | - Juhani Knuuti
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
- Turku PET Centre
| | - Anne Roivainen
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
- Turku PET Centre
| | - Xiang-Guo Li
- Turku PET Centre
- University of Turku
- FI-20521 Turku
- Finland
- Turku PET Centre
| |
Collapse
|
12
|
Comparison of 68Ga-DOTA-Siglec-9 and 18F-Fluorodeoxyribose-Siglec-9: Inflammation Imaging and Radiation Dosimetry. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7645070. [PMID: 29463960 PMCID: PMC5804415 DOI: 10.1155/2017/7645070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/13/2017] [Indexed: 11/17/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) is a ligand of inflammation-inducible vascular adhesion protein-1 (VAP-1). We compared 68Ga-DOTA- and 18F-fluorodeoxyribose- (FDR-) labeled Siglec-9 motif peptides for PET imaging of inflammation. Methods. Firstly, we examined 68Ga-DOTA-Siglec-9 and 18F-FDR-Siglec-9 in rats with skin/muscle inflammation. We then studied 18F-FDR-Siglec-9 for the detection of inflamed atherosclerotic plaques in mice and compared it with previous 68Ga-DOTA-Siglec-9 results. Lastly, we estimated human radiation dosimetry from the rat data. Results. In rats, 68Ga-DOTA-Siglec-9 (SUV, 0.88 ± 0.087) and 18F-FDR-Siglec-9 (SUV, 0.77 ± 0.22) showed comparable (P = 0.29) imaging of inflammation. In atherosclerotic mice, 18F-FDR-Siglec-9 detected inflamed plaques with a target-to-background ratio (1.6 ± 0.078) similar to previously tested 68Ga-DOTA-Siglec-9 (P = 0.35). Human effective dose estimates for 68Ga-DOTA-Siglec-9 and 18F-FDR-Siglec-9 were 0.024 and 0.022 mSv/MBq, respectively. Conclusion. Both tracers are suitable for PET imaging of inflammation. The easier production and lower cost of 68Ga-DOTA-Siglec-9 present advantages over 18F-FDR-Siglec-9, indicating it as a primary choice for clinical studies.
Collapse
|
13
|
Convenient Preparation of 18F-Labeled Peptide Probes for Potential Claudin-4 PET Imaging. Pharmaceuticals (Basel) 2017; 10:ph10040099. [PMID: 29258264 PMCID: PMC5748654 DOI: 10.3390/ph10040099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/08/2023] Open
Abstract
Since pancreatic cancer is often diagnosed in a late state of cancer development, diagnostic opportunities allowing early disease detection are highly sought after. As such, cancer expression of claudin proteins is markedly dysregulated, making it an attractive target for molecular imaging like positron emission tomography (PET). Claudins are a family of transmembrane proteins that have a pivotal role as members of the tight junctions. In particular, claudin-3 and claudin-4 are frequently overexpressed in pancreatic cancer. 18F-Labeled claudin selective peptides would provide access to a novel kind of imaging tools for pancreatic cancer. In this work we describe the synthesis of the first 18F-labeled probes potentially suitable for PET imaging of claudin-4 expression. These probes were prepared using oxime ligation of 5-[18F]fluoro-5-deoxyribose (5-[18F]FDR) to claudin selective peptides. As a proof-of-principle, one of them, 5-[18F]FDR-Clone 27, was isolated in >98% radiochemical purity and in 15% radiochemical yield (EOB) within 98 min, and with a molar activity of 4.0 GBq/μmol (for 30 MBq of tracer). Moreover, we present first biological data for the prepared 5-FDR-conjugates. These tracers could pave the way for an early diagnosis of pancreatic tumor, and thus improve the outcome of anticancer therapy.
