1
|
Bina F, Bani F, Khalilzadeh B, Gheit T, Karimi A. Advancements in fluorescent nanobiosensors for HPV detection: from integrating nanomaterials to DNA nanotechnology. Int J Biol Macromol 2025; 311:143619. [PMID: 40306516 DOI: 10.1016/j.ijbiomac.2025.143619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/19/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Human papillomavirus (HPV) is a leading cause of cervical cancer and other malignancies, necessitating the development of highly sensitive and specific detection tools. This review explores recent advancements in fluorescent nanobiosensors (FNBS) for HPV detection, focusing on the integration of nanomaterials and DNA nanotechnology, highlighting their contributions to improving sensitivity, specificity, and point-of-care (POC) usability. The review critically evaluates a range of nanomaterial-based FNBS, including those employing quantum and carbon dots, nanoclusters, nanosheets, and nanoparticles, discussing their underlying signal amplification mechanisms, target recognition strategies, and limitations related to toxicity, stability, and reproducibility. Furthermore, it examines the application of diverse DNA nanotechnology, such as DNA origami, DNAzyme, catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), and DNA hydrogel in improving FNBS performance. It also addresses the current challenges in clinical translation, emphasizing the necessity for large-scale production methods and thorough clinical validation to ensure biosafety. It also outlines the potential of innovative technologies, such as CRISPR-Cas-based diagnostics and artificial intelligence, to further revolutionize HPV detection and enable accessible, cost-effective screening, particularly in resource-limited settings. This review provides a valuable resource for researchers and clinicians seeking to develop next-generation FNBS for improved HPV diagnostics and cervical cancer prevention.
Collapse
Affiliation(s)
- Fateme Bina
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tarik Gheit
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), Lyon, France.
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
A fluorometric assay of thrombin using magnetic nanoparticles and enzyme-free hybridization chain reaction. Mikrochim Acta 2020; 187:295. [PMID: 32347383 DOI: 10.1007/s00604-020-04279-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
A fluorescence method based on functionalized magnetic nanoparticles (FMNPs) and hybridization chain reaction (HCR) is developed for the enzyme-free amplified determination of thrombin. In the proposed design, aptamer against thrombin was hybridized with the capture DNA-modified magnetic nanoparticles to yield the FMNPs. In the presence of thrombin, aptamers are released due to the specific and high-affinity binding between thrombin and its aptamer. The exposed capture DNA subsequently hybridized with the partial sequence of helper DNA, and the vacant sequence of helper DNA further hybridized with HCR products which is pre-formed by the alternate hybridization of single-stranded DNAs (H1 and H2). The immobilized HCR products were then labeled with YOYO-1 for fluorescence measurement. Fluorescence signal intensity of labeled YOYO-1 was measured at an emission wavelength of 519 nm (excitation under 488 nm) and used for calibration. By taking advantage of HCR amplification, this direct assay strategy showed a linear response in the 20- to 200-pM concentration range, and the limit of detection is 9.2 pM which is about 3-orders of magnitude lower than the serum thrombin concentration (10 nM) that triggers blood clotting. This developed method can efficiently differentiate the target protein from a protein matrix, and it is verified by determination of thrombin in spiked serum samples with recoveries in the range of 94.5-103.3%. Graphical abstract A fluorometry method for thrombin detection using magnetic nanoparticles and enzyme-free hybridization chain reaction.
