1
|
Alavizargar A, Elting A, Wedlich-Söldner R, Heuer A. Lipid-Mediated Association of the Slg1 Transmembrane Domains in Yeast Plasma Membranes. J Phys Chem B 2022; 126:3240-3256. [PMID: 35446028 DOI: 10.1021/acs.jpcb.2c00192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Clustering of transmembrane proteins underlies a multitude of fundamental biological processes at the plasma membrane (PM) such as receptor activation, lateral domain formation, and mechanotransduction. The self-association of the respective transmembrane domains (TMDs) has also been suggested to be responsible for the micron-scaled patterns seen for integral membrane proteins in the budding yeast PM. However, the underlying interplay between the local lipid composition and the TMD identity is still not mechanistically understood. In this work, we combined coarse-grained molecular dynamics simulations of simplified bilayer systems with high-resolution live-cell microscopy to analyze the distribution of a representative helical yeast TMD from the PM sensor Slg1 within different lipid environments. In our simulations, we specifically evaluated the effects of acyl chain saturation and anionic lipid head groups on the association of two TMDs. We found that weak lipid-protein interactions significantly affect the configuration of TMD dimers and the free energy of association. Increased amounts of unsaturated phospholipids (PLs) strongly reduced the helix-helix interaction, while the presence of anionic phosphatidylserine (PS) hardly affected the dimer formation. We could experimentally confirm this surprising lack of effect of PS using the network factor, a mesoscopic measure of PM pattern formation in yeast cells. Simulations also showed that the formation of TMD dimers in turn increased the order parameter of the surrounding lipids and induced long-range perturbations in lipid organization. In summary, our results shed new light on the mechanisms of lipid-mediated dimerization of TMDs in complex lipid mixtures.
Collapse
Affiliation(s)
- Azadeh Alavizargar
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| | - Annegret Elting
- Institute of Cell Dynamics and Imaging, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Roland Wedlich-Söldner
- Institute of Cell Dynamics and Imaging, University of Muenster, Von-Esmarch-Str. 56, 48149 Muenster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Muenster, Germany
| |
Collapse
|
2
|
Pawar AB, Sengupta D. Role of Cholesterol in Transmembrane Dimerization of the ErbB2 Growth Factor Receptor. J Membr Biol 2021; 254:301-310. [PMID: 33506276 DOI: 10.1007/s00232-021-00168-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/05/2021] [Indexed: 11/28/2022]
Abstract
The association of ErbB2 growth factor receptors is critical for cell growth and potentiates tumor proliferation in several cancer types. An important aspect in ErbB2 association is the role of lipids such as cholesterol, especially since their metabolism is often reprogrammed in cancer cells. Here, we have coupled metadynamics with coarse-grain simulations to identify cholesterol effects in the transmembrane dimerization of ErbB2 receptors. Overall, cholesterol interactions are observed with the receptor that directly tunes the association energetics. Several dimer conformations are identified both in the presence and absence of cholesterol, although the dimer regime appears to be more favorable in the presence of cholesterol. We observe an overall modulation of the underlying energy profile and the symmetric active and inactive conformational states are not distinguished in the presence of cholesterol. We show that cholesterol binds to the receptor transmembrane domain at a site (CRAC motif) that overlaps with the dimer interface (SmXXXSm motif). The competition between the transmembrane interactions and cholesterol interactions decides the final conformational landscape. Our work is an important step toward characterizing cholesterol effects in ErbB2 membrane receptor function.