Collapse
|
14
|
Gholamrezanezhad A, Basques K, Batouli A, Olyaie M, Matcuk G, Alavi A, Jadvar H. Non-oncologic Applications of PET/CT and PET/MR in Musculoskeletal, Orthopedic, and Rheumatologic Imaging: General Considerations, Techniques, and Radiopharmaceuticals. J Nucl Med Technol 2017; 46:jnmt.117.198663. [PMID: 29127246 DOI: 10.2967/jnmt.117.198663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/22/2017] [Indexed: 01/14/2023] Open
Abstract
Positron Emission Tomography (PET) is often underutilized in the field of musculoskeletal imaging, with key reasons including the excellent performance of conventional musculoskeletal MRI, the limited spatial resolution of PET, and the lack of reimbursement for PET for non-oncologic musculoskeletal indications. However, with improvements in PET/CT and PET/MR imaging over the last decade as well as an increased understanding of the pathophysiology of musculoskeletal diseases, there is an emerging potential for PET as a primary or complementary modality in the management of rheumatologic and orthopedic patients. Specific advantages of PET include the convenience of whole body imaging in a single session, the relative resilience of the modality in the imaging of metallic implants compared to CT and MRI, the ability to evaluate deep joints not amenable to palpation, and the potential for improved specificity of diagnosis with novel radiopharmaceuticals. In this review, we discuss multiple radiopharmaceuticals and technical consideration of PET/CT and PET/MRI that can be employed in imaging of non-tumoral bone and soft tissue disorders. Both PET/CT and PET/MR hold significant promise in the field of musculoskeletal imaging, and with further radiopharmaceutical development and clinical research, these hybrid modalities can potentially transform the current management of patients with orthopedic and rheumatologic disease.
Collapse
Affiliation(s)
| | - Kyle Basques
- University Hospitals of Cleveland, Case Western Reserve University
| | - Ali Batouli
- Department of Radiology. Allegheny General Hospital. Pittsburgh
| | | | | | | | | |
Collapse
|
15
|
Jensen SB, Käkelä M, Jødal L, Moisio O, Alstrup AKO, Jalkanen S, Roivainen A. Exploring the radiosynthesis and in vitro characteristics of [ 68 Ga]Ga-DOTA-Siglec-9. J Labelled Comp Radiopharm 2017; 60:439-449. [PMID: 28556976 DOI: 10.1002/jlcr.3525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 12/12/2022]
Abstract
Vascular adhesion protein 1 is a leukocyte homing-associated glycoprotein, which upon inflammation rapidly translocates from intracellular sources to the endothelial cell surface. It has been discovered that the cyclic peptide residues 283-297 of sialic acid-binding IgG-like lectin 9 (Siglec-9) "CARLSLSWRGLTLCPSK" bind to vascular adhesion protein 1 and hence makes the radioactive analogues of this compound ([68 Ga]Ga-DOTA-Siglec-9) interesting as a noninvasive visualizing marker of inflammation. Three different approaches to the radiosynthesis of [68 Ga]Ga-DOTA-Siglec-9 are presented and compared with previously published methods. A simple, robust radiosynthesis of [68 Ga]Ga-DOTA-Siglec-9 with a yield of 62% (non decay-corrected) was identified, and it had a radiochemical purity >98% and a specific radioactivity of 35 MBq/nmol. Furthermore, the protein binding and stability of [68 Ga]Ga-DOTA-Siglec-9 were analyzed in vitro in mouse, rat, rabbit, pig, and human plasma and compared with in vivo pig results. The plasma in vitro protein binding of [68 Ga]Ga-DOTA-Siglec-9 was the lowest in the pig followed by rabbit, human, rat, and mouse. It was considerably higher in the in vivo pig experiments. The in vivo stability in pigs was lower than the in vitro stability. Despite considerable species differences, the observed characteristics of [68 Ga]Ga-DOTA-Siglec-9 are suitable as a positron emission tomography tracer.
