1
|
Desmons S, Bonin J, Robert M, Bontemps S. Four-electron reduction of CO 2: from formaldehyde and acetal synthesis to complex transformations. Chem Sci 2024:d4sc02888k. [PMID: 39246334 PMCID: PMC11376136 DOI: 10.1039/d4sc02888k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/02/2024] [Indexed: 09/10/2024] Open
Abstract
The expansive and dynamic field of the CO2 Reduction Reaction (CO2RR) seeks to harness CO2 as a sustainable carbon source or energy carrier. While significant progress has been made in two, six, and eight-electron reductions of CO2, the four-electron reduction remains understudied. This review fills this gap, comprehensively exploring CO2 reduction into formaldehyde (HCHO) or acetal-type compounds (EOCH2OE, with E = [Si], [B], [Zr], [U], [Y], [Nb], [Ta] or -R) using various CO2RR systems. These encompass (photo)electro-, bio-, and thermal reduction processes with diverse reductants. Formaldehyde, a versatile C1 product, is challenging to synthesize and isolate from the CO2RR. The review also discusses acetal compounds, emphasizing their significance as pathways to formaldehyde with distinct reactivity. Providing an overview of the state of four-electron CO2 reduction, this review highlights achievements, challenges, and the potential of the produced compounds - formaldehyde and acetals - as sustainable sources for valuable product synthesis, including chiral compounds.
Collapse
Affiliation(s)
- Sarah Desmons
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| | - Julien Bonin
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
| | - Marc Robert
- Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS F-75013 Paris France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS F-75005 Paris France
- Institut Universitaire de France (IUF) F-75005 Paris France
| | - Sébastien Bontemps
- LCC-CNRS, Université de Toulouse, CNRS 205 route de Narbonne 31077 Toulouse Cedex 04 France
| |
Collapse
|
2
|
Bonnemaire CM, Windhorst AD, Orru R, Ruijter E, Vugts DJ. [11C]CO2 BOP fixation with amines to access 11C-labeled ureas for PET imaging. J Labelled Comp Radiopharm 2024; 67:201-210. [PMID: 38073118 DOI: 10.1002/jlcr.4075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 11/03/2023] [Indexed: 05/16/2024]
Abstract
Carbon-11 (11C) is a widely used radionuclide for positron emission tomography (PET) owing to the omnipresence of carbon atoms in organic molecules. While its half-life of 20.4 min is ideal for imaging and dosimetry, it also limits the synthetic possibilities. As such, the development of fast and easy, high-yielding synthesis methods is crucial for the application of 11C-labeled tracers in humans. In this study, we present a novel and efficient method for the reaction of [11C]CO2 with amine precursors using benzotriazole-1-yl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate (BOP) to access 11C-labeled ureas. Our method is extremely fast as it only requires transfer of [11C]CO2 into a solution with precursor and BOP at room temperature, where it reacts momentary into the desired 11C-labeled urea. This simple procedure makes it possible to radiolabel urea directly from [11C]CO2 without the need for advanced equipment, making the method applicable for all laboratories where [11C]CO2 is available. We synthesized a small series of aliphatic symmetrical and non-symmetrical 11C-labeled ureas using this method, and achieved good to excellent yields. The novelty of our study lies in the fact that peptide coupling reagent BOP is used for the first time in radiochemistry to activate [11C]CO2, facilitating its reaction with amines to obtain 11C-labeled ureas.
Collapse
Affiliation(s)
- Coralie M Bonnemaire
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Romano Orru
- Bio-based Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Geleen, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute for Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Danielle J Vugts
- Radiology and Nuclear Medicine(s), Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Murrell E, Lindberg A, Garcia A, Vasdev N. 11C-Fixation Techniques. Methods Mol Biol 2024; 2729:3-13. [PMID: 38006487 DOI: 10.1007/978-1-0716-3499-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
This protocol describes the application of cyclotron-generated [11C]CO2 fixation reactions for direct 11C-carboxylation reactions and [11C]CO for 11C-carbonylations. Herein we describe one-pot methods wherein the radioactive gas is first trapped in a reaction mixture at room temperature and atmospheric pressure prior to the radiolabeling reactions. Such procedures are widely applicable to numerous small molecules to form 11C-labeled carboxylic acids, amides, esters, ketones, oxazolidinones, carbamates, and ureas. The steps for 11C-fixation techniques described herein are tailored for a commercial automated synthesis unit and are readily adapted for routine radiopharmaceutical production.
Collapse
Affiliation(s)
- Emily Murrell
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science and Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Myburgh PJ, Sai KKS. Development and Optimization of 11C-Labeled Radiotracers: A Review of the Modern Quality Control Design Process. ACS Pharmacol Transl Sci 2023; 6:1616-1631. [PMID: 37974626 PMCID: PMC10644505 DOI: 10.1021/acsptsci.3c00200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 11/19/2023]
Abstract
Introduction - Several 11C-tracers have demonstrated high potential in early diagnostic PET imaging applications of neurodegenerative diseases including Alzheimer's and Parkinson's disease. These radiotracers often track critical biomarkers in disease pathogenesis such as tau fibrils ([11C]PBB3) or β-amyloid plaques ([11C]PiB) associated with such diseases. Purpose - The short review aims to serve as a guideline in the future development of radiotracers for students, postdocs and/or new radiochemists who will be synthesizing clinical grade or novel research 11C-tracers, including knowledge of regulatory requirements. We aim to bridge the gap between novel and established 11C-tracer quality control (QC) processes through exploring the design process and regulatory requirements for 11C-pharmaceuticals. Methods - A literature survey was undertaken to identify articles with a detailed description of the QC methodology and characterization for each of the sections of the review. Overview - First a general summary of 11C-tracer production was presented; this was used to establish possible places for contamination or assurances for a sterile final product. The key mandated QC analyses for clinical use were then discussed. Further, we assessed the QC methods used for established 11C-tracers and then reviewed the routine QC tests for preclinical translational and validation studies. Therefore, both mandated QC methods for clinical and preclinical animal studies were reviewed. Last, some examples of optimization and automation were reviewed, and implications of the QC practices associated with such procedures were considered. Conclusion - All of the common QC parameters associated with 11C-tracers under clinical and preclinical settings (along with a few exceptions) were discussed in detail. While it is important to establish standard, peer-reviewed QC testing protocols for a novel 11C-tracer entering the clinical umbrella, equal importance is needed on preclinical applications to address credibility and repeatability for the study.
Collapse
Affiliation(s)
- Paul Josef Myburgh
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| | - Kiran Kumar Solingapuram Sai
- Translational
Imaging Program, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
- Department
of Radiology, Atrium Health Wake Forest
Baptist Medical Center, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
5
|
Lynch C, Downey JW, Zhang Y, Hooker JM, Levin MD. Core-Labeling (Radio) Synthesis of Phenols. Org Lett 2023; 25:7230-7235. [PMID: 37751441 PMCID: PMC10563162 DOI: 10.1021/acs.orglett.3c02838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 09/28/2023]
Abstract
We report a method that enables the fast incorporation of carbon isotopes into the ipso carbon of phenols. Our approach relies on the synthesis of a 1,5-dibromo-1,4-pentadiene precursor, which upon lithium-halogen exchange followed by treatment with carbonate esters results in a formal [5 + 1] cyclization to form the phenol product. Using this strategy, we have prepared 12 1-13C-labeled phenols, show proof-of-concept for the labeling of phenols with carbon-14, and demonstrate phenol synthesis directly from cyclotron-produced [11C]CO2.