Collapse
Affiliation(s)
- Aiswarya B Pawar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
3
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
4
|
Gopal SM, Pawar AB, Wassenaar TA, Sengupta D. Lipid-dependent conformational landscape of the ErbB2 growth factor receptor dimers. Chem Phys Lipids 2020; 230:104911. [PMID: 32353357 DOI: 10.1016/j.chemphyslip.2020.104911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/04/2020] [Accepted: 03/27/2020] [Indexed: 01/31/2023]
Abstract
Altered lipid metabolism has been linked to cancer development and progression. Several roles have been attributed to the increased saturation and length of lipid acyl tails observed in tumors, but its effect on signaling receptors is still emerging. In this work, we have analyzed the lipid dependence of the ErbB2 growth factor receptor dimerization that plays an important role in the pathogenesis of breast cancer. We have performed coarse-grain ensemble molecular dynamics simulations to comprehensively sample the ErbB2 monomer-dimer association. Our results indicate a dynamic dimer state with a complex conformational landscape that is modulated with increasing lipid tail length. We resolve the native N-terminal "active" and C-terminal "inactive" conformations in all membrane compositions. However, the relative population of the N-terminal and C-terminal conformers is dependent on length of the saturated lipid tails. In short-tail membranes, additional non-specific dimers are observed which are reduced or absent in long-tailed bilayers. Our results indicate that the relative population as well as the structure of the dimer state is modulated by membrane composition. We have correlated these differences to local perturbations of the membrane around the receptor. Our work is an important step in characterizing ErbB dimers in healthy and diseased states and emphasize the importance of sampling lipid dynamics in understanding receptor association.
Collapse
Affiliation(s)
- Srinivasa M Gopal
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Lehrstuhl fur Theoretische Chemie, Ruhr University Bochum, D-44780 Bochum, Germany
| | - Aiswarya B Pawar
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; AcSIR, Mathura Road, New Delhi, 110 025, India
| | - Tsjerk A Wassenaar
- Molecular Dynamics, University of Groningen, Nijenborgh 7, 9747AG Groningen, the Netherlands
| | - Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; AcSIR, Mathura Road, New Delhi, 110 025, India.
| |
Collapse
|
5
|
Kharche SA, Sengupta D. Dynamic protein interfaces and conformational landscapes of membrane protein complexes. Curr Opin Struct Biol 2020; 61:191-197. [DOI: 10.1016/j.sbi.2020.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/15/2022]
|
6
|
Resolving the conformational dynamics of ErbB growth factor receptor dimers. J Struct Biol 2019; 207:225-233. [PMID: 31163211 DOI: 10.1016/j.jsb.2019.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/20/2019] [Accepted: 05/31/2019] [Indexed: 12/30/2022]
Abstract
The combinatorial dimerization of the ErbB growth factor receptors (ErbB1- ErbB4) are critical for their function. Here, we have characterized the conformational dynamics of ErbB transmembrane homo-dimers and hetero-dimers by using a coarse-grain simulation framework. All dimers, except ErbB4-4 and ErbB1-4, exhibit at least two conformations. The reported NMR structures correspond to one of these conformations, representing the N-terminal active state in ErbB1-1 (RH2), ErbB2-2 (RH1) and ErbB4-4 (RH) homo-dimers and the LH dimer in ErbB3-3 homo-dimer, validating the computational approach. Further, we predict a right-handed ErbB3-3 dimer conformer that warrants experimental testing. The five hetero-dimers that have not yet been experimentally resolved display prominent right-handed dimers associating by the SmXXXSm motif. Our results provide insights into the constitutive signaling of ErbB4 after cleavage of the extracellular region. The presence of the inactive-like dimer conformers leading to symmetric kinase domains gives clues on the autoinhibition of the receptor dimers. The dimer states characterized here represent an important step towards understanding the combinatorial cross associations in the ErbB family.
Collapse
|
7
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 470] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
8
|
Muller MP, Jiang T, Sun C, Lihan M, Pant S, Mahinthichaichan P, Trifan A, Tajkhorshid E. Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem Rev 2019; 119:6086-6161. [PMID: 30978005 PMCID: PMC6506392 DOI: 10.1021/acs.chemrev.8b00608] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cellular membrane constitutes one of the most fundamental compartments of a living cell, where key processes such as selective transport of material and exchange of information between the cell and its environment are mediated by proteins that are closely associated with the membrane. The heterogeneity of lipid composition of biological membranes and the effect of lipid molecules on the structure, dynamics, and function of membrane proteins are now widely recognized. Characterization of these functionally important lipid-protein interactions with experimental techniques is however still prohibitively challenging. Molecular dynamics (MD) simulations offer a powerful complementary approach with sufficient temporal and spatial resolutions to gain atomic-level structural information and energetics on lipid-protein interactions. In this review, we aim to provide a broad survey of MD simulations focusing on exploring lipid-protein interactions and characterizing lipid-modulated protein structure and dynamics that have been successful in providing novel insight into the mechanism of membrane protein function.
