1
|
Shimo T, Hasegawa J, Yoshioka K, Nakatsuji Y, Aso K, Tachibana K, Nagata T, Yokota T, Obika S. Effect of chemical modification on the exon-skipping activity of heteroduplex oligonucleotides. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102468. [PMID: 40034207 PMCID: PMC11875208 DOI: 10.1016/j.omtn.2025.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
We applied heteroduplex oligonucleotide (HDO) technology, which uses an oligonucleotide hybridized with a complementary strand, to efficiently deliver locked nucleic acid (LNA)-based splice-switching oligonucleotides (SSOs) to the nucleus. Using an in vitro assay involving cationic lipids, we revealed that HDO technology increased the exon-skipping activity of LNA-based SSOs. To assess the effect of heteroduplex SSOs (HDSSOs) on exon-skipping activity, we designed and evaluated various HDSSOs using a series of complementary oligonucleotides with different sugar chemistries (DNA, RNA, and LNA), linkages (phosphodiester; PO and phosphorothioate; PS linkages), and lengths. HDO with different complementary oligonucleotide designs demonstrated a variety of exon-skipping activities. Next, we investigated the intracellular behavior of HDOs, which seemed to affect their efficient exon-skipping activity. We found that HDO technology increased the uptake of both SSOs and complementary oligonucleotides into the nuclei. Additionally, a series of complementary oligonucleotides showed different intracellular stabilities, and complementary oligonucleotide design appears to be one of the key factors affecting efficient exon skipping. Finally, we examined the exon-skipping activity of HDSSOs in mdx mice and found that HDSSOs exhibited higher exon-skipping activity than single-stranded LNA-based SSOs in these mice under intramuscular injections.
Collapse
Affiliation(s)
- Takenori Shimo
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Juri Hasegawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Yusuke Nakatsuji
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Kotomi Aso
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Keisuke Tachibana
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Darrah K, Albright S, Kumbhare R, Tsang M, Chen JK, Deiters A. Antisense Oligonucleotide Activation via Enzymatic Antibiotic Resistance Mechanism. ACS Chem Biol 2023; 18:2176-2182. [PMID: 37326511 PMCID: PMC10592181 DOI: 10.1021/acschembio.3c00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
The structure and mechanism of the bacterial enzyme β-lactamase have been well-studied due to its clinical role in antibiotic resistance. β-Lactamase is known to hydrolyze the β-lactam ring of the cephalosporin scaffold, allowing a spontaneous self-immolation to occur. Previously, cephalosporin-based sensors have been developed to evaluate β-lactamase expression in both mammalian cells and zebrafish embryos. Here, we present a circular caged morpholino oligonucleotide (cMO) activated by β-lactamase-mediated cleavage of a cephalosporin motif capable of silencing the expression of T-box transcription factor Ta (tbxta), also referred to as no tail a (ntla), eliciting a distinct, observable phenotype. We explore the use of β-lactamase to elicit a biological response in aquatic embryos for the first time and expand the utility of cephalosporin as a cleavable linker beyond targeting antibiotic-resistant bacteria. The addition of β-lactamase to the current suite of enzymatic triggers presents unique opportunities for robust, orthogonal control over endogenous gene expression in a spatially resolved manner.
Collapse
Affiliation(s)
- Kristie
E. Darrah
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Savannah Albright
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Rohan Kumbhare
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department
of Developmental Biology, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - James K. Chen
- Department
of Chemical and Systems Biology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Alexander Deiters
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
3
|
Yang Y, Liu Z, Ma H, Cao M. Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224076. [PMID: 36432361 PMCID: PMC9693978 DOI: 10.3390/nano12224076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure-function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Liu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
4
|
Takada H, Tsuchiya K, Demizu Y. Helix-Stabilized Cell-Penetrating Peptides for Delivery of Antisense Morpholino Oligomers: Relationships among Helicity, Cellular Uptake, and Antisense Activity. Bioconjug Chem 2022; 33:1311-1318. [PMID: 35737901 DOI: 10.1021/acs.bioconjchem.2c00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The secondary structures of cell-penetrating peptides (CPPs) influence their properties including their cell-membrane permeability, tolerability to proteases, and intracellular distribution. Herein, we developed helix-stabilized arginine-rich peptides containing α,α-disubstituted α-amino acids and their conjugates with antisense phosphorodiamidate morpholino oligomers (PMOs), to investigate the relationships among the helicity of the peptides, cellular uptake, and antisense activity of the peptide-conjugated PMOs. We demonstrated that helical CPPs can efficiently deliver the conjugated PMO into cells compared with nonhelical CPPs and that their antisense activities are synergistically enhanced in the presence of an endosomolytic reagent or an endosomal escape domain peptide.
