1
|
Basappa S, Prakash A, K P A, Mane MV, Bose SK. Base Mediated 1,2-Carboboration: Direct Access to Multisubstituted Alkenyl and Alkylboronates. Org Lett 2025; 27:4811-4816. [PMID: 40298609 DOI: 10.1021/acs.orglett.5c01382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
We have developed a base-mediated 1,2-carboboration of commercially accessible alkynes for the construction of regio- and stereodefined alkenylboronates. This unprecedented reaction is enabled by sodium ethoxide (NaOEt) as a base and alkyl halide as an electrophile, with B2pin2 under mild reaction conditions. The protocol is simple, clean, and more economical compared to reported transition metal-catalyzed systems. The highlights of this methodology include readily available precursors, broad substrate scope and functional group compatibility, gram scale synthesis, and late-stage functionalization of alkenylboronates. The reaction is also applicable for the carboboration of alkenes. Experimental results and density functional theory (DFT) calculations provide insights into the mechanism.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Aishwarya Prakash
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Adithya K P
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Manoj V Mane
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore 562112, India
| |
Collapse
|
2
|
Dutta S, Srivatsan SG. Enzymatic Functionalization of RNA Oligonucleotides by Terminal Uridylyl Transferase Using Fluorescent and Clickable Nucleotide Analogs. Chem Asian J 2024; 19:e202400475. [PMID: 38949615 DOI: 10.1002/asia.202400475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/02/2024]
Abstract
We report a systematic study on controlling the enzyme activity of a terminal uridylyl transferase (TUTase) called SpCID1, which provides methods to effect site-specific incorporation of a single modified nucleotide analog at the 3'-end of an RNA oligonucleotide (ON). Responsive heterocycle-modified fluorescent UTP probes that are useful in analyzing non-canonical nucleic acid structures and azide- and alkyne-modified UTP analogs that are compatible for chemoenzymatic functionalization were used as study systems. In the first strategy, we balanced the concentration of essential metal ion cofactors (Mg2+ and Mn2+ ions) to restrict the processivity of the enzyme, which gave a very good control on the incorporation of clickable nucleotide analogs. In the second approach, borate that complexes with 2' and 3' oxygen atoms of a ribose sugar was used as a reversibly binding chelator to block repeated addition of nucleotide analogs. Notably, in the presence of heterocycle-modified fluorescent UTPs, we obtained single-nucleotide incorporated RNA products in reasonable yields, while with clickable nucleotides yields were very good. Further, 3'-end azide- and alkyne-labeled RNA ONs were post-enzymatically functionalized by CuAAC and SPAAC reactions with fluorescent probes. These strategies broaden the scope of TUTase in site-specifically installing modifications of different types onto RNA for various applications.
Collapse
Affiliation(s)
- Swagata Dutta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
3
|
Gos M, Cebula J, Goszczyński TM. Metallacarboranes in Medicinal Chemistry: Current Advances and Future Perspectives. J Med Chem 2024; 67:8481-8501. [PMID: 38769934 DOI: 10.1021/acs.jmedchem.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metallacarboranes, exemplified by cobalt bis(dicarbollide) ([COSAN]-), have excelled their historical metallocene analogue label to become promising in drug design, medical studies, and fundamental biological research. Serving as a unique platform for conjugation with biomolecules, they also constitute an auspicious building block for biologically active derivatives and a carrier for cellular transport of membrane-impermeable cargos. Modified [COSAN]- exhibits specific antimicrobial, antiviral, and anticancer actions showing promise for preclinical trials. Contributing to the ongoing development in medicinal chemistry, metallacarboranes offer desirable physicochemical properties and low acute toxicity. This article presents a critical look at metallacarboranes in the context of their application in medicinal chemistry, emphasizing [COSAN]- as a potential game-changer in drug design and biomedical sciences. As medicinal chemistry seeks innovative building blocks, metallacarboranes emerge as an important novelty with versatile solutions and promising implications.