Collapse
|
3
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
4
|
Li Z, Mao G, Du M, Tian S, Niu L, Ji X, He Z. A fluorometric turn-on aptasensor for mucin 1 based on signal amplification via a hybridization chain reaction and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots. Mikrochim Acta 2019; 186:233. [PMID: 30852673 DOI: 10.1007/s00604-019-3347-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022]
Abstract
A fluorometric method is described for the determination of the tumor biomarker mucin 1 (MUC1). It is based on signal amplification of the hybridization chain reaction (HCR), and the interaction between a luminescent ruthenium(II) complex and CdZnTeS quantum dots (QDs). If MUC1 bind to the biotin-labeled aptamer, it will initiate HCR with hairpins H1 and H2 to form a long-range dsDNA. The long nucleic acid chains are then linked on the surface of streptavidin-modified magnetic microparticles (MMPs) through streptavidin-biotin interaction. The luminescent ruthenium(II) complex is then embedded in the long dsDNA linked to the MMPs. Hence, there is little Ru complex in the supernatant after magnetic separation, and the fluorescence of the CdZnTeS QDs (best measured at excitation/emission wavelengths of 350/530 nm) is only slightly quenched. In the absence of target, the fluorescence of the CdZnTeS QDs is strongly quenched. Fluorescence increases linearly in the 0.2-100 ng·mL-1 MUC1 concentration range, and the LOD is 0.13 ng·mL-1 (at S/N = 3). The method was applied to the determination of MUC1 in spiked human serum samples. Graphical abstract A fluorometric turn-on aptasensor for mucin 1 is described that is based on the interaction between a Ru(II) complex and quantum dots (QDs). The detection system includes biotin-labeled aptamer-H0, hairpins H1 and H2, streptavidin-modified magnetic microparticles (MMPs), Ru(bpy)2(dppx)2+ and CdZnTeS QDs.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Mingyuan Du
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Songbai Tian
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Longqing Niu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
5
|
Mars A, Hamami M, Bechnak L, Patra D, Raouafi N. Curcumin-graphene quantum dots for dual mode sensing platform: Electrochemical and fluorescence detection of APOe4, responsible of Alzheimer's disease. Anal Chim Acta 2018; 1036:141-146. [DOI: 10.1016/j.aca.2018.06.075] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/03/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
6
|
The synthesis of a smart streptavidin-functionalized poly(N-isopropylacrylamide) composite and its application in the separation and detection of virus nucleic acid. Talanta 2018; 181:73-79. [PMID: 29426544 DOI: 10.1016/j.talanta.2017.12.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/22/2022]
Abstract
A new kind of polymeric material (PNIPAAm-co-SA) was prepared by conjugating a thermosensitive polymer, Poly (N-isopropylacrylamide) (PNIPAAm) with streptavidin (SA). This smart prepared composite displayed a controllable conformation change between an expanded and a collapsed form, below or above its lower critical solution temperature (LCST). Differential scanning calorimetry (DSC) analysis demonstrated that the PNIPAAm-co-SA bioconjugate showed the same LCST as the original synthetic polymer, PNIPAAm, which was also 32°C. Based on the specific interaction between SA and biotin, a higher capture efficiency of PNIPAAm-co-SA, which was almost 100% in PBS buffer solution and above 70% in serum was obtained, respectively. And the high affinity between PNIPAAm-co-SA and biotin was still maintained after three heating cycles. Subsequently, the variola virus (small pox, VV) oligonucleotide sequence was chosen as a model to demonstrate the sensitivity of the biosensor which was fabricated based on PNIPAAm-co-SA. The biosensor exhibited the ability to separate and enrich targets from complicated system with its phase transition ability, and high sensitivity toward VV-targets were achieved. Moreover, other types of targets such as proteins and cells, could be detected by changing the biotin-captures, which indicated the broad applicability of biosensors based on this smart polymer material.
Collapse
|
7
|
Zhang H, Liu X, Liu M, Gao T, Huang Y, Liu Y, Zeng W. Gene detection: An essential process to precision medicine. Biosens Bioelectron 2018; 99:625-636. [DOI: 10.1016/j.bios.2017.08.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/12/2017] [Indexed: 01/08/2023]
|
8
|
Zhao T, Zhang HS, Tang H, Jiang JH. Nanopore biosensor for sensitive and label-free nucleic acid detection based on hybridization chain reaction amplification. Talanta 2017; 175:121-126. [PMID: 28841968 DOI: 10.1016/j.talanta.2017.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 11/25/2022]
Abstract
A label-free nanopore biosensor for detection of DNA target is proposed utilizing hybridization chain reaction (HCR) strategy for signal amplification. The DNA target triggered HCR to form large DNA nanostructure inside the nanopore and out the nanopore membrane, which inducing the ionic current decrease effectively due to the blockage of the nanopore. The developed method achieves a desirable sensitivity of 30fM with a wide linear dynamic range from 0.1 to 10pM and demonstrated good application for real sample analysis. This work has great potential to be applied in the early diagnosis of gene-related diseases and provide a new paradigm for label-free nucleic acid amplification strategy in ultrasensitive nanopore biosensor.