Collapse
Affiliation(s)
- Hiroyuki Takada
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan
| | - Keisuke Tsuchiya
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Pharmacy, Showa University, Tokyo 142-8555, Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences, Kanagawa 210-9501, Japan.,Graduate School of Medical Life Science, Yokohama City University, Kanagawa 236-0027, Japan.,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Dastpeyman M, Karas JA, Amin A, Turner BJ, Shabanpoor F. Modular Synthesis of Trifunctional Peptide-oligonucleotide Conjugates via Native Chemical Ligation. Front Chem 2021; 9:627329. [PMID: 33738276 PMCID: PMC7962911 DOI: 10.3389/fchem.2021.627329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cell penetrating peptides (CPPs) are being increasingly used as efficient vectors for intracellular delivery of biologically active agents, such as therapeutic antisense oligonucleotides (ASOs). Unfortunately, ASOs have poor cell membrane permeability. The conjugation of ASOs to CPPs have been shown to significantly improve their cellular permeability and therapeutic efficacy. CPPs are often covalently conjugated to ASOs through a variety of chemical linkages. Most of the reported approaches for ligation of CPPs to ASOs relies on methodologies that forms non-native bond due to incompatibility with in-solution phase conjugation. These approaches have low efficiency and poor yields. Therefore, in this study, we have exploited native chemical ligation (NCL) as an efficient strategy for synthesizing CPP-ASO conjugates. A previously characterized CPP [ApoE(133-150)] was used to conjugate to a peptide nucleic acid (PNA) sequence targeting human survival motor neuron-2 (SMN2) mRNA which has been approved by the FDA for the treatment of spinal muscular atrophy. The synthesis of ApoE(133-150)-PNA conjugate using chemo-selective NCL was highly efficient and the conjugate was obtained in high yield. Toward synthesizing trifunctional CPP-ASO conjugates, we subsequently conjugated different functional moieties including a phosphorodiamidate morpholino oligonucleotide (PMO), an additional functional peptide or a fluorescent dye (Cy5) to the thiol that was generated after NCL. The in vitro analysis of the bifunctional CPP-PNA and trifunctional CPP-(PMO)-PNA, CPP-(peptide)-PNA and CPP-(Cy5)-PNA showed that all conjugates are cell-permeable and biologically active. Here we demonstrated chemo-selective NCL as a highly efficient and superior conjugation strategy to previously published methods for facile solution-phase synthesis of bi-/trifunctional CPP-ASO conjugates.