Collapse
Affiliation(s)
- Michalina Gos
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jakub Cebula
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Tomasz M Goszczyński
- Laboratory of Biomedical Chemistry, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
4
|
Müller M, Neitz H, Höbartner C, Helten H. BN-Phenanthrene- and BN-Pyrene-Based Fluorescent Uridine Analogues. Org Lett 2024; 26:1051-1055. [PMID: 38285916 DOI: 10.1021/acs.orglett.3c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Two unprecedented fluorescent nucleosides that feature BN-doped polycyclic aromatic hydrocarbons are presented. One of them, having a BN-modified phenanthrene moiety incorporated, shows blue fluorescence but suffers from poor stability under aqueous conditions. The other nucleoside comprises an internally BN-doped pyrene as the chromophore. It shows green fluorescence in various solvents and is stable under aqueous and alkaline conditions.
Collapse
Affiliation(s)
- Michael Müller
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry, Am Hubland, 97074 Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| | - Hermann Neitz
- Julius-Maximilians-Universität Würzburg, Institute of Organic Chemistry, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Höbartner
- Julius-Maximilians-Universität Würzburg, Institute of Organic Chemistry, Am Hubland, 97074 Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Center for Nanosystems Chemistry (CNC), Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry, Am Hubland, 97074 Würzburg, Germany
- Julius-Maximilians-Universität Würzburg, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
5
|
Smietana M, Müller S. Stimuli-Responsive Boronate Formation to Control Nucleic Acid-Based Functional Architectures. Chempluschem 2024; 89:e202300613. [PMID: 38033190 DOI: 10.1002/cplu.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Boronate esters, formed by the reaction of an oligonucleotide bearing a 5'-boronic acid moiety with the 3'-terminal cis-diol of another oligonucleotide, support the assembly of functional nucleic acid architectures. Reversible formation of boronate esters occurs in templated fashion and has been shown to restore the activity of split DNA and RNA enzymes as well as a split fluorescent light-up aptamer. Apart from their suitability for the design and application of split nucleic acid enzymes and aptamers in the field of biosensing, boronate esters may have played an important role in early life as surrogates of the natural phosphodiester bond. Their formation is reversible and thus fulfills an important requirement for biological self-assembly. Here we discuss the general concept of stimuli-dependent boronate formation and its application in biomolecules with implications for future research.
Collapse
Affiliation(s)
- Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM Pôle Chimie Balard, 34095, Montpellier, France
| | - Sabine Müller
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| |
Collapse
|
6
|
Jia W, Ouyang Y, Zhang S, Du X, Zhang P, Huang S. Nanopore Signatures of Nucleoside Drugs. NANO LETTERS 2023; 23:9437-9444. [PMID: 37818841 DOI: 10.1021/acs.nanolett.3c02872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nucleoside drugs, which are analogues of natural nucleosides, have been widely applied in the clinical treatment of viral infections and cancers. The development of nucleoside drugs, repurposing of existing drugs, and combined use of multiple drug types have made the rapid sensing of nucleoside drugs urgently needed. Nanopores are emerging single-molecule sensors that have high resolution to resolve even minor structural differences between chemical compounds. Here, an engineered Mycobacterium smegmatis porin A hetero-octamer was used to perform general nucleoside drug analysis. Ten nucleoside drugs were simultaneously detected and fully discriminated. An accuracy of >99.9% was consequently reported. This sensing capacity was further demonstrated in direct nanopore analysis of ribavirin buccal tablets, confirming its sensing reliability against complex samples and environments. No sample separation is needed, however, significantly minimizing the complexity of the measurement. This technique may inspire nanopore applications in pharmaceutical production and pharmacokinetics measurements.