Collapse
Affiliation(s)
- Colin
F. Lynch
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph W. Downey
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
| | - Yongliang Zhang
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Jacob M. Hooker
- Athinoula
A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Department
of Radiology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Lurie
Center for Autism, Massachusetts General
Hospital, Lexington, Massachusetts 02421, United States
| | - Mark D. Levin
- Department
of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
6
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Li KP, Gleba JJ, Parent EE, Knight JA, Copland JA, Cai H. Radiosynthesis and Preliminary Evaluation of [ 11C]SSI-4 for the Positron Emission Tomography Imaging of Stearoyl CoA Desaturase 1. Mol Pharm 2023; 20:4129-4137. [PMID: 37409698 DOI: 10.1021/acs.molpharmaceut.3c00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Stearoyl CoA desaturase 1 (SCD1) is the rate-limiting enzyme for converting saturated fatty acids (SFAs) into monounsaturated fatty acids (MUFAs) and plays a key role in endogenous (de novo) fatty acid metabolism. Given that this pathway is broadly upregulated across many tumor types with an aggressive phenotype, SCD1 has emerged as a compelling target for cancer imaging and therapy. The ligand 2-(4-(2-chlorophenoxy)piperidine-1-carboxamido)-N-methylisonicotinamide (SSI-4) was identified as a potent and highly specific SCD1 inhibitor with a strong binding affinity for SCD1 at our laboratory. We herein report the radiosynthesis of [11C]SSI-4 and the preliminary biological evaluation including in vivo PET imaging of SCD1 in a human tumor xenograft model. Radiotracer [11C]SSI-4 was labeled at the carbamide position via the direct [11C]CO2 fixation on the Synthra MeIplus module in high molar activity and good radiochemical yield. In vitro cell uptake assays were performed with three hepatocellular carcinoma (HCC) cell lines and three renal cell carcinoma (RCC) cell lines. Additionally, in vivo small animal PET/CT imaging with [11C]SSI-4 and the biodistribution were carried out in a mouse model bearing HCC xenografts. Radiotracer [11C]SSI-4 afforded a 4.14 ± 0.44% (decay uncorrected, n = 10) radiochemical yield based on starting [11]CO2 radioactivity. The [11C]SSI-4 radiosynthesis time including HPLC purification and SPE formulation was 25 min from the end of bombardment to the end of synthesis (EOS). The radiochemical purity of [11C]SSI-4 was 98.45 ± 1.43% (n = 10) with a molar activity of 225.82 ± 33.54 GBq/μmol (6.10 ± 0.91 Ci/μmol) at the EOS. In vitro cell uptake study indicated all SSI-4 responsive HCC and RCC cell line uptakes demonstrate specific uptake and are blocked by standard compound SSI-4. Preliminary small animal PET/CT imaging study showed high specific uptake and block of [11C]SSI-4 uptake with co-injection of cold SSI-4 in high SCD1-expressing organs including lacrimal gland, brown fat, liver, and tumor. In summary, novel radiotracer [11C]SSI-4 was rapidly and automatedly radiosynthesized by direct [11C]CO2 fixation. Our preliminary biological evaluation results suggest [11C]SSI-4 could be a promising radiotracer for PET imaging of SCD1 overexpressing tumor tissues.
Collapse
Affiliation(s)
- Kang-Po Li
- Department of Radiology, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - Justyna J Gleba
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - Ephraim E Parent
- Department of Radiology, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - Joshua A Knight
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida 32224, United States
| | - Hancheng Cai
- Department of Radiology, Mayo Clinic, Jacksonville, Florida 32224, United States
| |
Collapse
|
8
|
Rong J, Haider A, Jeppesen TE, Josephson L, Liang SH. Radiochemistry for positron emission tomography. Nat Commun 2023; 14:3257. [PMID: 37277339 PMCID: PMC10241151 DOI: 10.1038/s41467-023-36377-4] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 01/30/2023] [Indexed: 06/07/2023] Open
Abstract
Positron emission tomography (PET) constitutes a functional imaging technique that is harnessed to probe biological processes in vivo. PET imaging has been used to diagnose and monitor the progression of diseases, as well as to facilitate drug development efforts at both preclinical and clinical stages. The wide applications and rapid development of PET have ultimately led to an increasing demand for new methods in radiochemistry, with the aim to expand the scope of synthons amenable for radiolabeling. In this work, we provide an overview of commonly used chemical transformations for the syntheses of PET tracers in all aspects of radiochemistry, thereby highlighting recent breakthrough discoveries and contemporary challenges in the field. We discuss the use of biologicals for PET imaging and highlight general examples of successful probe discoveries for molecular imaging with PET - with a particular focus on translational and scalable radiochemistry concepts that have been entered to clinical use.
Collapse
Affiliation(s)
- Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Achi Haider
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Troels E Jeppesen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Rd, Atlanta, GA, 30322, USA.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
9
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
10
|
Lindberg A, Vasdev N. Ring-opening of non-activated aziridines with [ 11C]CO 2 via novel ionic liquids. RSC Adv 2022; 12:21417-21421. [PMID: 35975081 PMCID: PMC9345297 DOI: 10.1039/d2ra03966d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/14/2022] [Indexed: 11/23/2022] Open
Abstract
Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2. The ability of ionic liquids to activate aziridines represents a simple methodology for the synthesis of 11C-carbamates and can be extended for CO2-fixation in organic and radiochemistry. Novel ionic liquids based on DBU and DBN halide salts were developed as a catalytic system for ring-opening of non-activated aziridines with [11C]CO2.![]()
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health Toronto ON M5T 1R8 Canada .,Department of Psychiatry, University of Toronto Toronto ON M5T 1R8 Canada
| |
Collapse
|
11
|
Hussain N, Ali Abdelkareem M, Alawadhi H, Elsaid K, Olabi AG. Synthesis of Cu-g-C3N4/MoS2 composite as a catalyst for electrochemical CO2 reduction to alcohols. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Crișan G, Moldovean-Cioroianu NS, Timaru DG, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23:5023. [PMID: 35563414 PMCID: PMC9103893 DOI: 10.3390/ijms23095023] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Positron emission tomography (PET) uses radioactive tracers and enables the functional imaging of several metabolic processes, blood flow measurements, regional chemical composition, and/or chemical absorption. Depending on the targeted processes within the living organism, different tracers are used for various medical conditions, such as cancer, particular brain pathologies, cardiac events, and bone lesions, where the most commonly used tracers are radiolabeled with 18F (e.g., [18F]-FDG and NA [18F]). Oxygen-15 isotope is mostly involved in blood flow measurements, whereas a wide array of 11C-based compounds have also been developed for neuronal disorders according to the affected neuroreceptors, prostate cancer, and lung carcinomas. In contrast, the single-photon emission computed tomography (SPECT) technique uses gamma-emitting radioisotopes and can be used to diagnose strokes, seizures, bone illnesses, and infections by gauging the blood flow and radio distribution within tissues and organs. The radioisotopes typically used in SPECT imaging are iodine-123, technetium-99m, xenon-133, thallium-201, and indium-111. This systematic review article aims to clarify and disseminate the available scientific literature focused on PET/SPECT radiotracers and to provide an overview of the conducted research within the past decade, with an additional focus on the novel radiopharmaceuticals developed for medical imaging.