Collapse
Affiliation(s)
- Mohadeseh Dastpeyman
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, Parkville, VIC, Australia.,The Bio21 Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Dastpeyman M, Sharifi R, Amin A, Karas JA, Cuic B, Pan Y, Nicolazzo JA, Turner BJ, Shabanpoor F. Endosomal escape cell-penetrating peptides significantly enhance pharmacological effectiveness and CNS activity of systemically administered antisense oligonucleotides. Int J Pharm 2021; 599:120398. [PMID: 33640427 DOI: 10.1016/j.ijpharm.2021.120398] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides (ASOs) are an emerging class of gene-specific therapeutics for diseases associated with the central nervous system (CNS). However, ASO delivery across the blood-brain barrier (BBB) to their CNS target cells remains a major challenge. Since ASOs are mainly taken up into the brain capillary endothelial cells interface through endosomal routes, entrapment in the endosomal compartment is a major obstacle for efficient CNS delivery of ASOs. Therefore, we evaluated the effectiveness of a panel of cell-penetrating peptides (CPPs) bearing several endosomal escape domains for the intracellular delivery, endosomal release and antisense activity of FDA-approved Spinraza (Nusinersen), an ASO used to treat spinal muscular atrophy (SMA). We identified a CPP, HA2-ApoE(131-150), which, when conjugated to Nusinersen, showed efficient endosomal escape capability and significantly increased the level of full-length functional mRNA of the survival motor neuron 2 (SMN2) gene in SMA patient-derived fibroblasts. Treatment of SMN2 transgenic adult mice with this CPP-PMO conjugate resulted in a significant increase in the level of full-length SMN2 in the brain and spinal cord. This work provides proof-of-principle that integration of endosomal escape domains with CPPs enables higher cytosolic delivery of ASOs, and more importantly enhances the efficiency of BBB-permeability and CNS activity of systemically administered ASOs.
Collapse
Affiliation(s)
- Mohadeseh Dastpeyman
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Ramin Sharifi
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - John A Karas
- School of Chemistry, The University of Melbourne, VIC 3010, Australia; The Bio21 Institute, University of Melbourne, 30 Flemington Rd., VIC 3010, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia; The Perron Institute for Neurological and Translational Science, Queen Elizabeth Medical Centre, Nedlands, Western Australia 6150, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia.
| |
Collapse
|
7
|
Karas J, Turner BJ, Shabanpoor F. The Assembly of Fluorescently Labeled Peptide-Oligonucleotide Conjugates via Orthogonal Ligation Strategies. Methods Mol Biol 2019; 1828:355-363. [PMID: 30171553 DOI: 10.1007/978-1-4939-8651-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Efficient intracellular delivery is critical to the successful application of synthetic antisense oligonucleotides (ASOs) to modulate gene expression. The conjugation of cell-penetrating peptides (CPPs) to ASOs has been shown to significantly improve their intracellular delivery. It is important, however, that formation of the covalent linkage between the peptide and oligonucleotide is efficient and orthogonal, to ensure high yields and a homogeneous product. Described herein are efficient and facile methodologies for the conjugation of peptides to ASOs, and their subsequent labeling with various moieties such as fluorescent dyes for intracellular tracking studies.
Collapse
Affiliation(s)
- John Karas
- Pharmacology and Therapeutics, The University of Melbourne, Melbourne, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.
- School of Chemistry, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Patil NA, Karas JA, Turner BJ, Shabanpoor F. Thiol-Cyanobenzothiazole Ligation for the Efficient Preparation of Peptide-PNA Conjugates. Bioconjug Chem 2019; 30:793-799. [PMID: 30645945 DOI: 10.1021/acs.bioconjchem.8b00908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antisense oligonucleotide (ASO)-based drugs are emerging with great potential as therapeutic compounds for diseases with unmet medical needs. However, for ASOs to be effective as clinical entities, they should reach their intracellular RNA and DNA targets at pharmacologically relevant concentrations. Over the past decades, various covalently attached delivery vehicles have been utilized for intracellular delivery of ASOs. One such approach is the use of biocompatible cell-penetrating peptides (CPPs) covalently conjugated to ASOs. The stability of the linkage is of paramount importance for maximal intracellular delivery to achieve the desired therapeutic effect. In this study, we have investigated the efficiency and stability of four different bioorthogonal and nonreductive linkages including triazole, thioether, thiosuccinimide thioether and thiazole moieties. Here we have shown that thiazole and thiosuccinimide are the two most efficient and facile approaches for the preparation of peptide-ASO conjugates. The thiazole linkage had a higher stability compared to the thiosuccinimide thioether at physiological conditions (pH 7.4, 37 °C) in the presence of a biologically relevant concentration of glutathione. We have also shown that the peptide-ASO conjugate with a thiosuccinimide linkage has a significantly lower antisense activity compared to the peptide-ASO with the thiazole linkage, which maintains its antisense activity after 24 h of exposure to glutathione. In summary, we have demonstrated that the bioorthogonal thiazole linkage offers the benefits of mild reaction conditions, fast reaction kinetics, absence of any byproducts, and higher stability compared to other conjugation approaches. This facile ligation can be used for the synthesis of a variety of bioconjugates where a stable linkage is required.