Collapse
Affiliation(s)
- Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Yusheng Ouyang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xiaoyu Du
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
7
|
Xia Q, Zhou Y, Yang X, Zhang Y, Wang J, Song G. Solvent-switchable regioselective 1,2- or 1,6-addition of quinones with boronic acids. Chem Commun (Camb) 2023. [PMID: 37334622 DOI: 10.1039/d3cc01968c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
An efficient copper-catalyzed solvent-switchable regioselective 1,2- or 1,6-addition of quinones with boronic acids has been developed. This novel catalytic protocol for the synthesis of various quinols and 4-phenoxyphenols was enabled by a simple solvent swap between H2O and MeOH. It features mild reaction conditions, simple and easy operation, broad substrate scope and excellent regioselectivity. The gram-scale reactions as well as the further transformations of both addition products were also successfully investigated.
Collapse
Affiliation(s)
- Qi Xia
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yaxuan Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xiaoning Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yanqiu Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Gonghua Song
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
8
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
9
|
Xia X, Song S, Wen Y, Qi J, Cao L, Liu X, Zhou R, Zhao H. A simple method for fabricating drugs containing a cis-o-diol structure into guanosine-based supramolecular hydrogels for drug delivery. Biomater Sci 2023; 11:3092-3103. [PMID: 36748206 DOI: 10.1039/d3bm00057e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Supramolecular hydrogels are attractive biomaterials for local drug delivery owing to their excellent self-healing, injectable, biodegradable, and biocompatible properties. However, traditional drug-loading approaches based on non-covalent encapsulation and covalent bonding have shown problems such as rapid or difficult drug release, complex reaction processes, low reaction efficiency, and decreased drug activity. Therefore, there is a need to find a simple and efficient method to load drugs into hydrogels, which possess stable drug release ability without impairing drug efficacy. In this study, we introduce dynamic borate ester bonds via a simple one-pot method to load cis-o-diol-containing drugs into guanosine (G)-based supramolecular hydrogels. The experimental results confirm that the dynamic covalent borate ester bonds are formed based on the cis-o-diol groups of the drug and the G in these hydrogels. Meanwhile, the as-prepared G-based hydrogels not only possess self-healing properties and injectability but also have satisfactory biodegradability and biocompatibility. Additionally, the drug can be released from the G-based hydrogel according to the pH-responsive cleavage of the borate ester bonds without affecting drug activity. Overall, these results indicate that the simple one-pot method of utilizing the dynamic borate bond can provide a valuable reference for the design of hydrogel dosage forms.
Collapse
Affiliation(s)
- Xin Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Shaojuan Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Yinghui Wen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Jiajia Qi
- Oral Biomedical Engineering Laboratory, Shanghai Stomatological Hospital, Fudan University, Shanghai, 200001, P. R. China
| | - Lideng Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Ronghui Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Med-X Center for Materials, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
| |
Collapse
|
10
|
Wang S, Ren Y, Wang Z, Jiang X, Xu S, Zhang X, Zhao S, Zalloum WA, Liu X, Zhan P. The current progress in the use of boron as a platform for novel antiviral drug design. Expert Opin Drug Discov 2022; 17:1329-1340. [PMID: 36448326 DOI: 10.1080/17460441.2023.2153829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Boron has attracted extensive interest due to several FDA-approved boron-containing drugs and other pharmacological agents in clinical trials. As a semimetal, it has peculiar biochemical characteristics which could be utilized in designing novel drugs against drug-resistant viruses. Emerging and reemerging viral pandemics are major threats to human health. Accordingly, we aim to comprehensively review the current status of antiviral boron-containing compounds. AREAS COVERED This review focuses on the utilization of boron to design molecules against viruses from two perspectives: (i) single boron atom-containing compounds acting on miscellaneous viral targets and (ii) boron clusters. The peculiar properties of antiviral boron-containing compounds and their diverse binding modes with viral targets are described in detail in this review. EXPERT OPINION Compounds bearing boronic acid can interact with viral targets by forming covalent or robust hydrogen bonds. This feature is valuable for combating resistant viruses. Furthermore, boron clusters can form dihydrogen bonds and bear features such as three-dimensional aromaticity, hydrophobicity, and biological stability. All these features demonstrated boron as a probable essential element with immense potential for drug design.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Zhao Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Waleed A Zalloum
- Department of Pharmacy, Faculty of Health Science, American University of Madaba, P.O Box 2882 11821, Amman, Jordan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, 250012 Jinan, PR China
| |
Collapse
|
11
|
Abstract
Nucleoside analogues are reagents that resemble the structure of natural nucleosides and are widely applied in antiviral and anticancer therapy. Molnupiravir, a recently reported nucleoside analogue drug, has shown its inhibitory effect against SARS-CoV-2. Rapid tracing of molnupiravir and its metabolites is important in the evaluation of its pharmacology effect, but direct sensing of molnupiravir as a single molecule has not been reported to date. Here, we demonstrate a nanopore-based sensor with which direct sensing of molnupiravir and its two major metabolites β-d-N4-hydroxycytidine and its triphosphate can be achieved simultaneously. In conjunction with a custom machine learning algorithm, an accuracy of 92% was achieved. This sensing strategy may be useful in the current pandemic and is in principle suitable for other nucleoside analogue drugs.