Collapse
Affiliation(s)
- Svend B Jensen
- Department of Nuclear Medicine, Aalborg University Hospital, Denmark.,Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| | - Meeri Käkelä
- Turku PET Centre, University of Turku, Turku, Finland
| | - Lars Jødal
- Department of Nuclear Medicine, Aalborg University Hospital, Denmark.,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark.,Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Olli Moisio
- Turku PET Centre, University of Turku, Turku, Finland
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Sirpa Jalkanen
- MediCity Research Laboratory and Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, University of Turku, Turku, Finland.,Turku PET Centre, Turku University Hospital, Turku, Finland.,Turku Centre for Disease Modelling, University of Turku, Turku, Finland
| |
Collapse
|
16
|
Rinne P, Hellberg S, Kiugel M, Virta J, Li XG, Käkelä M, Helariutta K, Luoto P, Liljenbäck H, Hakovirta H, Gardberg M, Airaksinen AJ, Knuuti J, Saraste A, Roivainen A. Comparison of Somatostatin Receptor 2-Targeting PET Tracers in the Detection of Mouse Atherosclerotic Plaques. Mol Imaging Biol 2016; 18:99-108. [PMID: 26122428 DOI: 10.1007/s11307-015-0873-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE Rupture-prone atherosclerotic plaques are characterized by accumulation of macrophages, which have shown to express somatostatin type 2 receptors. We aimed to investigate whether somatostatin receptor-targeting positron emission tomography (PET) tracers, [(68)Ga]DOTANOC, [(18)F]FDR-NOC, and [(68)Ga]DOTATATE, can detect inflamed atherosclerotic plaques. PROCEDURES Atherosclerotic IGF-II/LDLR(-/-)ApoB(100/100) mice were studied in vivo and ex vivo for tracer uptake into atherosclerotic plaques. Furthermore, [(68)Ga]DOTANOC and [(68)Ga]DOTATATE were compared in a head-to-head setting for in vivo PET/X-ray computed tomography (CT) imaging characteristics. RESULTS Ex vivo uptake of [(68)Ga]DOTANOC and [(68)Ga]DOTATATE in the aorta was higher in atherosclerotic mice compared to control C57Bl/6N mice, while the aortic uptake of [(18)F]FDR-NOC showed no genotype difference. Unlike [(18)F]FDR-NOC, [(68)Ga]DOTANOC and [(68)Ga]DOTATATE showed preferential binding to atherosclerotic plaques with plaque-to-wall ratio of 1.7 ± 0.3 and 2.1 ± 0.5, respectively. However, the aortic uptake and aorta-to-blood ratio of [(68)Ga]DOTANOC were higher compared to [(68)Ga]DOTATATE in in vivo PET/CT imaging. CONCLUSION Our results demonstrate superior applicability for [(68)Ga]DOTANOC and [(68)Ga]DOTATATE in the detection of atherosclerotic plaques compared to [(18)F]FDR-NOC.
Collapse
Affiliation(s)
- Petteri Rinne
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Sanna Hellberg
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Max Kiugel
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Jenni Virta
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Xiang-Guo Li
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Meeri Käkelä
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Kerttuli Helariutta
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Pauliina Luoto
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Heidi Liljenbäck
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | | - Maria Gardberg
- Department of Pathology, Turku University Hospital and University of Turku, Turku, Finland
| | - Anu J Airaksinen
- Laboratory of Radiochemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Juhani Knuuti
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland
| | - Antti Saraste
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland.,Heart Center, Turku University Hospital and University of Turku, Turku, Finland
| | - Anne Roivainen
- Turku PET Centre, Turku University Hospital and University of Turku, Kiinamyllynkatu 4-8, FI-20520, Turku, Finland. .,Turku Center for Disease Modeling, University of Turku, Turku, Finland.