Collapse
|
9
|
Abstract
Modifications at either end, both ends, or in-between the ends of a Morpholino oligo provide functional groups for further conjugation. Amino groups are the most useful and efficient reactive entities for chemical bonding with other molecules. The combination of modifications at both ends, especially with double functionalization at the 3'-end, yields myriad opportunities for diverse applications. An orthogonally protected diamine for advanced 3'-end double modification on the solid phase synthesis support allows the convenient assembly of a vast variety of custom-designed molecules. A particular application is the assembly of a class of Vis-Vivo-Morpholino where at the 3'-end an optically visible fluorophore is installed at one side for fluorescent detection and an in vivo delivery moiety is attached at the other side for intracellular activity studies.
Collapse
|
10
|
Toh DFK, Patil KM, Chen G. Sequence-specific and Selective Recognition of Double-stranded RNAs over Single-stranded RNAs by Chemically Modified Peptide Nucleic Acids. J Vis Exp 2017:56221. [PMID: 28994801 PMCID: PMC5752312 DOI: 10.3791/56221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNAs are emerging as important biomarkers and therapeutic targets. Thus, there is great potential in developing chemical probes and therapeutic ligands for the recognition of RNA sequence and structure. Chemically modified Peptide Nucleic Acid (PNA) oligomers have been recently developed that can recognize RNA duplexes in a sequence-specific manner. PNAs are chemically stable with a neutral peptide-like backbone. PNAs can be synthesized relatively easily by the manual Boc-chemistry solid-phase peptide synthesis method. PNAs are purified by reverse-phase HPLC, followed by molecular weight characterization by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Non-denaturing polyacrylamide gel electrophoresis (PAGE) technique facilitates the imaging of the triplex formation, because carefully designed free RNA duplex constructs and PNA bound triplexes often show different migration rates. Non-denaturing PAGE with ethidium bromide post staining is often an easy and informative technique for characterizing the binding affinities and specificities of PNA oligomers. Typically, multiple RNA hairpins or duplexes with single base pair mutations can be used to characterize PNA binding properties, such as binding affinities and specificities. 2-Aminopurine is an isomer of adenine (6-aminopurine); the 2-aminopurine fluorescence intensity is sensitive to local structural environment changes, and is suitable for the monitoring of triplex formation with the 2-aminopurine residue incorporated near the PNA binding site. 2-Aminopurine fluorescence titration can also be used to confirm the binding selectivity of modified PNAs towards targeted double-stranded RNAs (dsRNAs) over single-stranded RNAs (ssRNAs). UV-absorbance-detected thermal melting experiments allow the measurement of the thermal stability of PNA-RNA duplexes and PNA·RNA2 triplexes. Here, we describe the synthesis and purification of PNA oligomers incorporating modified residues, and describe biochemical and biophysical methods for characterization of the recognition of RNA duplexes by the modified PNAs.