Collapse
Affiliation(s)
- Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Chengzhen Hu
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, China
| |
Collapse
|
12
|
Recent advances in the boration and cyanation functionalization of alkenes and alkynes. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Wan D, Morisseau C, Hammock BD, Yang J. A Fast and Selective Approach for Profiling Vicinal Diols Using Liquid Chromatography-Post Column Derivatization-Double Precursor Ion Scanning Mass Spectrometry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010283. [PMID: 35011515 PMCID: PMC8747065 DOI: 10.3390/molecules27010283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Vicinal diols are important signaling metabolites of various inflammatory diseases, and some of them are potential biomarkers for some diseases. Utilizing the rapid reaction between diol and 6-bromo-3-pyridinylboronic acid (BPBA), a selective and sensitive approach was established to profile these vicinal diols using liquid chromatography-post column derivatization coupled with double precursor ion scan-mass spectrometry (LC-PCD-DPIS-MS). After derivatization, all BPBA-vicinal-diol esters gave a pair of characteristic isotope ions resulting from 79Br and 81Br. The unique isotope pattern generated two characteristic fragment ions of m/z 200 and 202. Compared to a traditional offline derivatization technique, the new LC-PCD-DPIS-MS method retained the capacity of LC separation. In addition, it is more sensitive and selective than a full scan MS method. As an application, an in vitro study of the metabolism of epoxy fatty acids by human soluble epoxide hydrolase was tested. These vicinal-diol metabolites of individual regioisomers from different types of polyunsaturated fatty acids were easily identified. The limit of detection (LOD) reached as low as 25 nM. The newly developed LC-PCD-DPIS-MS method shows significant advantages in improving the selectivity and therefore can be employed as a powerful tool for profiling vicinal-diol compounds from biological matrices.
Collapse
Affiliation(s)
| | | | | | - Jun Yang
- Correspondence: ; Tel.: +1-530-752-5109
| |
Collapse
|
14
|
Tan Y, Wu J, Song L, Zhang M, Hipolito CJ, Wu C, Wang S, Zhang Y, Yin Y. Merging the Versatile Functionalities of Boronic Acid with Peptides. Int J Mol Sci 2021; 22:ijms222312958. [PMID: 34884766 PMCID: PMC8657650 DOI: 10.3390/ijms222312958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Peptides inherently feature the favorable properties of being easily synthesized, water-soluble, biocompatible, and typically non-toxic. Thus, boronic acid has been widely integrated with peptides with the goal of discovering peptide ligands with novel biological activities, and this effort has led to broad applications. Taking the integration between boronic acid and peptide as a starting point, we provide an overview of the latest research advances and highlight the versatile and robust functionalities of boronic acid. In this review, we summarize the diverse applications of peptide boronic acids in medicinal chemistry and chemical biology, including the identification of covalent reversible enzyme inhibitors, recognition, and detection of glycans on proteins or cancer cell surface, delivery of siRNAs, development of pH responsive devices, and recognition of RNA or bacterial surfaces. Additionally, we discuss boronic acid-mediated peptide cyclization and peptide modifications, as well as the facile chemical synthesis of peptide boronic acids, which paved the way for developing a growing number of peptide boronic acids.