Collapse
Affiliation(s)
- Melanie P. Muller
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tao Jiang
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chang Sun
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Muyun Lihan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shashank Pant
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paween Mahinthichaichan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Anda Trifan
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology
- Department of Biochemistry
- Center for Biophysics and Quantitative Biology
- College of Medicine
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Friedman R, Khalid S, Aponte-Santamaría C, Arutyunova E, Becker M, Boyd KJ, Christensen M, Coimbra JTS, Concilio S, Daday C, van Eerden FJ, Fernandes PA, Gräter F, Hakobyan D, Heuer A, Karathanou K, Keller F, Lemieux MJ, Marrink SJ, May ER, Mazumdar A, Naftalin R, Pickholz M, Piotto S, Pohl P, Quinn P, Ramos MJ, Schiøtt B, Sengupta D, Sessa L, Vanni S, Zeppelin T, Zoni V, Bondar AN, Domene C. Understanding Conformational Dynamics of Complex Lipid Mixtures Relevant to Biology. J Membr Biol 2018; 251:609-631. [PMID: 30350011 PMCID: PMC6244758 DOI: 10.1007/s00232-018-0050-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/03/2018] [Indexed: 12/23/2022]
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences and Centre of Excellence "Biomaterials Chemistry", Linnæus University, Kalmar, Sweden.
| | - Syma Khalid
- University of Southampton, Southampton, SO17 1BJ, UK
| | - Camilo Aponte-Santamaría
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Elena Arutyunova
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Kevin J Boyd
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mikkel Christensen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience center (iNANO), Aarhus University, Aarhus, Denmark.,Sino-Danish Center for Education and Research, Beijing, China
| | - João T S Coimbra
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Simona Concilio
- Department of Industrial Engineering, University of Salerno, Fisciano, SA, Italy
| | - Csaba Daday
- Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | - Pedro A Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Frauke Gräter
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.,Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | | | | | - Konstantina Karathanou
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | | | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Antara Mazumdar
- GBB Institute, University of Groningen, Groningen, The Netherlands
| | - Richard Naftalin
- Physiology and Vascular Biology Departments, King's College London School of Medicine, London, UK
| | - Mónica Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires, Argentina
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University, Linz, Austria
| | - Peter Quinn
- Biochemistry Department, King's College London, London, UK
| | - Maria J Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Birgit Schiøtt
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Interdisciplinary Nanoscience center (iNANO), Aarhus University, Aarhus, Denmark
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune, India
| | - Lucia Sessa
- Department of Pharmacy, University of Salerno, Fisciano, SA, Italy
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Talia Zeppelin
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Valeria Zoni
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ana-Nicoleta Bondar
- Department of Physics, Theoretical Molecular Biophysics Group, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down Bath, BA2 7AY, UK.,Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
10
|
Bragin PE, Kuznetsov AS, Bocharova OV, Volynsky PE, Arseniev AS, Efremov RG, Mineev KS. Probing the effect of membrane contents on transmembrane protein-protein interaction using solution NMR and computer simulations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2486-2498. [PMID: 30279150 DOI: 10.1016/j.bbamem.2018.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/18/2022]
Abstract
The interaction between the secondary structure elements is the key process, determining the spatial structure and activity of a membrane protein. Transmembrane (TM) helix-helix interaction is known to be especially important for the function of so-called type I or bitopic membrane proteins. In the present work, we present the approach to study the helix-helix interaction in the TM domains of membrane proteins in various lipid environment using solution NMR spectroscopy and phospholipid bicelles. The technique is based on the ability of bicelles to form particles with the size, depending on the lipid/detergent ratio. To implement the approach, we report the experimental parameters of "ideal bicelle" models for four kinds of zwitterionic phospholipids, which can be also used in other structural studies. We show that size of bicelles and type of the rim-forming detergent do not affect substantially the spatial structure and stability of the model TM dimer. On the other hand, the effect of bilayer thickness on the free energy of the dimer is dramatic, while the structure of the protein is unchanged in various lipids with fatty chains having a length from 12 to 18 carbon atoms. The obtained data is analyzed using the computer simulations to find the physical origin of the observed effects.