Collapse
Affiliation(s)
- Desiree-Faye Kaixin Toh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Kiran M Patil
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University
| | - Gang Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University;
| |
Collapse
|
11
|
Klaehn JR, Rollins HW, McNally JS, Arulsamy N, Dufek EJ. Phosphoranimines containing cationic N-imidazolinium moieties. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Tajik-Ahmadabad B, Polyzos A, Separovic F, Shabanpoor F. Amphiphilic lipopeptide significantly enhances uptake of charge-neutral splice switching morpholino oligonucleotide in spinal muscular atrophy patient-derived fibroblasts. Int J Pharm 2017; 532:21-28. [PMID: 28864392 DOI: 10.1016/j.ijpharm.2017.08.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/20/2017] [Accepted: 08/27/2017] [Indexed: 01/20/2023]
Abstract
Splice-switching antisense oligonucleotides (SSOs) are emerging therapeutics with two SSOs recently approved by the FDA for Duchenne muscular dystrophy and spinal muscular atrophy. SSOs are administered without any delivery vector and require large doses to achieve the therapeutic benefit, primarily due to their poor cellular uptake. Although cell-penetrating peptides (CPP) have shown great potential in delivering SSOs into cells, their capacity as delivery vector is limited. Here we have studied the effect of lipid conjugation on the cell permeability of a known CPP (ApoE). Myristic acid was coupled at the N-terminus of ApoE to a C-terminal cysteine residue. The myristoylated ApoE (Myr-ApoE) was conjugated to a maleimide functionalised phosphorodiamidate morpholino oligonucleotide (PMO). The Myr-ApoE-PMO conjugate showed no cytoxicity and had significantly higher efficiency in cell permeability with 30% higher splice-switching activity compared to ApoE-PMO. The self-assembly properties of this amphiphilic lipopeptide-PMO conjugate was assessed. Transmission electron microscopy showed formation of nanoparticles with amphiphile behaviour and spherical structure. The self-assembly of Myr-ApoE-PMO into nanoparticles enabled it to better bind to cell membranes and to be more efficiently taken up by fibroblast cells. These results showed that modification of physico-chemical properties of peptides to produce peptide amphiphiles enhances cellular uptake and can be used as an efficient delivery vector for therapeutic SSOs.
Collapse
Affiliation(s)
| | - Anastasios Polyzos
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia; CSIRO, Manufacturing Flagship, Clayton, Victoria 3168, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Victoria 3010, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
13
|
Farrelly-Rosch A, Lau CL, Patil N, Turner BJ, Shabanpoor F. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 2017; 108:213-221. [PMID: 28389270 DOI: 10.1016/j.neuint.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7. This level of SMN is insufficient to rescue the phenotype. Recently developed splice-switching antisense oligonuclotides (SSO) have shown great promise in correcting the aberrant splicing of SMN2 towards producing functional SMN protein. Several FDA approved drugs are being repurposed for SMA treatment including valproic acid (VPA), a histone deacetylase inhibitor, which has been shown to increase overall SMN2 expression. In this study, we have characterised the effects of single and combined treatment of VPA and a SSO based on phosphorodiamidate morpholino oligomer (PMO) chemistry. We conjugated both VPA and PMO to a single cell-penetrating peptide (Apolipoprotein E (ApoE)) for their simultaneous intracellular delivery. Treatment of SMA Type I patient-derived fibroblasts with the conjugates showed no additive increase in the level of full-length SMN2 mRNA expression over both 4 and 16 h treatments indicating that conjugation of VPA to ApoE-PMO has limited benefit. However, treatment with a combination of VPA and ApoE-PMO induced more favourable splice switching activity than either agent alone, promoting exon 7 inclusion in SMN2 transcripts. Our results suggest that combination therapy of VPA and ApoE-PMO is superior in upregulating SMN2 production in vitro, as compared to singular treatment of each compound at both transcriptional and protein levels. This study provides the first indication of a novel dual therapy approach for the potential treatment of SMA.