Collapse
Affiliation(s)
- Yahong Tan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Junjie Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Lulu Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Mengmeng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Christopher John Hipolito
- Screening & Compound Profiling, Quantitative Biosciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (S.W.); (Y.Y.)
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
| | - Yizhen Yin
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China; (Y.T.); (J.W.); (L.S.); (M.Z.); (C.W.); (Y.Z.)
- Correspondence: (S.W.); (Y.Y.)
| |
Collapse
|
15
|
Bose SK, Mao L, Kuehn L, Radius U, Nekvinda J, Santos WL, Westcott SA, Steel PG, Marder TB. First-Row d-Block Element-Catalyzed Carbon-Boron Bond Formation and Related Processes. Chem Rev 2021; 121:13238-13341. [PMID: 34618418 DOI: 10.1021/acs.chemrev.1c00255] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organoboron reagents represent a unique class of compounds because of their utility in modern synthetic organic chemistry, often affording unprecedented reactivity. The transformation of the carbon-boron bond into a carbon-X (X = C, N, and O) bond in a stereocontrolled fashion has become invaluable in medicinal chemistry, agrochemistry, and natural products chemistry as well as materials science. Over the past decade, first-row d-block transition metals have become increasingly widely used as catalysts for the formation of a carbon-boron bond, a transformation traditionally catalyzed by expensive precious metals. This recent focus on alternative transition metals has enabled growth in fundamental methods in organoboron chemistry. This review surveys the current state-of-the-art in the use of first-row d-block element-based catalysts for the formation of carbon-boron bonds.
Collapse
Affiliation(s)
- Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India
| | - Lujia Mao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, 571199 Haikou, Hainan, P. R. China
| | - Laura Kuehn
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Udo Radius
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Nekvinda
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Stephen A Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Patrick G Steel
- Department of Chemistry, University of Durham, Science Laboratories South Road, Durham DH1 3LE, U.K
| | - Todd B Marder
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
16
|
Abstract
Chemical reactions of single molecules, caused by rapid formation or breaking of chemical bonds, are difficult to observe even with state-of-the-art instruments. A biological nanopore can be engineered into a single molecule reactor, capable of detecting the binding of a monatomic ion or the transient appearance of chemical intermediates. Pore engineering of this type is however technically challenging, which has significantly restricted further development of this technique. We propose a versatile strategy, "programmable nano-reactors for stochastic sensing" (PNRSS), by which a variety of single molecule reactions of hydrogen peroxide, metal ions, ethylene glycol, glycerol, lactic acid, vitamins, catecholamines or nucleoside analogues can be observed directly. PNRSS presents a refined sensing resolution which can be further enhanced by an artificial intelligence algorithm. Remdesivir, a nucleoside analogue and an investigational anti-viral drug used to treat COVID-19, can be distinguished from its active triphosphate form by PNRSS, suggesting applications in pharmacokinetics or drug screening.
Collapse
|
17
|
Druzina AA, Shmalko AV, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5000] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Abstract
AbstractDiabetes is one of the most devastating global diseases with an ever-increasing number of patients. Achieving persistent glycemic control in a painless and convenient way is an unmet goal for diabetes management. Insulin therapy is commonly utilized for diabetes treatment and usually relies on patient self-injection. This not only impairs a patient’s quality of life and fails to precisely control the blood glucose level but also brings the risk of life-threatening hypoglycemia. “closed-loop” insulin delivery systems could avoid these issues by providing on-demand insulin delivery. However, safety concerns limit the application of currently developed electronics-derived or enzyme-based systems. Phenylboronic acid (PBA), with the ability to reversibly bind glucose and a chemically tailored binding specificity, has attracted substantial attention in recent years. This focus review provides an overview of PBA-based versatile insulin delivery platforms developed in our group, including new PBA derivatives, glucose-responsive gels, and gel-combined medical devices, with a unique “skin layer” controlled diffusion feature.