Collapse
Affiliation(s)
- P E Bragin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Lomonosov Moscow State University, Leninskiye Gory, 1, Moscow 119991, Russian Federation
| | - A S Kuznetsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - O V Bocharova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation
| | - P E Volynsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - A S Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation
| | - R G Efremov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation; National Research University Higher School of Economics, Myasnitskaya ul. 20, 101000 Moscow, Russia
| | - K S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences RAS, str. Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky per., 9, 141700 Dolgoprudnyi, Russian Federation.
| |
Collapse
|
11
|
Sengupta D, Prasanna X, Mohole M, Chattopadhyay A. Exploring GPCR–Lipid Interactions by Molecular Dynamics Simulations: Excitements, Challenges, and the Way Forward. J Phys Chem B 2018; 122:5727-5737. [DOI: 10.1021/acs.jpcb.8b01657] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Durba Sengupta
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, India
| | - Xavier Prasanna
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
| | - Madhura Mohole
- CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India
- Academy of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad 201 002, India
| | | |
Collapse
|
12
|
Pawar AB, Sengupta D. Effect of Membrane Composition on Receptor Association: Implications of Cancer Lipidomics on ErbB Receptors. J Membr Biol 2018; 251:359-368. [DOI: 10.1007/s00232-018-0015-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/15/2018] [Indexed: 10/18/2022]
|
13
|
Dubey V, Prasanna X, Sengupta D. Estimating the Lipophobic Contributions in Model Membranes. J Phys Chem B 2017; 121:2111-2120. [DOI: 10.1021/acs.jpcb.6b09863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Vikas Dubey
- Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India
| | - Xavier Prasanna
- Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India
| | - Durba Sengupta
- Physical Chemistry Division, National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
14
|
Structural insights and functional implications of inter-individual variability in β2-adrenergic receptor. Sci Rep 2016; 6:24379. [PMID: 27075228 PMCID: PMC4830965 DOI: 10.1038/srep24379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/22/2016] [Indexed: 01/14/2023] Open
Abstract
The human β2-adrenergic receptor (β2AR) belongs to the G protein-coupled receptor (GPCR) family and due to its central role in bronchodilation, is an important drug target. The inter-individual variability in β2AR has been implicated in disease susceptibility and differential drug response. In this work, we identified nine potentially deleterious non-synonymous single nucleotide polymorphisms (nsSNPs) using a consensus approach. The deleterious nsSNPs were found to cluster near the ligand binding site and towards the G-protein binding site. To assess their molecular level effects, we built structural models of these receptors and performed atomistic molecular dynamics simulations. Most notably, in the Phe290Ser variant we observed the rotameric flip of Trp2866.48, a putative activation switch that has not been reported in β2AR thus far. In contrast, the variant Met82Lys was found to be the most detrimental to epinephrine binding. Additionally, a few of the nsSNPs were seen to cause perturbations to the lipid bilayer, while a few lead to differences at the G-protein coupling site. We are thus able to classify the variants as ranging from activating to damaging, prioritising them for experimental studies.
Collapse
|
15
|
Sengupta D, Chattopadhyay A. Molecular dynamics simulations of GPCR–cholesterol interaction: An emerging paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1775-82. [DOI: 10.1016/j.bbamem.2015.03.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022]
|
16
|
Pawar AB, Deshpande SA, Gopal SM, Wassenaar TA, Athale CA, Sengupta D. Thermodynamic and kinetic characterization of transmembrane helix association. Phys Chem Chem Phys 2015; 17:1390-8. [DOI: 10.1039/c4cp03732d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The transient dimerization of transmembrane proteins is an important event in several cellular processes and here we use coarse-grain and meso-scale modeling methods to quantify their underlying dynamics.
Collapse
Affiliation(s)
| | | | | | - Tsjerk A. Wassenaar
- Department of Biology
- Computational Biology
- University of Erlangen-Nürnberg
- 91058 Erlangen
- Germany
| | | | | |
Collapse
|
17
|
Effect of Lipid Bilayer Composition on Membrane Protein Association. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2015. [DOI: 10.1016/bs.adplan.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Prasanna X, Chattopadhyay A, Sengupta D. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites. Biophys J 2014; 106:1290-300. [PMID: 24655504 DOI: 10.1016/j.bpj.2014.02.002] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 02/01/2014] [Accepted: 02/03/2014] [Indexed: 11/26/2022] Open
Abstract
The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.
Collapse
|