Collapse
Affiliation(s)
- George Crișan
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | | | - Diana-Gabriela Timaru
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
| | - Gabriel Andrieș
- Department of Nuclear Medicine, County Clinical Hospital, Clinicilor 3-5, 400006 Cluj-Napoca, Romania;
| | - Călin Căinap
- The Oncology Institute “Prof. Dr. Ion Chiricuţă”, Republicii 34-36, 400015 Cluj-Napoca, Romania;
| | - Vasile Chiș
- Faculty of Physics, Babeş-Bolyai University, Str. M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; (G.C.); (N.S.M.-C.); (D.-G.T.)
- Institute for Research, Development and Innovation in Applied Natural Sciences, Babeș-Bolyai University, Str. Fântânele 30, 400327 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Klingler S, Holland JP. Automated light-induced synthesis of 89Zr-radiolabeled antibodies for immuno-positron emission tomography. Sci Rep 2022; 12:668. [PMID: 35027637 PMCID: PMC8758695 DOI: 10.1038/s41598-021-04626-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
Clinical production of 89Zr-radiolabeled antibodies (89Zr-mAbs) for positron emission tomography imaging relies on the pre-conjugation of desferrioxamine B (DFO) to the purified protein, followed by isolation and characterization of the functionalized intermediate, and then manual radiosynthesis. Although highly successful, this route exposes radiochemists to a potentially large radiation dose and entails several technological and economic hurdles that limit access of 89Zr-mAbs to just a specialist few Nuclear Medicine facilities worldwide. Here, we introduce a fully automated synthesis box that can produce individual doses of 89Zr-mAbs formulated in sterile solution in < 25 min starting from [89Zr(C2O4)4]4- (89Zr-oxalate), our good laboratory practice-compliant photoactivatable desferrioxamine-based chelate (DFO-PEG3-ArN3), and clinical-grade antibodies without the need for pre-purification of protein. The automated steps include neutralization of the 89Zr-oxalate stock, chelate radiolabeling, and light-induced protein conjugation, followed by 89Zr-mAb purification, formulation, and sterile filtration. As proof-of-principle, 89ZrDFO-PEG3-azepin-trastuzumab was synthesized directly from Herceptin in < 25 min with an overall decay-corrected radiochemical yield of 20.1 ± 2.4% (n = 3), a radiochemical purity > 99%, and chemical purity > 99%. The synthesis unit can also produce 89Zr-mAbs via the conventional radiolabeling routes from pre-functionalized DFO-mAbs that are currently used in the clinic. This automated method will improve access to state-of-the-art 89Zr-mAbs at the many Nuclear Medicine and research institutions that require automated devices for radiotracer production.
Collapse
Affiliation(s)
- Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
14
|
State of the art of radiochemistry for 11C and 18F PET tracers. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Lindberg A, Boyle AJ, Tong J, Harkness MB, Garcia A, Tran T, Zhai D, Liu F, Donnelly DJ, Vasdev N. Radiosynthesis of [ 11C]Ibrutinib via Pd-Mediated [ 11C]CO Carbonylation: Preliminary PET Imaging in Experimental Autoimmune Encephalomyelitis Mice. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2021; 1:772289. [PMID: 39355638 PMCID: PMC11440842 DOI: 10.3389/fnume.2021.772289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 10/03/2024]
Abstract
Ibrutinib is a first-generation Bruton's tyrosine kinase (BTK) inhibitor that has shown efficacy in autoimmune diseases and has consequently been developed as a positron emission tomography (PET) radiotracer. Herein, we report the automated radiosynthesis of [11C]ibrutinib through 11C-carbonylation of the acrylamide functional group, by reaction of the secondary amine precursor with [11C]CO, iodoethylene, and palladium-NiXantphos. [11C]Ibrutinib was reliably formulated in radiochemical yields of 5.4% ± 2.5% (non-decay corrected; n = 9, relative to starting [11C]CO2), radiochemical purity >99%, and molar activity of 58.8 ± 30.8 GBq/μmol (1.55 ± 0.83 Ci/μmol). Preliminary PET/magnetic resonance imaging with [11C]ibrutinib in experimental autoimmune encephalomyelitis (EAE) mice showed a 49% higher radioactivity accumulation in the spinal cord of mice with EAE scores of 2.5 vs. sham mice.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Amanda J Boyle
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Junchao Tong
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Michael B Harkness
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Armando Garcia
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Tritin Tran
- Bristol-Myers Squibb Research and Development, New York, NJ, United States
| | - Dongxu Zhai
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Fang Liu
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - David J Donnelly
- Bristol-Myers Squibb Research and Development, New York, NJ, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Zhou YP, Makaravage KJ, Brugarolas P. Radiolabeling with [ 11C]HCN for Positron emission tomography. Nucl Med Biol 2021; 102-103:56-86. [PMID: 34624831 PMCID: PMC8978408 DOI: 10.1016/j.nucmedbio.2021.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Hydrogen cyanide (HCN) is a versatile synthon for generating carbon‑carbon and carbon-heteroatom bonds. Unlike other one-carbon synthons (i.e., CO, CO2), HCN can function as a nucleophile (as in potassium cyanide, KCN) and an electrophile (as in cyanogen bromide, (CN)Br). The incorporation of the CN motif into organic molecules generates nitriles, hydantoins and (thio)cyanates, which can be converted to carboxylic acids, aldehydes, amides and amines. Such versatile chemistry is particularly attractive in PET radiochemistry where diverse bioactive small molecules incorporating carbon-11 in different positions need to be produced. The first examples of making [11C]HCN for radiolabeling date back to the 1960s. During the ensuing decades, [11C]cyanide labeling was popular for producing biologically important molecules including 11C-labeled α-amino acids, sugars and neurotransmitters. [11C]cyanation is now reemerging in many PET centers due to its versatility for making novel tracers. Here, we summarize the chemistry of [11C]HCN, review the methods to make [11C]HCN past and present, describe methods for labeling different types of molecules with [11C]HCN, and provide an overview of the reactions available to convert nitriles into other functional groups. Finally, we discuss some of the challenges and opportunities in [11C]HCN labeling such as developing more robust methods to produce [11C]HCN and developing rapid and selective methods to convert nitriles into other functional groups in complex molecules.