Collapse
|
19
|
Shirakami N, Kawaki Y, Higashi SL, Shibata A, Kitamura Y, Abu Hanifah S, Wah LL, Ikeda M. Introduction of an Oxidation-responsive 4-Boronobenzyl Group into an Oligonucleotide through a Postmodification Approach. CHEM LETT 2021. [DOI: 10.1246/cl.210204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nanami Shirakami
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yugo Kawaki
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Sharina Abu Hanifah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Selangor, Malaysia
| | - Lim Lee Wah
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
20
|
Clavé G, Reverte M, Vasseur JJ, Smietana M. Modified internucleoside linkages for nuclease-resistant oligonucleotides. RSC Chem Biol 2021; 2:94-150. [PMID: 34458777 PMCID: PMC8341215 DOI: 10.1039/d0cb00136h] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
In the past few years, several drugs derived from nucleic acids have been approved for commercialization and many more are in clinical trials. The sensitivity of these molecules to nuclease digestion in vivo implies the need to exploit resistant non-natural nucleotides. Among all the possible modifications, the one concerning the internucleoside linkage is of particular interest. Indeed minor changes to the natural phosphodiester may result in major modifications of the physico-chemical properties of nucleic acids. As this linkage is a key element of nucleic acids' chemical structures, its alteration can strongly modulate the plasma stability, binding properties, solubility, cell penetration and ultimately biological activity of nucleic acids. Over the past few decades, many research groups have provided knowledge about non-natural internucleoside linkage properties and participated in building biologically active nucleic acid derivatives. The recent renewing interest in nucleic acids as drugs, demonstrated by the emergence of new antisense, siRNA, aptamer and cyclic dinucleotide molecules, justifies the review of all these studies in order to provide new perspectives in this field. Thus, in this review we aim at providing the reader insights into modified internucleoside linkages that have been described over the years whose impact on annealing properties and resistance to nucleases have been evaluated in order to assess their potential for biological applications. The syntheses of modified nucleotides as well as the protocols developed for their incorporation within oligonucleotides are described. Given the intended biological applications, the modifications described in the literature that have not been tested for their resistance to nucleases are not reported.
Collapse
Affiliation(s)
| | - Maeva Reverte
- IBMM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | |
Collapse
|
21
|
Danielsen MB, Christensen NJ, Jørgensen PT, Jensen KJ, Wengel J, Lou C. Polyamine-Functionalized 2'-Amino-LNA in Oligonucleotides: Facile Synthesis of New Monomers and High-Affinity Binding towards ssDNA and dsDNA. Chemistry 2020; 27:1416-1422. [PMID: 33073896 DOI: 10.1002/chem.202004495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/16/2020] [Indexed: 12/15/2022]
Abstract
Attachment of cationic moieties to oligonucleotides (ONs) promises not only to increase the binding affinity of antisense ONs by reducing charge repulsion between the two negatively charged strands of a duplex, but also to augment their in vivo stability against nucleases. In this study, polyamine functionality was introduced into ONs by means of 2'-amino-LNA scaffolds. The resulting ONs exhibited efficient binding towards ssDNA, ssRNA and dsDNA targets, and the 2'-amino-LNA analogue carrying a triaminated linker showed the most pronounced duplex- and triplex-stabilizing effect. Molecular modelling revealed that favourable conformational and electrostatic effects led to salt-bridge formation between positively charged polyamine moieties and the Watson-Hoogsteen groove of the dsDNA targets, resulting in the observed triplex stabilization. All the investigated monomers showed increased resistance against 3'-nucleolytic digestion relative to the non-functionalized controls.