Collapse
Affiliation(s)
- Tao Zhao
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Hong-Shuai Zhang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | - Hao Tang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| | - Jian-Hui Jiang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
9
|
A Dual-signal Amplification Method for DNA Detection Based on Exonuclease III and Fluorescence Quenching Ability of MoS 2 Nanosheet. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)60997-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
A cyclometalated iridium(III) complex used as a conductor for the electrochemical sensing of IFN-γ. Sci Rep 2017; 7:42740. [PMID: 28198433 PMCID: PMC5309891 DOI: 10.1038/srep42740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 01/13/2017] [Indexed: 01/08/2023] Open
Abstract
A novel iridium(III) complex was prepared and used as a conductor for sensitive and enzyme-free electrochemical detection of interferon gamma (IFN-γ). This assay is based on a dual signal amplification mechanism involving positively charged gold nanoparticles ((+)AuNPs) and hybridization chain reaction (HCR). To construct the sensor, nafion (Nf) and (+)AuNPs composite membrane was first immobilized onto the electrode surface. Subsequently, a loop-stem structured capture probe (CP) containing a special IFN-γ interact strand was modified onto the (+)AuNP surface via the formation of Au-S bonds. Upon addition of IFN-γ, the loop-stem structure of CP was opened, and the newly exposed "sticky" region of CP then hybridized with DNA hairpin-1 (H1), which in turn opened its hairpin structure for hybridizing with DNA hairpin-2 (H2). Happen of HCR between H1 and H2 thus generated a polymeric duplex DNA (dsDNA) chain. Meanwhile, the iridium(III) complex could interact with the grooves of the dsDNA polymer, producing a strong current signal that was proportional to IFN-γ concentration. Thus, sensitive detection of IFN-γ could be realized with a detection limit down to 16.3 fM. Moreover, satisfied results were achieved by using this method for the detection of IFN-γ in human serum samples.
Collapse
|
11
|
Guo Q, Bian F, Liu Y, Qu X, Hu X, Sun Q. Hybridization chain reactions on silica coated Qbeads for the colorimetric detection of multiplex microRNAs. Chem Commun (Camb) 2017; 53:4954-4957. [DOI: 10.1039/c7cc00462a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An array of Qbead@SiO2 integrated with target binding, hybridization chain reaction and staining achieved colorimetric detection of multiplex miRNAs.
Collapse
Affiliation(s)
- Qingsheng Guo
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Feika Bian
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Yuqian Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Xiaojun Qu
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Xianyun Hu
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science & Medical Engineering
- Southeast University
- Nanjing 210096
- P. R. China
| |
Collapse
|
12
|
DNA hybridization chain reaction and DNA supersandwich self-assembly for ultrasensitive detection. Sci China Chem 2016. [DOI: 10.1007/s11426-016-0262-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Li N, Chen J, Luo M, Chen C, Ji X, He Z. Highly sensitive chemiluminescence biosensor for protein detection based on the functionalized magnetic microparticles and the hybridization chain reaction. Biosens Bioelectron 2016; 87:325-331. [PMID: 27573299 DOI: 10.1016/j.bios.2016.08.067] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/29/2016] [Accepted: 08/19/2016] [Indexed: 12/29/2022]
Abstract
An ultrasensitive chemiluminescence (CL) biosensor for the detection of protein is developed in this study based on the functionalized magnetic microparticles (MMPs) and the hybridization chain reaction (HCR). First, the primer hybridized with the thrombin aptamer conjugated on the surface of MMPs. Then the HCR was triggered by part of the primer and its products were assembled on the surface of the MMPs. Through the interaction between streptavidin and biotin, the streptavidin-horseradish peroxidase (SA-HRP) was coupled with the HCR products. In the presence of thrombin, the HCR products conjugating with SA-HRP were released from the surface of MMPs after the aptamer recognized and bound to its target molecule. So the released SA-HRP in the supernatant produced a significant chemiluminescence imaging signal after the addition of H2O2-luminol. The detection limit of thrombin with this method could be as low as 9.7fM. Besides, the sensing strategy was modified by changing the adding order of reagents that was then successfully applied in the detection of thrombin in complex sample. What's more, the DNA detection also could be carried out with this method, which demonstrated the universality of the proposed sensing strategy.