Collapse
Affiliation(s)
- Yu-Peng Zhou
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Katarina J Makaravage
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Pedro Brugarolas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Affiliation(s)
- Youwen Xu
- Independent Consultant/Contractor 3900 Ford Road, Unit 18O Philadelphia PA USA
| | - Wenchao Qu
- Departments of Psychiatry and Chemistry Stony Brook University New York NY USA
| |
Collapse
|
18
|
Luzi F, Gee AD, Bongarzone S. Silicon compounds in carbon-11 radiochemistry: present use and future perspectives. Org Biomol Chem 2021; 19:6916-6925. [PMID: 34319335 PMCID: PMC8372417 DOI: 10.1039/d1ob01202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Positron emission tomography (PET) is a powerful functional imaging technique that requires the use of positron emitting nuclides. Carbon-11 (11C) radionuclide has several advantages related to the ubiquity of carbon atoms in biomolecules and the conservation of pharmacological properties of the molecule upon isotopic exchange of carbon-12 with carbon-11. However, due to the short half-life of 11C (20.4 minutes) and the low scale with which it is produced by the cyclotron (sub-nanomolar concentrations), quick, robust and chemospecific radiolabelling strategies are required to minimise activity loss during incorporation of the 11C nuclide into the final product. To address some of the constraints of working with 11C, the use of silicon-based chemistry for 11C-labelling was proposed as a rapid and effective route for radiopharmaceutical production due to the broad applicability and high efficiency showed in organic chemistry. In the past years several organic chemistry methodologies have been successfully applied to 11C-chemistry. In this short review, we examine silicon-based 11C-chemistry, with a particular emphasis on the radiotracers that have been successfully produced and potential improvements to further expand the applicability of silicon in radiochemistry. The use of silicon-based reagents and precursors for carbon-11 labelling has shown wide applicability and robustness with short reaction times using mild conditions. In this review, recent advances and future perspectives are examined.![]()
Collapse
Affiliation(s)
- Federico Luzi
- School of Biomedical Engineering and Imaging Sciences, 4th floor Lambeth Wing, St Thomas' Hospital, King's College London, London SE1 7EH, UK.
| | | | | |
Collapse
|
19
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
20
|
Goudou F, Gee AD, Bongarzone S. Carbon-11 carboxylation of terminal alkynes with [ 11 C]CO 2. J Labelled Comp Radiopharm 2021; 64:237-242. [PMID: 33665888 DOI: 10.1002/jlcr.3907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/12/2022]
Abstract
A copper-catalysed radiosynthesis of carbon-11 radiolabelled carboxylic acids was developed by reacting terminal alkynes and cyclotron-produced carbon-11 carbon dioxide ([11 C]CO2 ) in the presence of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU). A small library of 11 C-labelled propiolic acid derivatives were obtained with a total synthesis time of 15 min from end of bombardment (EOB) with a (non-isolated) radiochemical yield ranging from 7% to 28%.
Collapse
Affiliation(s)
- Francesca Goudou
- Research and Development Department, SYNBIOLAB, Baie-Mahault, Guadeloupe
- Research and Development Department, PMB Head Office, Peynier, France
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| | - Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, St Thomas' Hospital, King's College London, London, UK
| |
Collapse
|
21
|
Goud NS, Bhattacharya A, Joshi RK, Nagaraj C, Bharath RD, Kumar P. Carbon-11: Radiochemistry and Target-Based PET Molecular Imaging Applications in Oncology, Cardiology, and Neurology. J Med Chem 2021; 64:1223-1259. [PMID: 33499603 DOI: 10.1021/acs.jmedchem.0c01053] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The positron emission tomography (PET) molecular imaging technique has gained its universal value as a remarkable tool for medical diagnosis and biomedical research. Carbon-11 is one of the promising radiotracers that can report target-specific information related to its pharmacology and physiology to understand the disease status. Currently, many of the available carbon-11 (t1/2 = 20.4 min) PET radiotracers are heterocyclic derivatives that have been synthesized using carbon-11 inserted different functional groups obtained from primary and secondary carbon-11 precursors. A spectrum of carbon-11 PET radiotracers has been developed against many of the upregulated and emerging targets for the diagnosis, prognosis, prediction, and therapy in the fields of oncology, cardiology, and neurology. This review focuses on the carbon-11 radiochemistry and various target-specific PET molecular imaging agents used in tumor, heart, brain, and neuroinflammatory disease imaging along with its associated pathology.
Collapse
Affiliation(s)
- Nerella Sridhar Goud
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Ahana Bhattacharya
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Raman Kumar Joshi
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Chandana Nagaraj
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| | - Pardeep Kumar
- Department of Neuroimaging and Interventional Radiology (NIIR), National Institute of Mental Health and Neuro Sciences (NIMHANS), Bengaluru 560 029, India
| |
Collapse
|
22
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
23
|
PET Radiochemistry. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
24
|
Fukumura T, Mori W, Ogawa M, Fujinaga M, Zhang MR. [ 11C]phosgene: Synthesis and application for development of PET radiotracers. Nucl Med Biol 2021; 92:138-148. [PMID: 32546396 DOI: 10.1016/j.nucmedbio.2020.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 11/26/2022]
Abstract
Carbon-11-labeled phosgene ([11C]phosgene, [11C]COCl2) is a useful labeling agent that connects two heteroatoms by inserting [11C]carbonyl (11C=O) function in carbamates, ureas, and carbonates, which are components of biologically important heterocyclic compounds and functional groups in drugs as a linker of fragments with in vivo stability. Development of 11C-labeled PET tracers has been performed using [11C]phosgene as a labeling agent. However, [11C]phosgene has not been frequently used for 11C-labeling because preparation of [11C]phosgene required dedicated synthesis apparatus (not commercially available) and had problems in reproducibility and reliability. In our laboratory, an improved method for synthesizing [11C]phosgene using a carbon tetrachloride detection tube kit in environmental air analysis and the automated synthesis system for preparing [11C]phosgene have been developed in 2009. This apparatus has been used for routine synthesis of 11C-labeled tracers 1-4 times/week. Using [11C]phosgene we have developed and produced many PET radiotracers containing [11C]urea and [11C]carbamate moieties. In this review, we report the performance of our method for preparing [11C]phosgene, including automated synthesis apparatus developed in house, and the application of [11C]phosgene for development and production of 11C-labeled PET tracers.
Collapse
Affiliation(s)
- Toshimitsu Fukumura
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Wakana Mori
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Masanao Ogawa
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan; SHI Accelerator Service, Ltd., Tokyo 141-8686, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
25
|
Zhao AY, Brooks AF, Raffel DM, Stauff J, Arteaga J, Scott PJH, Shao X. Fully Automated Radiosynthesis of [ 11C]Guanidines for Cardiac PET Imaging. ACS Med Chem Lett 2020; 11:2325-2330. [PMID: 33214848 DOI: 10.1021/acsmedchemlett.0c00479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Radiolabeled guanidines such as meta-iodobenzylguanidine (MIBG) find utility in nuclear medicine as both diagnostic imaging agents and radiotherapeutics and, over the years, numerous methods for incorporating radionuclides into guanidines have been developed. In connection with a project developing new positron emission tomography (PET) radiotracers for cardiac sympathetic nerve density, we had cause to prepare [11C]3F-PHPOG. However, it quickly became apparent that radiolabeling of guanidine scaffolds with carbon-11 has remained challenging, and historical methods lack compatibility with modern automated radiochemistry synthesis platforms and current Good Manufacturing Practice (cGMP) requirements. To address this challenge, we report a new automated method for radiolabeling guanidines with carbon-11. The method was used to prepare a series of [11C]guanidines in good radiochemical yield (8-76% by radio-HPLC) and was found to have broad substrate scope and tolerance of unprotected OH and NH functional groups. The method was used to synthesize [11C]3F-PHPOG for preclinical imaging, and suitability of the radiotracer for preclinical use was demonstrated through preliminary cardiac PET in New Zealand white rabbits which revealed good cardiac uptake and expected retention in the heart.