Collapse
Affiliation(s)
- Mathias B Danielsen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Per T Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Knud J Jensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Chenguang Lou
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
22
|
Design and discovery of boronic acid drugs. Eur J Med Chem 2020; 195:112270. [DOI: 10.1016/j.ejmech.2020.112270] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 12/15/2022]
|
23
|
Gołębiewska J, Stawinski J. Reaction of Boranephosphonate Diesters with Pyridines or Tertiary Amines in the Presence of Iodine: Synthetic and Mechanistic Studies. J Org Chem 2020; 85:4312-4323. [PMID: 32073846 DOI: 10.1021/acs.joc.9b03506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Boranephosphonate diesters react with heteroaromatic and certain tertiary amines in the presence of an oxidant (I2) to afford the boron-modified phosphodiester analogues containing a P-B-N structural motif. Our multinuclear 31P and 11B NMR spectroscopy studies lend support for a two-step mechanism involving generation of a λ3-boranephosphonate intermediate that immediately coordinates an amine in the solvent cage, leading to B-pyridinium or B-ammonium boranephosphonate betaine derivatives. We found that the type of the solvent used (e.g., dichloromethane vs acetonitrile) significantly affected the course of the reaction, resulting in either formation of boron-modified derivatives or loss of the boron group with a subsequent oxidation of the phosphorus atom. In aprotic, electron-donating, polar solvents., e.g., acetonitrile (ACN) and tetrahydrofuran (THF), a λ3-boranephosphonate intermediate can also coordinate solvent molecules forming P-B-ACN or P-B-THF complexes that may influence the type of the products formed.
Collapse
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
24
|
Le J, Sun T, Peng R, Yuan TF, Feng YQ, Wang ST, Li Y. LC-MS/MS determination of plasma catecholamines after selective extraction by borated zirconia. Mikrochim Acta 2020; 187:165. [DOI: 10.1007/s00604-020-4145-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
|
25
|
Long PW, Xie JL, Yang JJ, Lu SQ, Xu Z, Ye F, Xu LW. Stereo- and regio-selective synthesis of silicon-containing diborylalkenes via platinum-catalyzed mono-lateral diboration of dialkynylsilanes. Chem Commun (Camb) 2020; 56:4188-4191. [PMID: 32167108 DOI: 10.1039/d0cc00844c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly chemoselective platinum-catalyzed mono-lateral diboration of dialkynylsilanes for the construction of silicon-tethered alkynyl diborylalkenes is described, in which tris(4-methoxyphenyl)phosphine was found to be an effective ligand for the cis-addition of diboron agents to the silicon-tethered alkynes, and the chiral ligand (AFSi-Phos)-mediated diboration of dialkynylsilanes resulted in the desymmetric construction of silicon-stereogenic centers with promising enantioselectivity.
Collapse
Affiliation(s)
- Peng-Wei Long
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Jia-Le Xie
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Jing-Jing Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Si-Qi Lu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Zheng Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Fei Ye
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China.
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, P. R. China. and State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute and Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, P. R. China
| |
Collapse
|
26
|
Jang EK, Son RG, Pack SP. Novel enzymatic single-nucleotide modification of DNA oligomer: prevention of incessant incorporation of nucleotidyl transferase by ribonucleotide-borate complex. Nucleic Acids Res 2019; 47:e102. [PMID: 31318972 PMCID: PMC6753491 DOI: 10.1093/nar/gkz612] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/17/2019] [Accepted: 07/06/2019] [Indexed: 12/16/2022] Open
Abstract
Terminal deoxynucleotidyl transferase (TdT), which mediates template-independent polymerization with low specificity for nucleotides, has been used for nucleotide extension of DNA oligomers. One concern is that it is difficult to control the number of incorporated nucleotides, which is a limitation on the use of TdT for single-nucleotide incorporation of DNA oligomers. Herein, we uncovered an interesting inhibitory effect on TdT when ribonucleotide substrates (rNTPs) were employed in a borate buffer. On the basis of unique inhibitory effects of the ribonucleotide-borate complex, we developed a novel enzymatic method for single-nucleotide incorporation of a DNA oligomer with a modified rNTP by TdT. Single-nucleotide incorporation of a DNA oligomer with various modified rNTPs containing an oxanine, biotin, aminoallyl or N6-propargyl group was achieved with a high yield. The 'TdT in rNTP-borate' method is quite simple and efficient for preparing a single-nucleotide modified DNA oligomer, which is useful for the design of functional DNA-based systems.