Collapse
Affiliation(s)
- Ningxing Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
| | - Jinyang Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
| | - Ming Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
| | - Chaohui Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 China.
| |
Collapse
|
14
|
Ang YS, Yung LYL. Rational design of hybridization chain reaction monomers for robust signal amplification. Chem Commun (Camb) 2016; 52:4219-22. [PMID: 26912178 DOI: 10.1039/c5cc08907g] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We established four-point guidelines for the sequence design of hairpin monomers in hybridization chain reaction (HCR). This enabled greater flexibility to customize specific hairpin sequences for use with the readout platform of interest. Using shorter hairpin stem length, a one-pot signal amplification system was demonstrated by incorporating distance-sensitive Förster resonance energy transfer (FRET) readout.
Collapse
Affiliation(s)
- Yan Shan Ang
- Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| | - Lin-Yue Lanry Yung
- Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585.
| |
Collapse
|
15
|
Zhang C, Ding C, Xiang D, Li L, Ji X, He Z, Xian Y. DNA Functionalized Fluorescent Quantum Dots for Bioanalytical Applications. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Microfluidic generation of magnetic-fluorescent Janus microparticles for biomolecular detection. Talanta 2016; 151:126-131. [PMID: 26946019 DOI: 10.1016/j.talanta.2016.01.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/08/2016] [Accepted: 01/12/2016] [Indexed: 11/21/2022]
Abstract
Fluorescent magnetic multifunctional microparticles were fabricated by a facile droplet microfluidic strategy. Two sodium alginate streams, one doped with Fe3O4 nanoparticles (NPs) and the other with CdSe/ZnS quantum dots, were introduced into a flow-focusing channel as a type of parallel laminar flow to form droplets containing two distinct parts. Then, at the serpentine channel, the Ca(2+) in the oil phase diffused into the droplets, causing the solidification of the droplets. Thus, the Janus microparticles with excellent magnetic/fluorescent properties formed. The flow conditions were optimized and the effects of the flow rates on magnetic/fluorescent compositions were carefully investigated. Luminescent labeling and magnetic separation were simultaneously realized with the newly designed microparticles. Moreover, spatial separation between Fe3O4 NPs and QDs prevented the interference of QDs photoluminescence by the magnetic particles. The as-prepared fluorescent magnetic Janus particles were also successfully employed for DNA assay, which demonstrated the potential of the multifunctional microbeads in biological applications.
Collapse
|
17
|
Xiong Y, Lin L, Zhang X, Wang G. Label-free electrochemiluminescent detection of transcription factors with hybridization chain reaction amplification. RSC Adv 2016. [DOI: 10.1039/c6ra00701e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Label-free and efficient ECL strategy for detection of NF-κB based on the HCR signal amplification.