| |
Collapse
|
17
|
Li XG, Hagert C, Siitonen R, Virtanen H, Sareila O, Liljenbäck H, Tuisku J, Knuuti J, Bergman J, Holmdahl R, Roivainen A. (18)F-Labeling of Mannan for Inflammation Research with Positron Emission Tomography. ACS Med Chem Lett 2016; 7:826-30. [PMID: 27660685 DOI: 10.1021/acsmedchemlett.6b00160] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/14/2022] Open
Abstract
Recently mannan from Saccharomyces cerevisiae has been shown to be able to induce psoriasis and psoriatic arthritis in mice, and the phenotypes resemble the corresponding human diseases. To investigate the pathological processes, we set out to label mannan with fluorine-18 ((18)F) and study the (18)F-labeled mannan in vitro and in vivo with positron emission tomography (PET). Accordingly, mannan has been transformed into (18)F-fluoromannan with (18)F-bicyclo[6.1.0]nonyne. In mouse aorta, the binding of [(18)F]fluoromannan to the atherosclerotic lesions was clearly visualized and was significantly higher compared to blocking assays (P < 0.001) or healthy mouse aorta (P < 0.001). In healthy rats the [(18)F]fluoromannan radioactivity accumulated largely in the macrophage-rich organs such as liver, spleen, and bone marrow and the excess excreted in urine. Furthermore, the corresponding (19)F-labeled mannan has been used to induce psoriasis and psoriatic arthritis in mice, which indicates that the biological function of mannan is preserved after the chemical modifications.
Collapse
Affiliation(s)
- Xiang-Guo Li
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku PET
Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Cecilia Hagert
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
- The National Doctoral Programme in Informational and Structural Biology, Tykistökatu 6, FI-20520 Turku, Finland
| | - Riikka Siitonen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Helena Virtanen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Outi Sareila
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
| | - Heidi Liljenbäck
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland
| | - Jouni Tuisku
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Juhani Knuuti
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Jörgen Bergman
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku PET
Centre, Åbo Akademi University, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
| | - Rikard Holmdahl
- Medical
Inflammation Research, Medicity Research Laboratory, University of Turku, FI-20520 Turku, Finland
- Medical
Inflammation Research, Department of Biochemistry and Biophysics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - Anne Roivainen
- Turku
PET Centre, University of Turku, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
PET Centre, Turku University Hospital, Kiinamyllynkatu 4-8, FI-20520 Turku, Finland
- Turku
Center for Disease Modeling, University of Turku, FI-20014 Turku, Finland
| |
Collapse
|
18
|
Li XG, Roivainen A, Bergman J, Heinonen A, Bengel F, Thum T, Knuuti J. Enabling [(18)F]-bicyclo[6.1.0]nonyne for oligonucleotide conjugation for positron emission tomography applications: [(18)F]-anti-microRNA-21 as an example. Chem Commun (Camb) 2016; 51:9821-4. [PMID: 25986340 DOI: 10.1039/c5cc02618k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A bicyclononyne-based prosthetic group has been developed for (18)F-labeling of anti-microRNA-21, an oligonucleotide, in a near-stoichiometric manner.
Collapse
Affiliation(s)
- Xiang-Guo Li
- Turku PET Centre, University of Turku and Turku University Hospital, FI-20521 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
19
|
Keinänen O, Li XG, Chenna NK, Lumen D, Ott J, Molthoff CFM, Sarparanta M, Helariutta K, Vuorinen T, Windhorst AD, Airaksinen AJ. A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging. ACS Med Chem Lett 2016; 7:62-6. [PMID: 26819667 DOI: 10.1021/acsmedchemlett.5b00330] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
A new (18)F-labeled tetrazine derivative was developed aiming at optimal radiochemistry, fast reaction kinetics in inverse electron-demand Diels-Alder cycloaddition (IEDDA), and favorable pharmacokinetics for in vivo bioorthogonal chemistry. The radiolabeling of the tetrazine was achieved in high yield, purity, and specific activity under mild reaction conditions via conjugation with 5-[(18)F]fluoro-5-deoxyribose, providing a glycosylated tetrazine derivative with low lipophilicity. The (18)F-tetrazine showed fast reaction kinetics toward the most commonly used dienophiles in IEDDA reactions. It exhibited excellent chemical and enzymatic stability in mouse plasma and in phosphate-buffered saline (pH 7.41). Biodistribution in mice revealed favorable pharmacokinetics with major elimination via urinary excretion. The results indicate that the glycosylated (18)F-labeled tetrazine is an excellent candidate for in vivo bioorthogonal chemistry applications in pretargeted PET imaging approaches.