Collapse
Affiliation(s)
- Anna Farrelly-Rosch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Chew Ling Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Nitin Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia; School of Chemistry, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
14
|
Shabanpoor F, Hammond SM, Abendroth F, Hazell G, Wood MJA, Gait MJ. Identification of a Peptide for Systemic Brain Delivery of a Morpholino Oligonucleotide in Mouse Models of Spinal Muscular Atrophy. Nucleic Acid Ther 2017; 27:130-143. [PMID: 28118087 PMCID: PMC5467147 DOI: 10.1089/nat.2016.0652] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Splice-switching antisense oligonucleotides are emerging treatments for neuromuscular diseases, with several splice-switching oligonucleotides (SSOs) currently undergoing clinical trials such as for Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA). However, the development of systemically delivered antisense therapeutics has been hampered by poor tissue penetration and cellular uptake, including crossing of the blood–brain barrier (BBB) to reach targets in the central nervous system (CNS). For SMA application, we have investigated the ability of various BBB-crossing peptides for CNS delivery of a splice-switching phosphorodiamidate morpholino oligonucleotide (PMO) targeting survival motor neuron 2 (SMN2) exon 7 inclusion. We identified a branched derivative of the well-known ApoE (141–150) peptide, which as a PMO conjugate was capable of exon inclusion in the CNS following systemic administration, leading to an increase in the level of full-length SMN2 transcript. Treatment of newborn SMA mice with this peptide-PMO (P-PMO) conjugate resulted in a significant increase in the average lifespan and gains in weight, muscle strength, and righting reflexes. Systemic treatment of adult SMA mice with this newly identified P-PMO also resulted in small but significant increases in the levels of SMN2 pre-messenger RNA (mRNA) exon inclusion in the CNS and peripheral tissues. This work provides proof of principle for the ability to select new peptide paradigms to enhance CNS delivery and activity of a PMO SSO through use of a peptide-based delivery platform for the treatment of SMA potentially extending to other neuromuscular and neurodegenerative diseases.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Suzan M Hammond
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Frank Abendroth
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | - Gareth Hazell
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Matthew J A Wood
- 2 Department of Physiology, Anatomy, and Genetics, University of Oxford , Oxford, United Kingdom
| | - Michael J Gait
- 1 Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| |
Collapse
|
15
|
Graña-Suárez L, Verboom W, Buckle T, Rood M, van Leeuwen FWB, Huskens J. Loading and release of fluorescent oligoarginine peptides into/from pH-responsive anionic supramolecular nanoparticles. J Mater Chem B 2016; 4:4025-4032. [PMID: 32263101 DOI: 10.1039/c6tb00933f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supramolecular nanoparticles (SNPs) based on negatively charged polymeric components can act as pH-responsive systems which allow the encapsulation and release of a positively charged cargo by electrostatic interactions. Fluorescent SNPs, based on the negatively charged poly(isobutyl-alt-maleic acid) and labeled with rhodamine B, were used as carriers to encapsulate positively charged Argn peptides grafted with a cyanine dye. The energy transfer (FRET) between the dyes residing in a single particle was used to provide a sensing mechanism to study the encapsulation and release of the peptide cargo into/from the SNPs. The change in the spectral signature of the cyanine dye from encapsulated in the SNPs to free in solution was used to characterize the Argn release. Finally, in vitro experiments revealed that the Argn release from these SNPs occurred at the pH drop that mimics lysosome conditions.
Collapse
Affiliation(s)
- Laura Graña-Suárez
- Molecular Nanofabrication group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
16
|
Ezzat K, Aoki Y, Koo T, McClorey G, Benner L, Coenen-Stass A, O'Donovan L, Lehto T, Garcia-Guerra A, Nordin J, Saleh AF, Behlke M, Morris J, Goyenvalle A, Dugovic B, Leumann C, Gordon S, Gait MJ, El-Andaloussi S, Wood MJA. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides. NANO LETTERS 2015; 15:4364-73. [PMID: 26042553 PMCID: PMC6415796 DOI: 10.1021/acs.nanolett.5b00490] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.