Collapse
Affiliation(s)
- Austin Y. Zhao
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Allen F. Brooks
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - David M. Raffel
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Jenelle Stauff
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Janna Arteaga
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Peter J. H. Scott
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
- Departments of Pharmacology and Medicinal Chemistry, University of Michigan, Ann Arbor Michigan 48109, United States
| | - Xia Shao
- Department of Radiology, University of Michigan, Ann Arbor Michigan 48109, United States
| |
Collapse
|
26
|
Luzi F, Gee AD, Bongarzone S. Rapid one-pot radiosynthesis of [carbonyl- 11C]formamides from primary amines and [ 11C]CO 2. EJNMMI Radiopharm Chem 2020; 5:20. [PMID: 32870409 PMCID: PMC7462944 DOI: 10.1186/s41181-020-00103-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/17/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Formamides are common motifs of biologically-active compounds (e.g. formylated peptides) and are frequently employed as intermediates to yield a number of other functional groups. A rapid, simple and reliable route to [carbonyl-11C]formamides would enable access to this important class of compounds as in vivo PET imaging agents. RESULTS A novel radiolabelling strategy for the synthesis of carbon-11 radiolabelled formamides ([11C]formamides) is presented. The reaction proceeded with the conversion of a primary amine to the corresponding [11C]isocyanate using cyclotron-produced [11C]CO2, a phosphazene base (2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine, BEMP) and phosphoryl chloride (POCl3). The [11C]isocyanate was subsequently reduced to [11C]formamide using sodium borohydride (NaBH4). [11C]Benzyl formamide was obtained with a radiochemical yield (RCY) of 80% in 15 min from end of cyclotron target bombardment and with an activity yield of 12%. This novel method was applied to the radiolabeling of aromatic and aliphatic formamides and the chemotactic amino acid [11C]formyl methionine (RCY = 48%). CONCLUSIONS This study demonstrates the feasibility of 11C-formylation of primary amines with the primary synthon [11C]CO2. The reactivity is proportional to the nucleophilicity of the precursor amine. This novel method can be used for the production of biomolecules containing a radiolabelled formyl group.
Collapse
Affiliation(s)
- Federico Luzi
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Antony D Gee
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| | - Salvatore Bongarzone
- School of Imaging Sciences & Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
27
|
Dahl K, Turner T, Vasdev N. Radiosynthesis of a Bruton's tyrosine kinase inhibitor, [ 11 C]Tolebrutinib, via palladium-NiXantphos-mediated carbonylation. J Labelled Comp Radiopharm 2020; 63:482-487. [PMID: 32726870 DOI: 10.1002/jlcr.3872] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
Bruton's tyrosine kinase (BTK) is a key component in the B-cell receptor signaling pathway and is consequently a target for in vivo imaging of B-cell malignancies as well as in multiple sclerosis (MS) with positron emission tomography (PET). A recent Phase 2b study with Sanofi's BTK inhibitor, Tolebrutinib (also known as [a.k.a.] SAR442168, PRN2246, or BTK'168) showed significantly reduced disease activity associated with MS. Herein, we report the radiosynthesis of [11 C]Tolebrutinib ([11 C]5) as a potential PET imaging agent for BTK. The N-[11 C]acrylamide moiety of [11 C]5 was labeled by 11 C-carbonylation starting from [11 C]CO, iodoethylene, and the secondary amine precursor via a novel palladium-NiXantphos-mediated carbonylation protocol, and the synthesis was fully automated using a commercial carbon-11 synthesis platform (TracerMaker™, Scansys Laboratorieteknik). [11 C]5 was obtained in a decay-corrected radiochemical yield of 37 ± 2% (n = 5, relative to starting [11 C]CO activity) in >99% radiochemical purity, with an average molar activity of 45 GBq/μmol (1200 mCi/μmol). We envision that this methodology will be generally applicable for the syntheses of labeled N-acrylamides.
Collapse
Affiliation(s)
- Kenneth Dahl
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Ontario, Canada
| | - Timothy Turner
- Sanofi MS/Neurology, Sanofi, Cambridge, Massachusetts, USA
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry, University of Toronto, Ontario, Canada
| |
Collapse
|
28
|
Young N, Pike VW, Taddei C. Rapid and Efficient Synthesis of [ 11C]Trifluoromethylarenes from Primary Aromatic Amines and [ 11C]CuCF 3. ACS OMEGA 2020; 5:19557-19564. [PMID: 32803050 PMCID: PMC7424730 DOI: 10.1021/acsomega.0c02027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/14/2020] [Indexed: 05/30/2023]
Abstract
Prior studies have shown that trifluoromethylarenes can be labeled in high molar activities (A m > 200 GBq/μmol) with positron-emitting carbon-11 (t 1/2 = 20.4 min) by the reaction of the copper(I) derivative of [11C]fluoroform [11C]CuCF3, with several types of precursors, such as aryl iodides, arylboronic acids, and aryldiazonium salts. Nonetheless, these precursors can be challenging to synthesize, and in the case of diazonium salts, are unstable. Methods that reduce challenges in precursor preparation for the synthesis of [11C]trifluoromethylarenes are desirable to enhance possibilities for developing biologically relevant 11C-labeled compounds as radiotracers for biomedical imaging with positron emission tomography (PET). Here, we explored the production of no-carrier-added [11C]trifluoromethylarenes from commercially available primary aromatic amines through reactions of [11C]CuCF3 with diazonium salts that were generated in situ. Moderate to high isolated decay-corrected radiochemical yields (RCY) (32-84%) were obtained rapidly (within 2 min) for many para-substituted and meta-substituted primary aromatic amines bearing a halo, methoxy, thiomethyl, hydroxy, nitro, nitrile, carboxyl, ethylcarboxy, or trifluoromethyl substituent. Null to low RCYs (0-13%) were observed only for ortho bromo-, nitro-, or nitrile-substituted precursors. This new radiosynthetic method usefully expands options for producing PET radiotracers bearing a [11C]trifluoromethyl group, especially from aryl amine precursors.
Collapse
Affiliation(s)
- Nicholas
J. Young
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| | - Victor W. Pike
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| | - Carlotta Taddei
- Molecular Imaging Branch, National
Institute of Mental Health, National Institutes
of Health, 10 Center
Drive, Rm B3 C346, Bethesda, Maryland 20892-1003, United States
| |
Collapse
|
29
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition‐Metal‐Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gianluca Destro
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | | | - Olivier Loreau
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - David‐Alexandre Buisson
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Lee Kingston
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Antonio Del Vecchio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Magnus Schou
- Karolinska Institutet 17176 Stockholm Sweden
- PET Science Centre, Precision Medicine, Oncology R&D AstraZeneca Karolinska Institutet 17176 Stockholm Sweden
| | - Charles S. Elmore
- Early Chemical Development Pharmaceutical Sciences, R&D AstraZeneca Gothenburg Sweden
| | - Frédéric Taran
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| | - Thibault Cantat
- Université Paris-Saclay CEA, CNRS NIMBE 91191 Gif-sur-Yvette France
| | - Davide Audisio
- Université Paris-Saclay CEA, Service de Chimie Bio-organique et de Marquage 91191 Gif-sur-Yvette France
| |
Collapse
|
30
|
Destro G, Horkka K, Loreau O, Buisson D, Kingston L, Del Vecchio A, Schou M, Elmore CS, Taran F, Cantat T, Audisio D. Transition-Metal-Free Carbon Isotope Exchange of Phenyl Acetic Acids. Angew Chem Int Ed Engl 2020; 59:13490-13495. [PMID: 32348625 PMCID: PMC7496475 DOI: 10.1002/anie.202002341] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/01/2020] [Indexed: 11/16/2022]
Abstract
A transition-metal-free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2 , this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14 C] and [13 C]. A proof of concept with [11 C] was also obtained with low molar activity valuable for distribution studies.