Collapse
Affiliation(s)
- Outi Keinänen
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Xiang-Guo Li
- Turku
Positron Emission Tomography (PET) Centre, University of Turku and Turku University Hospital, FI-20521 Turku, Finland
| | - Naveen K. Chenna
- Department
of Forest Products Technology, Aalto University School of Chemical Technology, FI-00076 Espoo, Finland
| | - Dave Lumen
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jennifer Ott
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Carla F. M. Molthoff
- Department
of Radiology and Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Mirkka Sarparanta
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
- Department
of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kerttuli Helariutta
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tapani Vuorinen
- Department
of Forest Products Technology, Aalto University School of Chemical Technology, FI-00076 Espoo, Finland
| | - Albert D. Windhorst
- Department
of Radiology and Nuclear Medicine, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Anu J. Airaksinen
- Laboratory
of Radiochemistry, Department of Chemistry, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
20
|
Collet C, Maskali F, Clément A, Chrétien F, Poussier S, Karcher G, Marie PY, Chapleur Y, Lamandé-Langle S. Development of 6-[18F]fluoro-carbohydrate-based prosthetic groups and their conjugation to peptides via click chemistry. J Labelled Comp Radiopharm 2015; 59:54-62. [DOI: 10.1002/jlcr.3362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Charlotte Collet
- Université de Lorraine; Vandoeuvre-les-Nancy France
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
| | - Fatiha Maskali
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
| | - Alexandra Clément
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
| | - Françoise Chrétien
- Université de Lorraine; Vandoeuvre-les-Nancy France
- CNRS; UMR 7565; Vandoeuvre-les-Nancy France
| | - Sylvain Poussier
- Université de Lorraine; Vandoeuvre-les-Nancy France
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
| | - Gilles Karcher
- Université de Lorraine; Vandoeuvre-les-Nancy France
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
- Département de Médecine Nucléaire; CHU-Nancy; Vandoeuvre les Nancy France
| | - Pierre-Yves Marie
- Université de Lorraine; Vandoeuvre-les-Nancy France
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
- Département de Médecine Nucléaire; CHU-Nancy; Vandoeuvre les Nancy France
| | - Yves Chapleur
- Université de Lorraine; Vandoeuvre-les-Nancy France
- Nancyclotep, Plateforme d'imagerie moléculaire; Vandoeuvre-les-Nancy France
- CNRS; UMR 7565; Vandoeuvre-les-Nancy France
| | - Sandrine Lamandé-Langle
- Université de Lorraine; Vandoeuvre-les-Nancy France
- CNRS; UMR 7565; Vandoeuvre-les-Nancy France
| |
Collapse
|
21
|
Cara CJ, Skropeta D. Glycosylation and functionalization of native amino acids with azido uronic acids. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Evdokimov NM, Clark PM, Flores G, Chai T, Faull KF, Phelps ME, Witte ON, Jung ME. Development of 2-Deoxy-2-[(18)F]fluororibose for Positron Emission Tomography Imaging Liver Function in Vivo. J Med Chem 2015; 58:5538-47. [PMID: 26102222 DOI: 10.1021/acs.jmedchem.5b00569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Life-threatening acute liver failure can be triggered by a variety of factors, including common drugs such as acetaminophen. Positron emission tomography (PET) is rarely used to monitor liver function, in part because of a lack of specific imaging agents for liver function. Here we report a new PET probe, 2-deoxy-2-[(18)F]fluororibose ([(18)F]-2-DFR), for use in imaging liver function. [(18)F]-2-DFR was synthesized and validated as a competitive substrate for the ribose salvage pathway. [(18)F]-2-DFR was prepared through an efficient late stage radiofluorination. The desired selectivity of fluorination was achieved using an unorthodox protecting group on the precursor, which could withstand harsh SN2 reaction conditions with no side reactions. [(18)F]-2-DFR accumulated preferentially in the liver and was metabolized by the same enzymes as ribose. [(18)F]-2-DFR could distinguish between healthy liver and liver damaged by acetaminophen. [(18)F]-2-DFR is expected to be a useful PET probe for imaging and quantifying liver functions in vivo, with likely significant clinical utility.