Collapse
MESH Headings
- Animals
- Base Sequence
- Cell Line
- Exons
- Genetic Therapy
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Micelles
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/therapy
- Nanoparticles/chemistry
- Oligonucleotides, Antisense/chemistry
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/pharmacokinetics
- Oligonucleotides, Antisense/therapeutic use
- Scavenger Receptors, Class A/genetics
- Scavenger Receptors, Class A/metabolism
Collapse
Affiliation(s)
- Kariem Ezzat
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Yoshitsugu Aoki
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ●Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8551, Japan
| | - Taeyoung Koo
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ‡Center for Genome Engineering, Institute for Basic Science, Seoul 151-747, South Korea
- §Functional Genomics, University of Science and Technology, Daejeon 305-338, South Korea
| | - Graham McClorey
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Leif Benner
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Anna Coenen-Stass
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Liz O'Donovan
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Taavi Lehto
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Antonio Garcia-Guerra
- #Clarendon Laboratory, Department of Physics, University of Oxford, OX13PU, Oxford, United Kingdom
| | - Joel Nordin
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Amer F Saleh
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Mark Behlke
- ∇Integrated DNA Technologies (IDT), Coralville, Iowa 55241, United States
| | - John Morris
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| | - Aurelie Goyenvalle
- ○Université de Versailles Saint Quentin, Montigny le Bretonneux 78180, France
| | - Branislav Dugovic
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Christian Leumann
- ◆Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Siamon Gordon
- ¶Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Michael J Gait
- ∥Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Samir El-Andaloussi
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
- ⊥Department of Laboratory Medicine, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Matthew J A Wood
- †Department of Physiology, Anatomy, and Genetics, University of Oxford, OX13QX, Oxford, United Kingdom
| |
Collapse
|
17
|
Boisguérin P, Deshayes S, Gait MJ, O'Donovan L, Godfrey C, Betts CA, Wood MJA, Lebleu B. Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 2015; 87:52-67. [PMID: 25747758 PMCID: PMC7102600 DOI: 10.1016/j.addr.2015.02.008] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/23/2015] [Accepted: 02/25/2015] [Indexed: 12/15/2022]
Abstract
Oligonucleotide-based drugs have received considerable attention for their capacity to modulate gene expression very specifically and as a consequence they have found applications in the treatment of many human acquired or genetic diseases. Clinical translation has been often hampered by poor biodistribution, however. Cell-penetrating peptides (CPPs) appear as a possibility to increase the cellular delivery of non-permeant biomolecules such as nucleic acids. This review focuses on CPP-delivery of several classes of oligonucleotides (ONs), namely antisense oligonucleotides, splice switching oligonucleotides (SSOs) and siRNAs. Two main strategies have been used to transport ONs with CPPs: covalent conjugation (which is more appropriate for charge-neutral ON analogues) and non-covalent complexation (which has been used for siRNA delivery essentially). Chemical synthesis, mechanisms of cellular internalization and various applications will be reviewed. A comprehensive coverage of the enormous amount of published data was not possible. Instead, emphasis has been put on strategies that have proven to be effective in animal models of important human diseases and on examples taken from the authors' own expertise.
Collapse
Affiliation(s)
- Prisca Boisguérin
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France.
| | - Sébastien Deshayes
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, 1919 Route de Mende, 34293 Montpellier, France
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Liz O'Donovan
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Caroline Godfrey
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Corinne A Betts
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Matthew J A Wood
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Bernard Lebleu
- UMR 5235 CNRS, Université Montpellier 2, Place Eugene Bataillon, Montpellier 34095, France
| |
Collapse
|
18
|
Shabanpoor F, McClorey G, Saleh AF, Järver P, Wood MJA, Gait MJ. Bi-specific splice-switching PMO oligonucleotides conjugated via a single peptide active in a mouse model of Duchenne muscular dystrophy. Nucleic Acids Res 2014; 43:29-39. [PMID: 25468897 PMCID: PMC4288157 DOI: 10.1093/nar/gku1256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The potential for therapeutic application of splice-switching oligonucleotides (SSOs) to modulate pre-mRNA splicing is increasingly evident in a number of diseases. However, the primary drawback of this approach is poor cell and in vivo oligonucleotide uptake efficacy. Biological activities can be significantly enhanced through the use of synthetically conjugated cationic cell penetrating peptides (CPPs). Studies to date have focused on the delivery of a single SSO conjugated to a CPP, but here we describe the conjugation of two phosphorodiamidate morpholino oligonucleotide (PMO) SSOs to a single CPP for simultaneous delivery and pre-mRNA targeting of two separate genes, exon 23 of the Dmd gene and exon 5 of the Acvr2b gene, in a mouse model of Duchenne muscular dystrophy. Conjugations of PMOs to a single CPP were carried out through an amide bond in one case and through a triazole linkage (‘click chemistry’) in the other. The most active bi-specific CPP–PMOs demonstrated comparable exon skipping levels for both pre-mRNA targets when compared to individual CPP–PMO conjugates both in cell culture and in vivo in the mdx mouse model. Thus, two SSOs with different target sequences conjugated to a single CPP are biologically effective and potentially suitable for future therapeutic exploitation.