Collapse
Affiliation(s)
- Gianluca Destro
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | | | - Olivier Loreau
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - David‐Alexandre Buisson
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Lee Kingston
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Antonio Del Vecchio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Magnus Schou
- Karolinska Institutet17176StockholmSweden
- PET Science Centre, Precision Medicine, Oncology R&DAstraZenecaKarolinska Institutet17176StockholmSweden
| | - Charles S. Elmore
- Early Chemical DevelopmentPharmaceutical Sciences, R&DAstraZenecaGothenburgSweden
| | - Frédéric Taran
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| | - Thibault Cantat
- Université Paris-SaclayCEA, CNRSNIMBE91191Gif-sur-YvetteFrance
| | - Davide Audisio
- Université Paris-SaclayCEA, Service de Chimie Bio-organique et de Marquage91191Gif-sur-YvetteFrance
| |
Collapse
|
31
|
Abstract
A formal C-H carboxylation of unactivated arenes using CO2 in green solvents is described. The present strategy combines a sterically controlled Ir-catalyzed C-H borylation followed by a Cu-catalyzed carboxylation of the in situ generated organoboronates. The reaction is highly regioselective for the C-H carboxylation of 1,3-disubstituted and 1,2,3-trisubstituted benzenes, 1,2- or 1,4-symmetrically substituted benzenes, fluorinated benzenes and different heterocycles. The developed methodology was applied to the late-stage C-H carboxylation of commercial drugs and ligands.
Collapse
Affiliation(s)
- Ashot Gevorgyan
- Department of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| | - Kathrin H. Hopmann
- Hylleraas Centre for Quantum Molecular SciencesDepartment of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| | - Annette Bayer
- Department of ChemistryUiT The Arctic University of Norway9037TromsøNorway
| |
Collapse
|
32
|
Bongarzone S, Raucci N, Fontana IC, Luzi F, Gee AD. Carbon-11 carboxylation of trialkoxysilane and trimethylsilane derivatives using [ 11C]CO 2. Chem Commun (Camb) 2020; 56:4668-4671. [PMID: 32211652 PMCID: PMC7384297 DOI: 10.1039/d0cc00449a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and rapid carbon-11 carboxylation radiosynthesis method.
A novel carboxylation radiosynthesis methodology is described starting from cyclotron-produced [11C]CO2 and fluoride-activated silane derivatives. Six carbon-11 labelled carboxylic acids were obtained from their corresponding trimethylsilyl and trialkoxysilyl precursors in a one-pot labelling methodology. The radiochemical yields ranged from 19% to 93% within 12 minutes post [11C]CO2 delivery with a trapping efficiency of 21–89%.
Collapse
Affiliation(s)
- Salvatore Bongarzone
- School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London SE1 7EH, UK.
| | | | | | | | | |
Collapse
|
33
|
Duffy IR, Vasdev N, Dahl K. Copper(I)-Mediated 11C-Carboxylation of (Hetero)arylstannanes. ACS OMEGA 2020; 5:8242-8250. [PMID: 32309734 PMCID: PMC7161067 DOI: 10.1021/acsomega.0c00524] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
A novel copper-mediated carboxylation strategy of aryl- and heteroaryl-stannanes is described. The method serves as a mild (i.e., 1 atm) carboxylation method using stable carbon dioxide and is transferable as a radiosynthetic approach for carbon-11-labeled aromatic and heteroaromatic carboxylic acids using sub-stoichiometric quantities of [11C]CO2. The methodology was applied to the radiosynthesis of the retinoid X receptor agonist, [11C]bexarotene, with a decay-corrected radiochemical yield of 32 ± 5% and molar activity of 38 ± 23 GBq/μmol (n = 3).
Collapse
Affiliation(s)
- Ian R. Duffy
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Neil Vasdev
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
- Department
of Psychiatry, University of Toronto, 250 College Street, Toronto, ON M5T
1R8, Canada
| | - Kenneth Dahl
- Azrieli
Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T
1R8, Canada
| |
Collapse
|
34
|
Mair BA, Fouad MH, Ismailani US, Munch M, Rotstein BH. Rhodium-Catalyzed Addition of Organozinc Iodides to Carbon-11 Isocyanates. Org Lett 2020; 22:2746-2750. [DOI: 10.1021/acs.orglett.0c00729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Braeden A. Mair
- Departments of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Moustafa H. Fouad
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Uzair S. Ismailani
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Maxime Munch
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| | - Benjamin H. Rotstein
- Departments of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- Departments of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7
| |
Collapse
|
35
|
Synthesis and pharmacokinetic study of a 11C-labeled cholesterol 24-hydroxylase inhibitor using 'in-loop' [ 11C]CO 2 fixation method. Bioorg Med Chem Lett 2020; 30:127068. [PMID: 32178974 DOI: 10.1016/j.bmcl.2020.127068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/01/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Cholesterol 24-hydroxylase, also known as CYP46A1 (EC 1.14.13.98), is a monooxygenase and a member of the cytochrome P450 family. CYP46A1 is specifically expressed in the brain where it controls cholesterol elimination by producing 24S-hydroxylcholesterol (24-HC) as the major metabolite. Modulation of CYP46A1 activity may affect Aβ deposition and p-tau accumulation by changing 24-HC formation, which thereafter serves as potential therapeutic pathway for Alzheimer's disease. In this work, we showcase the efficient synthesis and preliminary pharmacokinetic evaluation of a novel cholesterol 24-hydroxylase inhibitor 1 for use in positron emission tomography.
Collapse
|
36
|
The chemistry of labeling heterocycles with carbon-11 or fluorine-18 for biomedical imaging. ADVANCES IN HETEROCYCLIC CHEMISTRY 2020. [DOI: 10.1016/bs.aihch.2019.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Taddei C, Pike VW. [ 11C]Carbon monoxide: advances in production and application to PET radiotracer development over the past 15 years. EJNMMI Radiopharm Chem 2019; 4:25. [PMID: 31659516 PMCID: PMC6751244 DOI: 10.1186/s41181-019-0073-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022] Open
Abstract
[11C]Carbon monoxide is an appealing synthon for introducing carbon-11 at a carbonyl position (C=O) in a wide variety of chemotypes (e.g., amides, ketones, acids, esters, and ureas). The prevalence of the carbonyl group in drug molecules and the present-day broad versatility of carbonylation reactions have led to an upsurge in the production of this synthon and in its application to PET radiotracer development. This review focuses on the major advances of the past 15 years.