Collapse
Affiliation(s)
- Nikolai M Evdokimov
- †Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | | | | | | | | | | | | | - Michael E Jung
- †Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
23
|
O'Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 2014; 115:634-49. [PMID: 25253234 DOI: 10.1021/cr500209t] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- David O'Hagan
- EaStChem School of Chemistry, University of St Andrews , North Haugh, St Andrews KY169ST, United Kingdom
| | | |
Collapse
|
24
|
Kiviniemi A, Gardberg M, Autio A, Li XG, Heuser VD, Liljenbäck H, Käkelä M, Sipilä H, Kurkipuro J, Ylä-Herttuala S, Knuuti J, Minn H, Roivainen A. Feasibility of experimental BT4C glioma models for somatostatin receptor 2-targeted therapies. Acta Oncol 2014; 53:1125-34. [PMID: 24957558 DOI: 10.3109/0284186x.2014.925577] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
UNLABELLED Somatostatin receptor subtype 2 (sstr2) is regarded as a potential target in malignant gliomas for new therapeutic approaches. Therefore, visualizing and quantifying tumor sstr2 expression in vivo would be highly relevant for the future development of sstr2-targeted therapies. The purpose of this study was to evaluate sstr2 status in experimental BT4C malignant gliomas. METHODS Rat BT4C malignant glioma cells were injected into BDIX rat brain or subcutaneously into nude mice. Tumor uptake of [(68)Ga]DOTA-(Tyr(3))-Octreotide ([(68)Ga]DOTATOC), a somatostatin analog binding to sstr2, was studied by positron emission tomography/computed tomography (PET/CT). Additionally, subcutaneous tumor-bearing mice underwent PET imaging with 5-deoxy-5-[(18)F]fluororibose-NOC ([(18)F]FDR-NOC), a novel glycosylated peptide tracer also targeting sstr2. Ex vivo tissue radioactivity measurements, autoradiography and immunohistochemistry were performed to study sstr2 expression. RESULTS Increased tumor uptake of [(68)Ga]DOTATOC was detected at autoradiography with mean tumor-to-brain ratio of 68 ± 30 and tumor-to-muscle ratio of 9.2 ± 3.8 for rat glioma. High tumor-to-muscle ratios were also observed in subcutaneous tumor-bearing mice after injection with [(68)Ga]DOTATOC and [(18)F]FDR-NOC with both autoradiography (6.7 ± 1.5 and 4.3 ± 0.8, respectively) and tissue radioactivity measurements (6.5 ± 0.8 and 4.8 ± 0.6, respectively). Furthermore, sstr2 immunohistochemistry showed positive staining in both tumor models. However, surprisingly low tumor signal compromised PET imaging. Mean SUVmax for rat gliomas was 0.64 ± 0.28 from 30 to 60 min after [(68)Ga]DOTATOC injection. The majority of subcutaneous tumors were not visualized by [(68)Ga]DOTATOC or [(18)F]FDR-NOC PET. CONCLUSIONS Experimental BT4C gliomas show high expression of sstr2. Weak signal in PET imaging, however, suggests only limited benefit of [(68)Ga]DOTATOC or [(18)F]FDR-NOC PET/CT in this tumor model for in vivo imaging of sstr2 status.