Collapse
Affiliation(s)
- Fazel Shabanpoor
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Amer F Saleh
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Peter Järver
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Michael J Gait
- Medical Research Council, Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
19
|
O'Donovan L, Okamoto I, Arzumanov AA, Williams DL, Deuss P, Gait MJ. Parallel synthesis of cell-penetrating peptide conjugates of PMO toward exon skipping enhancement in Duchenne muscular dystrophy. Nucleic Acid Ther 2014; 25:1-10. [PMID: 25412073 DOI: 10.1089/nat.2014.0512] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We describe two new methods of parallel chemical synthesis of libraries of peptide conjugates of phosphorodiamidate morpholino oligonucleotide (PMO) cargoes on a scale suitable for cell screening prior to in vivo analysis for therapeutic development. The methods represent an extension of the SELection of PEPtide CONjugates (SELPEPCON) approach previously developed for parallel peptide-peptide nucleic acid (PNA) synthesis. However, these new methods allow for the utilization of commercial PMO as cargo with both C- and N-termini unfunctionalized. The synthetic methods involve conjugation in solution phase, followed by rapid purification via biotin-streptavidin immobilization and subsequent reductive release into solution, avoiding the need for painstaking high-performance liquid chromatography purifications. The synthesis methods were applied for screening of PMO conjugates of a 16-member library of variants of a 10-residue ApoE peptide, which was suggested for blood-brain barrier crossing. In this work the conjugate library was tested in an exon skipping assay using skeletal mouse mdx cells, a model of Duchene's muscular dystrophy where higher activity peptide-PMO conjugates were identified compared with the starting peptide-PMO. The results demonstrate the power of the parallel synthesis methods for increasing the speed of optimization of peptide sequences in conjugates of PMO for therapeutic screening.
Collapse
Affiliation(s)
- Liz O'Donovan
- Medical Research Council, Laboratory of Molecular Biology , Cambridge, United Kingdom
| | | | | | | | | | | |
Collapse
|
20
|
King M, Wagner A. Developments in the Field of Bioorthogonal Bond Forming Reactions—Past and Present Trends. Bioconjug Chem 2014; 25:825-39. [DOI: 10.1021/bc500028d] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathias King
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Laboratory of Functional
Chemo-Systems (UMR 7199), Labex Medalis, University of Strasbourg - CNRS, 74 Route du Rhin, BP 60024, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
21
|
Wang CY, Zou JF, Zheng ZJ, Huang WS, Li L, Xu LW. BINOL-linked 1,2,3-triazoles: an unexpected fluorescent sensor with anion–π interaction for iodide ions. RSC Adv 2014. [DOI: 10.1039/c4ra09589h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
BINOL-derived triazoles could be used in organocatalytic silylation and unexpectedly as fluorescent sensors for the recognition of I−.
Collapse
Affiliation(s)
- Cai-Yun Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
| | - Jin-Feng Zou
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
| | - Zhan-Jiang Zheng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
| | - Wei-Sheng Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
| | - Li Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education
- College of Material, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310012, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| |
Collapse
|
22
|
Järver P, O'Donovan L, Gait MJ. A chemical view of oligonucleotides for exon skipping and related drug applications. Nucleic Acid Ther 2013; 24:37-47. [PMID: 24171481 DOI: 10.1089/nat.2013.0454] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Peter Järver
- Medical Research Council , Laboratory of Molecular Biology, Cambridge, United Kingdom
| | | | | |
Collapse
|