Collapse
Affiliation(s)
- Yunfang Xiong
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Lin Lin
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Xiaojun Zhang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing, Anhui Province
- Key Laboratory of Functional Molecular Solids, Anhui Province
- College of Chemistry and Materials Science
- Center for Nano Science and Technology
- Anhui Normal University
| |
Collapse
|
18
|
Li Z, Miao X, Xing K, Zhu A, Ling L. Enhanced electrochemical recognition of double-stranded DNA by using hybridization chain reaction and positively charged gold nanoparticles. Biosens Bioelectron 2015. [DOI: 10.1016/j.bios.2015.06.070] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Hybridization chain reaction and gold nanoparticles dual signal amplification for sensitive glucose detection. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Tang T, Deng J, Zhang M, Shi G, Zhou T. Quantum dot-DNA aptamer conjugates coupled with capillary electrophoresis: A universal strategy for ratiometric detection of organophosphorus pesticides. Talanta 2015; 146:55-61. [PMID: 26695234 DOI: 10.1016/j.talanta.2015.08.023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 11/29/2022]
Abstract
Based on the highly sensitivity and stable-fluorescence of water-soluble CdTe/CdS core-shell quantum dots (QDs) with broad-specificity DNA aptamers, a novel ratiometric detection strategy was proposed for the sensitive detection of organophosphorus pesticides by capillary electrophoresis with laser-induced fluorescence (CE-LIF). The as-prepared QDs were first conjugated with the amino-modified oligonucleotide (AMO) by amidation reaction, which is partial complementary to the DNA aptamer of organophosphorus pesticides. Then QD-labeled AMO (QD-AMO) was incubated with the DNA aptamer to form QD-AMO-aptamer duplex. When the target organophosphorus pesticides were added, they could specifically bind the DNA aptamer, leading to the cleavage of QD-AMO-aptamer duplex, accompany with the release of QD-AMO. As a result, the ratio of peak height between QD-AMO and QD-AMO-aptamer duplex changed in the detection process of CE-LIF. This strategy was subsequently applied for the detection of phorate, profenofos, isocarbophos, and omethoate with the detection limits of 0.20, 0.10, 0.17, and 0.23μM, respectively. This is the first report about using QDs as the signal indicators for organophosphorus pesticides detection based on broad-specificity DNA aptamers by CE-LIF, thus contributing to extend the scope of application of QDs in different fields. The proposed method has great potential to be a universal strategy for rapid detection of aptamer-specific small molecule targets by simply changing the types of aptamer sequences.
Collapse
Affiliation(s)
- Tingting Tang
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 PR China.
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241 PR China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
21
|
Torréns M, Ortiz M, Turner AP, Beni V, O'Sullivan CK. Amperometric detection of Francisella tularensis genomic sequence on Zn-mediated diazonium modified substrates. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
22
|
An enzyme-free and label-free fluorescent biosensor for small molecules by G-quadruplex based hybridization chain reaction. Talanta 2015; 138:15-19. [PMID: 25863365 DOI: 10.1016/j.talanta.2015.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/24/2015] [Accepted: 02/01/2015] [Indexed: 11/23/2022]
Abstract
An enzyme-free and label-free fluorescent biosensor is developed by G-quadruplex-based hybridization chain reaction (HCR) for small molecules, using adenosine triphosphate (ATP) as the model. Aptamer probes for the recognition of small molecules are hybridized with blocking probes. The G-quadruplex sequences are incorporated into one of the two HCR hairpin probes. In the presence of small molecules (ATP), the formation of aptamer-ATP bioaffinity complexes induces the release of blocking probes; the released blocking probes initiate HCR and numerous G-quadruplexes along DNA nanowires are self-assembled after the HCR process. Using N-methyl mesoporphyrin IX (NMM) as the fluorophore, a "turn-on" fluorescence response can be achieved and detected as low as 15 μmol L(-1) of ATP. This biosensor is applied to detect ATP in biologic samples with satisfactory results.