Collapse
Affiliation(s)
- Aida Kiviniemi
- Turku PET Centre, Turku University Hospital and University of Turku , Turku , Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sweetening pharmaceutical radiochemistry by (18)f-fluoroglycosylation: a short review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:214748. [PMID: 24991541 PMCID: PMC4058687 DOI: 10.1155/2014/214748] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/15/2014] [Indexed: 12/20/2022]
Abstract
At the time when the highly efficient [(18)F]FDG synthesis was discovered by the use of the effective precursor 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl- β -D-mannopyranose (mannose triflate) for nucleophilic (18)F-substitution, the field of PET in nuclear medicine experienced a long-term boom. Thirty years later, various strategies for chemoselective (18)F-labeling of biomolecules have been developed, trying to keep up with the emerging field of radiopharmaceutical sciences. Among the new radiochemical strategies, chemoselective (18)F-fluoroglycosylation methods aim at the sweetening of pharmaceutical radiochemistry by providing a powerful and highly valuable tool for the design of (18)F-glycoconjugates with suitable in vivo properties for PET imaging studies. This paper provides a short review (reflecting the literature not older than 8 years) on the different (18)F-fluoroglycosylation reactions that have been applied to the development of various (18)F-glycoconjugate tracers, including not only peptides, but also nonpeptidic tracers and high-molecular-weight proteins.
Collapse
|
26
|
Klohs J, Rudin M, Shimshek DR, Beckmann N. Imaging of cerebrovascular pathology in animal models of Alzheimer's disease. Front Aging Neurosci 2014; 6:32. [PMID: 24659966 PMCID: PMC3952109 DOI: 10.3389/fnagi.2014.00032] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), vascular pathology may interact with neurodegeneration and thus aggravate cognitive decline. As the relationship between these two processes is poorly understood, research has been increasingly focused on understanding the link between cerebrovascular alterations and AD. This has at last been spurred by the engineering of transgenic animals, which display pathological features of AD and develop cerebral amyloid angiopathy to various degrees. Transgenic models are versatile for investigating the role of amyloid deposition and vascular dysfunction, and for evaluating novel therapeutic concepts. In addition, research has benefited from the development of novel imaging techniques, which are capable of characterizing vascular pathology in vivo. They provide vascular structural read-outs and have the ability to assess the functional consequences of vascular dysfunction as well as to visualize and monitor the molecular processes underlying these pathological alterations. This article focusses on recent in vivo small animal imaging studies addressing vascular aspects related to AD. With the technical advances of imaging modalities such as magnetic resonance, nuclear and microscopic imaging, molecular, functional and structural information related to vascular pathology can now be visualized in vivo in small rodents. Imaging vascular and parenchymal amyloid-β (Aβ) deposition as well as Aβ transport pathways have been shown to be useful to characterize their dynamics and to elucidate their role in the development of cerebral amyloid angiopathy and AD. Structural and functional imaging read-outs have been employed to describe the deleterious affects of Aβ on vessel morphology, hemodynamics and vascular integrity. More recent imaging studies have also addressed how inflammatory processes partake in the pathogenesis of the disease. Moreover, imaging can be pivotal in the search for novel therapies targeting the vasculature.
Collapse
Affiliation(s)
- Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Markus Rudin
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland ; Neuroscience Center Zurich, University of Zurich and ETH Zurich Zurich, Switzerland ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Derya R Shimshek
- Autoimmunity, Transplantation and Inflammation/Neuroinflammation Department, Novartis Institutes for BioMedical Research Basel, Switzerland
| | - Nicolau Beckmann
- Analytical Sciences and Imaging, Novartis Institutes for BioMedical Research Basel, Switzerland
| |
Collapse
|
27
|
Richarz R, Krapf P, Zarrad F, Urusova EA, Neumaier B, Zlatopolskiy BD. Neither azeotropic drying, nor base nor other additives: a minimalist approach to 18F-labeling. Org Biomol Chem 2014; 12:8094-9. [DOI: 10.1039/c4ob01336k] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel radiofluorination procedure using only precursor and [18F]fluoride without the need for azeotropic drying, base and other ingredients was developed.