Collapse
Affiliation(s)
- Carlotta Taddei
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Rm B3C342, Bethesda, MD, 20892-1003, USA
| |
Collapse
|
38
|
Buccino P, Savio E, Porcal W. Fully-automated radiosynthesis of the amyloid tracer [ 11C] PiB via direct [ 11C]CO 2 fixation-reduction. EJNMMI Radiopharm Chem 2019; 4:14. [PMID: 31659494 PMCID: PMC6635575 DOI: 10.1186/s41181-019-0065-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The β-amyloid radiotracer [11C] PiB is extensively used for the Positron Emission Tomography (PET) diagnosis of Alzheimer's Disease and related dementias. For clinical use, [11C] PiB is produced using the 11C-methylation method ([11C] Methyl iodide or [11C] methyl triflate as 11C-methylation agents), which represents the most employed 11C-labelling strategy for the synthesis of 11C-radiopharmaceuticals. Recently, the use of direct [11C]CO2 fixation for the syntheses of 11C-tracers has gained interest in the radiochemical community due to its importance in terms of radiochemical versatility and for permitting the direct employment of the cyclotron-produced precursor [11C]CO2. This paper presents an optimised alternative one-pot methodology of [11C]CO2 fixation-reduction for the rapid synthesis of [11C] PiB using an automated commercial platform and its quality control. RESULTS [11C] PiB was obtained from a (25.9 ± 13.2)% (Average ± Variation Coefficient, n = 3) (end of synthesis, decay corrected) radiochemical yield from trapped [11C]CO2 after 1 min of labelling time using PhSiH3 / TBAF as the fixation-reduction system in Diglyme at 150 °C. The radiochemical purity was higher than 95% in all cases, and the molar activity was (61.4 ± 1.6) GBq/μmol. The radiochemical yield and activity (EOS) of formulated [11C] PiB from cyclotron-produced [11C]CO2 was (14.8 ± 12.1)%, decay corrected) and 9.88 GBq (± 6.0%), respectively. These are higher values compared to that of the 11C-methylation method with [11C]CH3OTf (~ 8.3%). CONCLUSIONS The viability of the system PhSiH3 / TBAF to efficiently promote the radiosynthesis of [11C] PiB via direct [11C]CO2 fixation-reduction has been demonstrated. [11C] PiB was obtained through a fully automated radiosynthesis with a satisfactory yield, purity and molar activity. According to the results, the one-pot methodology employed could reliably yield sufficiently high tracer amounts for preclinical and clinical use.
Collapse
Affiliation(s)
- Pablo Buccino
- Centro Uruguayo de Imagenología Molecular (CUDIM), Av. Dr. Américo Ricaldoni 2010, PC 11600 Montevideo, Uruguay
| | - Eduardo Savio
- Centro Uruguayo de Imagenología Molecular (CUDIM), Av. Dr. Américo Ricaldoni 2010, PC 11600 Montevideo, Uruguay
| | - Williams Porcal
- Centro Uruguayo de Imagenología Molecular (CUDIM), Av. Dr. Américo Ricaldoni 2010, PC 11600 Montevideo, Uruguay
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Av. Gral. Flores 2124, PC 11800 Montevideo, Uruguay
| |
Collapse
|
39
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for Positron Emission Tomography: Recent Advances in 11 C-, 18 F-, 13 N-, and 15 O-Labeling Reactions. Angew Chem Int Ed Engl 2019; 58:2580-2605. [PMID: 30054961 PMCID: PMC6405341 DOI: 10.1002/anie.201805501] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Indexed: 01/07/2023]
Abstract
Positron emission tomography (PET) is a molecular imaging technology that provides quantitative information about function and metabolism in biological processes in vivo for disease diagnosis and therapy assessment. The broad application and rapid advances of PET has led to an increased demand for new radiochemical methods to synthesize highly specific molecules bearing positron-emitting radionuclides. This Review provides an overview of commonly used labeling reactions through examples of clinically relevant PET tracers and highlights the most recent developments and breakthroughs over the past decade, with a focus on 11 C, 18 F, 13 N, and 15 O.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Lei Zhang
- Medicine Design, Pfizer Inc., Cambridge, MA, 02139, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
40
|
Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemie der Positronenemissionstomographie: Aktuelle Fortschritte bei
11
C‐,
18
F‐,
13
N‐ und
15
O‐Markierungsreaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201805501] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Jian Rong
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lu Wang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Lei Zhang
- Medicine DesignPfizer Inc. Cambridge MA 02139 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| |
Collapse
|
41
|
Abstract
A novel carbon-11 radiolabelling methodology for the synthesis of the dialkylcarbonate functional group has been developed. The method uses cyclotron-produced short-lived [11C]CO2 (half-life 20.4 min) directly from the cyclotron target in a one-pot synthesis. Alcohol in the presence of base trapped [11C]CO2 efficiently forming an [11C]alkylcarbonate intermediate that subsequently reacted with an alkylchloride producing the di-substituted [11C]carbonate (34% radiochemical yield, determined by radio-HPLC) in 5 minutes from the end of [11C]CO2 cyclotron delivery.
Collapse
|
42
|
Haywood T, Cesarec S, Kealey S, Plisson C, Miller PW. Ammonium [ 11C]thiocyanate: revised preparation and reactivity studies of a versatile nucleophile for carbon-11 radiolabelling. MEDCHEMCOMM 2018; 9:1311-1314. [PMID: 30151085 PMCID: PMC6096773 DOI: 10.1039/c7md00425g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 05/11/2018] [Indexed: 12/12/2022]
Abstract
Herein we report the preparation of ammonium [11C]thiocyanate via the reaction of [11C]CS2 with ammonia. The [11C]SCN- ion is demonstrated as a potent nucleophile that can be used to readily generate a range of 11C-labelled thiocyanate molecules in high conversions. Furthermore, novel 11C-labelled thiazolone molecules can be easily prepared from the intermediate α-thiocyanatophenones via an acid mediated cyclisation reaction.
Collapse
Affiliation(s)
- Tom Haywood
- Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , London , UK . ; Tel: +44 (0)2875942847
| | - Sara Cesarec
- Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , London , UK . ; Tel: +44 (0)2875942847
| | - Steven Kealey
- Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , London , UK . ; Tel: +44 (0)2875942847
| | - Christophe Plisson
- Imanova Limited , Imperial College London , Hammersmith Hospital , Burlington Danes Building, Du Cane Road , London , W12 0NN , UK
| | - Philip W Miller
- Department of Chemistry , Imperial College London , South Kensington , SW7 2AZ , London , UK . ; Tel: +44 (0)2875942847
| |
Collapse
|
43
|
Del Vecchio A, Caillé F, Chevalier A, Loreau O, Horkka K, Halldin C, Schou M, Camus N, Kessler P, Kuhnast B, Taran F, Audisio D. Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO 2. Angew Chem Int Ed Engl 2018; 57:9744-9748. [PMID: 29862657 PMCID: PMC6099343 DOI: 10.1002/anie.201804838] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 12/22/2022]
Abstract
A robust, click-chemistry-inspired procedure for radiolabeling of cyclic ureas was developed. This protocol, suitable for all carbon isotopes (11 C, 13 C, 14 C), is based on the direct functionalization of carbon dioxide: the universal building block for carbon radiolabeling. The strategy is operationally simple and reproducible in different radiochemistry centers, exhibits remarkably wide substrate scope with short reaction times, and demonstrates superior reactivity as compared to previously reported systems. With this procedure, a variety of pharmaceuticals and an unprotected peptide were labeled with high radiochemical efficiency.
Collapse
Affiliation(s)
- Antonio Del Vecchio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEAInsermUniversité Paris SudCNRS, Université Paris-SaclayOrsayFrance
| | - Arnaud Chevalier
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Olivier Loreau
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Kaisa Horkka
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
| | - Christer Halldin
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
| | - Magnus Schou
- Psychiatry SectionDepartment of Clinical NeuroscienceKarolinska Institutet171 76StockholmSweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech UnitAstraZenecaKarolinska Institutet171 76StockholmSweden
| | - Nathalie Camus
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines, CEA-DRF-JOLIOT-SIMOPROUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEAInsermUniversité Paris SudCNRS, Université Paris-SaclayOrsayFrance
| | - Frédéric Taran
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| | - Davide Audisio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBMUniversité Paris-Saclay91191Gif sur YvetteFrance
| |
Collapse
|
44
|
Abstract
Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.