Collapse
|
23
|
Ikbal J, Lim GS, Gao Z. The hybridization chain reaction in the development of ultrasensitive nucleic acid assays. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.08.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Deng H, Gao Z. Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta 2015; 853:30-45. [DOI: 10.1016/j.aca.2014.09.037] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 12/31/2022]
|
25
|
Su C, Liu Y, Ye T, Xiang X, Ji X, He Z. Rolling cycle amplification based single-color quantum dots–ruthenium complex assembling dyads for homogeneous and highly selective detection of DNA. Anal Chim Acta 2015; 853:495-500. [DOI: 10.1016/j.aca.2014.10.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/11/2014] [Accepted: 10/15/2014] [Indexed: 12/11/2022]
|
26
|
Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization. Biosens Bioelectron 2014; 66:520-6. [PMID: 25500528 DOI: 10.1016/j.bios.2014.11.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 12/16/2022]
Abstract
A novel highly sensitive colorimetric assay for DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization was established. The DNA modified superparamagnetic beads were demonstrated to capture and enrich the target DNA in the hybridization buffer or human plasma. The hybridization chain reaction and enzyme-induced silver metallization on the gold nanoparticles were used as cascade signal amplification for the detection of target DNA. The metalization of silver on the gold nanoparticles induced a significant color change from red to yellow until black depending on the concentration of the target DNA, which could be recognized by naked eyes. This method showed a good specificity for the target DNA detection, with the capabilty to discriminate single-base-pair mismatched DNA mutation (single nucleotide polymorphism). Meanwhile, this approach exhibited an excellent anti-interference capability with the convenience of the magentic seperation and washing, which enabled its usage in complex biological systems such as human blood plasma. As an added benefit, the utilization of hybridization chain reaction and enzyme-induced metallization improved detection sensitivity down to 10pM, which is about 100-fold lower than that of traditional unamplified homogeneous assays.
Collapse
|
27
|
Qiu X, Wang P, Cao Z. Hybridization chain reaction modulated DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelectron 2014; 60:351-7. [DOI: 10.1016/j.bios.2014.04.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/22/2014] [Accepted: 04/22/2014] [Indexed: 12/11/2022]
|
28
|
Guo Q, Chen Y, Song Z, Guo L, Fu F, Chen G. Label-free and enzyme-free sensitive fluorescent detection of human immunodeficiency virus deoxyribonucleic acid based on hybridization chain reaction. Anal Chim Acta 2014; 852:244-9. [PMID: 25441904 DOI: 10.1016/j.aca.2014.09.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
A label-free and enzyme-free sensitive fluorescent detection of human immunodeficiency virus (HIV) deoxyribonucleic acid (DNA) based on isothermal hybridization chain reaction (HCR) was developed. A G-quadruplex sequence which was incorporated into one of the two hairpin probes was inactive in the absence of target DNA. However, at the presence of target DNA numerous G-quadruplexes along DNA nanowires were self-assembled through HCR. Using N-methyl mesoporphyrin IX (NMM) as the fluorophore, a "turn-on" fluorescent response would be achieved and detected as low as 0.5 nmol L(-1) of HIV DNA. This proposed method was applied to detect HIV DNA in biologic samples with satisfactory results.
Collapse
Affiliation(s)
- Qingquan Guo
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ying Chen
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Zhiping Song
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Liangqia Guo
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Guonan Chen
- Ministry of Education Key Laboratory of Analysis and Detection for food safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
29
|
Song C, Yang X, Wang K, Wang Q, Huang J, Liu J, Liu W, Liu P. Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles. Anal Chim Acta 2014; 827:74-9. [DOI: 10.1016/j.aca.2014.04.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 11/29/2022]
|
30
|
Sang F, Huang X, Ren J. Characterization and separation of semiconductor quantum dots and their conjugates by capillary electrophoresis. Electrophoresis 2014; 35:793-803. [DOI: 10.1002/elps.201300528] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/03/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Fuming Sang
- School of Marine Science and Technology; Harbin Institute of Technology; Weihai P. R. China
| | - Xiangyi Huang
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| | - Jicun Ren
- College of Chemistry & Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Jiaotong University; Shanghai P. R. China
| |
Collapse
|
31
|
Huang YQ, Cai PY, Liu JM, Ma XD, Huang QT, Jiao L, Zheng ZY, Huang LZ. Ultra-sensitive phosphorescence sensor for the detection of trace As(v) based on the signal amplification effect of As(v) catalyzing H2O2 oxidize CdTe-Cys-quantum dots. RSC Adv 2014. [DOI: 10.1039/c3ra45192e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
32
|
Mu Q, Li Y, Ma Y, Zhong X. Visual detection of biological thiols based on lightening quantum dot–TiO2 composites. Analyst 2014; 139:996-9. [DOI: 10.1039/c3an01957h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|