Collapse
Affiliation(s)
- R. Richarz
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - P. Krapf
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - F. Zarrad
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - E. A. Urusova
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
- Clinic of Nuclear Medicine
- RWTH Aachen University
- 52074 Aachen, Germany
| | - B. Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| | - B. D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging
- University Clinic Cologne
- 50937 Cologne, Germany
- Max Planck Institute of Metabolic Research
- 50931 Cologne, Germany
| |
Collapse
|
28
|
Using 5-deoxy-5-[18F]fluororibose to glycosylate peptides for positron emission tomography. Nat Protoc 2013; 9:138-45. [PMID: 24356772 DOI: 10.1038/nprot.2013.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
So far seven peptide-based (18)F-radiopharmaceuticals for diagnostic applications with positron emission tomography (PET) have entered into clinical trials. Three candidates out of these seven are glycosylated peptides, which may be explained by the beneficial influence of glycosylation on in vivo pharmacokinetics of peptide tracers. This protocol describes the method for labeling peptides with 5-deoxy-5-[(18)F]fluororibose ([(18)F]FDR) as a prosthetic group. The synthesis of [(18)F]FDR is effected by a nucleophilic fluorination step by using dried Kryptofix 2.2.2-K2CO3-K(18)F complex and a subsequent HCl-catalyzed hydrolysis. The conjugation of [(18)F]FDR to the N-terminus aminooxy (-ONH2)-functionalized peptides is carried out in anilinium buffer at pH 4.6 and at room temperature (RT, 21-23 °C), with the concentration of peptide precursors being 0.3 mM. The procedure takes about 120 min and includes two cartridge isolation steps and two reversed-phase (RP) HPLC purification steps. The quaternary methyl amine (QMA) anion exchange cartridge and the hydrophilic-lipophilic balanced (HLB) cartridge are used for the isolation of (18)F-fluoride and [(18)F]FDR-conjugated peptides, respectively. The first HPLC purification provides the (18)F-fluorinated precursor of [(18)F]FDR and the second HPLC purification is to separate labeled peptides from their unlabeled precursors. The final product is formulated in PBS ready for injection, with a radiochemical purity of >98% and a radiochemical yield (RCY) of 27-37% starting from the end of bombardment (EOB). The carbohydrate nature of [(18)F]FDR and the operational convenience of this protocol should facilitate its general use.
Collapse
|
29
|
Peptide conjugation via CuAAC 'click' chemistry. Molecules 2013; 18:13148-74. [PMID: 24284482 PMCID: PMC6270195 DOI: 10.3390/molecules181113148] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 01/14/2023] Open
Abstract
The copper (I)-catalyzed alkyne azide 1,3-dipolar cycloaddition (CuAAC) or ‘click’ reaction, is a highly versatile reaction that can be performed under a variety of reaction conditions including various solvents, a wide pH and temperature range, and using different copper sources, with or without additional ligands or reducing agents. This reaction is highly selective and can be performed in the presence of other functional moieties. The flexibility and selectivity has resulted in growing interest in the application of CuAAC in various fields. In this review, we briefly describe the importance of the structural folding of peptides and proteins and how the 1,4-disubstituted triazole product of the CuAAC reaction is a suitable isoster for an amide bond. However the major focus of the review is the application of this reaction to produce peptide conjugates for tagging and targeting purpose, linkers for multifunctional biomacromolecules, and reporter ions for peptide and protein analysis.
Collapse
|
30
|
Dall'Angelo S, Zhang Q, Fleming IN, Piras M, Schweiger LF, O'Hagan D, Zanda M. Efficient bioconjugation of 5-fluoro-5-deoxy-ribose (FDR) to RGD peptides for positron emission tomography (PET) imaging of αvβ3 integrin receptor. Org Biomol Chem 2013; 11:4551-8. [DOI: 10.1039/c3ob40550h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|