Collapse
Affiliation(s)
- Brian P Rempel
- 1 Department of Science, Augustana Faculty, University of Alberta, Edmonton, Alberta, Canada
| | - Eric W Price
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Christopher P Phenix
- 2 Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,3 Biomarker Discovery, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
45
|
Del Vecchio A, Destro G, Taran F, Audisio D. Recent developments in heterocycle labeling with carbon isotopes. J Labelled Comp Radiopharm 2018; 61:988-1007. [DOI: 10.1002/jlcr.3666] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/10/2018] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Antonio Del Vecchio
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Gianluca Destro
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Frédéric Taran
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| | - Davide Audisio
- CEA-Saclay, JOLIOT, Service de Chimie Bioorganique et de Marquage; Gif sur Yvette France
| |
Collapse
|
46
|
Del Vecchio A, Caillé F, Chevalier A, Loreau O, Horkka K, Halldin C, Schou M, Camus N, Kessler P, Kuhnast B, Taran F, Audisio D. Late-Stage Isotopic Carbon Labeling of Pharmaceutically Relevant Cyclic Ureas Directly from CO2. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Antonio Del Vecchio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA; Inserm; Université Paris Sud; CNRS, Université Paris-Saclay; Orsay France
| | - Arnaud Chevalier
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Olivier Loreau
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Kaisa Horkka
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Christer Halldin
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Magnus Schou
- Psychiatry Section; Department of Clinical Neuroscience; Karolinska Institutet; 171 76 Stockholm Sweden
- PET Science Centre, Precision Medicine and Genomics, IMED Biotech Unit; AstraZeneca; Karolinska Institutet; 171 76 Stockholm Sweden
| | - Nathalie Camus
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Pascal Kessler
- Service d'Ingénierie Moléculaire des Protéines, CEA-DRF-JOLIOT-SIMOPRO; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA; Inserm; Université Paris Sud; CNRS, Université Paris-Saclay; Orsay France
| | - Frédéric Taran
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| | - Davide Audisio
- Service de Chimie Bio-organique et de Marquage, CEA-DRF-JOLIOT-SCBM; Université Paris-Saclay; 91191 Gif sur Yvette France
| |
Collapse
|
47
|
Collier TL, Dahl K, Stephenson NA, Holland JP, Riley A, Liang SH, Vasdev N. Recent applications of a single quadrupole mass spectrometer in 11C, 18F and radiometal chemistry. J Fluor Chem 2018; 210:46-55. [PMID: 30410189 PMCID: PMC6217822 DOI: 10.1016/j.jfluchem.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Mass spectrometry (MS) has longstanding applications in radiochemistry laboratories, stemming from carbon-dating. However, research on the development of radiotracers for molecular imaging with either positron emission tomography (PET) or single photon emission computed tomography has yet to take full advantage of MS. This inertia has been attributed to the relatively low concentrations of radiopharmaceutical formulations and lack of access to the required MS equipment due to the high costs for purchase and maintenance of specialized MS systems. To date, single quadrupole (SQ)-MS coupled to liquid chromatography (LC) systems is the main form of MS that has been used in radiochemistry laboratories. These LC/MS systems are primarily used for assessing the chemical purity of radiolabeling precursor or standard molecules but also have applications in the determination of metabolites. Herein, we highlight personal experiences using a compact SQ-MS in our PET radiochemistry laboratories, to monitor the small amounts of carrier observed in most radiotracer preparations, even at high molar activities. The use of a SQ-MS in the observation of the low mass associated with non-radioactive species which are formed along with the radiotracer from the trace amounts of carrier found is demonstrated. Herein, we describe a pre-concentration system to detect dilute radiopharmaceutical formulations and metabolite analyses by SQ-MS. Selected examples where SQ-MS was critical for optimization of radiochemical reactions and for unequivocal characterization of radiotracers are showcased. We also illustrate examples where SQ-MS can be applied in identification of radiometal complexes and development of a new purification methodology for Pd-catalyzed radiofluorination reactions, shedding light on the identity of metal complexes present in the labelling solution.
Collapse
Affiliation(s)
- Thomas L. Collier
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Advion, Inc., Ithaca, New York, USA
| | - Kenneth Dahl
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nickeisha A. Stephenson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason P. Holland
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Adam Riley
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital (MGH) & Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Bragg RA, Sardana M, Artelsmair M, Elmore CS. New trends and applications in carboxylation for isotope chemistry. J Labelled Comp Radiopharm 2018; 61:934-948. [PMID: 29740851 PMCID: PMC6282598 DOI: 10.1002/jlcr.3633] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 11/25/2022]
Abstract
Carboxylations are an important method for the incorporation of isotopically labeled 14CO2 into molecules. This manuscript will review labeled carboxylations since 2010 and will present a perspective on the potential of recent unlabeled methodology for labeled carboxylations. The perspective portion of the manuscript is broken into 3 major sections based on product type, arylcarboxylic acids, benzylcarboxylic acids, and alkyl carboxylic acids, and each of those sections is further subdivided by substrate.
Collapse
Affiliation(s)
- Ryan A Bragg
- Isotope Chemistry, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Malvika Sardana
- Isotope Chemistry, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Markus Artelsmair
- Isotope Chemistry, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
49
|
Abstract
The process of discovering and developing a new pharmaceutical is a long, difficult, and risky process that requires numerous resources. Molecular imaging techniques such as PET have recently become a useful tool for making decisions along a drug candidate's development timeline. PET is a translational, noninvasive imaging technique that provides quantitative information about a potential drug candidate and its target at the molecular level. Using this technique provides decisional information to ensure that the right drug candidate is being chosen, for the right target, at the right dose within the right patient population. This review will focus on small molecule PET tracers and how they are used within the drug discovery process. PET provides key information about a drug candidate's pharmacokinetic and pharmacodynamic properties in both preclinical and clinical studies. PET is being used in all phases of the drug discovery and development process, and the goal of these studies are to accelerate the process in which drugs are developed.
Collapse
Affiliation(s)
- David J Donnelly
- Bristol-Myers Squibb Pharmaceutical Research and Development, Princeton, NJ.
| |
Collapse
|
50
|
Bongarzone S, Runser A, Taddei C, Dheere AKH, Gee AD. From [ 11C]CO 2 to [ 11C]amides: a rapid one-pot synthesis via the Mitsunobu reaction. Chem Commun (Camb) 2018; 53:5334-5337. [PMID: 28447672 PMCID: PMC5708528 DOI: 10.1039/c7cc01407d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Radiosynthesis of [11C]amides via the Mitsunobu reaction.
A novel amide synthesis methodology is described using amines, CO2 and Grignard reagents and Mitsunobu reagents. The method was applied to carbon-11 radiochemistry to label amides using cyclotron-produced [11C]CO2. The synthetic utility of the one-pot labelling methodology was demonstrated by producing [11C]melatonin. The incorporation of [11C]CO2 into [11C]melatonin was 36% – determined by radioHPLC 2 min post [11C]CO2 delivery.
Collapse
Affiliation(s)
- S Bongarzone
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A Runser
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - C Taddei
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A K Haji Dheere
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - A D Gee
- Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|