Collapse
Affiliation(s)
- Eui Kyoung Jang
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Ryeo Gang Son
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong-Ro 2511, Sejong 30019, Republic of Korea
| |
Collapse
|
27
|
Wellington N, Macklai S, Britz-McKibbin P. Elucidating the Anomalous Binding Enhancement of Isoquinoline Boronic Acid for Sialic Acid Under Acidic Conditions: Expanding Biorecognition Beyond Vicinal Diols. Chemistry 2019; 25:15277-15280. [PMID: 31596002 DOI: 10.1002/chem.201904442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 11/06/2022]
Abstract
A zwitterionic heterocyclic boronic acid based on 4-isoquinolineboronic acid (IQBA) exhibits the highest reported binding affinity for sialic acid or N-acetylneuraminic acid (Neu5Ac, K=5390±190 m-1 ) through the formation of a cyclic boronate ester complex under acidic conditions (pH 3). This anomalous pH-dependent binding enhancement does not occur with common neutral saccharides (e.g., glucose, fructose, sorbitiol), because it is mediated via selective complexation to a α-hydroxycarboxylate moiety forming a stable ion pair and ternary complex with Neu5Ac in phosphate buffer. IQBA expands biorecognition beyond classical vicinal diols under neutral or alkaline buffer conditions, which enables the direct analysis of Neu5Ac by native fluorescence with sub-micromolar detection limits.
Collapse
Affiliation(s)
- Nadine Wellington
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Sabrina Macklai
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| | - Philip Britz-McKibbin
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main St. W., Hamilton, ON, Canada
| |
Collapse
|
28
|
Zhao H, Feng H, Liu J, Tang F, Du Y, Ji N, Xie L, Zhao X, Wang Z, Chen Q. Dual-functional guanosine-based hydrogel integrating localized delivery and anticancer activities for cancer therapy. Biomaterials 2019; 230:119598. [PMID: 31722785 DOI: 10.1016/j.biomaterials.2019.119598] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 02/05/2023]
Abstract
Supramolecular hydrogel delivery systems have attracted widely attention owing to incorporating various therapeutic agents in carriers to decrease unpredictable toxicities, improve curative efficacy, and protect drug bioactivity. Nonetheless, the dual-functional supramolecular hydrogel integrating localized delivery and antineoplastic activities in one system have rarely observed. In this study, we successfully developed a novel supramolecular hydrogel, isoguanosine-borate-guanosine (isoGBG), with reversibly and dynamic borate ester bonds formed via boric acids and diols derived from nature products guanosine and isoguanosine in one pot by following a simple procedure. Both in vivo and in vitro results demonstrated that the isoGBG hydrogel not only displays excellent stability, self-healing properties and biocompatibility, but also has highly anti-tumor activities through inducing tumor cell apoptosis and excellent inhibition effect of tumor recurrence. These findings suggested that isoGBG hydrogel can serve as a dual-function hydrogel system integrating drug carrier and anti-cancer compound in one system, which provided a promising strategy for the design of functional supramolecular hydrogel in the local management of cancer in the future.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hui Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China; XiangYa Stomatological Hospital, Central South University, Changsha, Hunan, 410000, PR China
| | - Jiang Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuqi Du
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xuefeng Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
29
|
Li Y, Zhang Z, Liu B, Liu J. Adsorption of DNA Oligonucleotides by Boronic Acid-Functionalized Hydrogel Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13727-13734. [PMID: 31560208 DOI: 10.1021/acs.langmuir.9b01622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Boronic acid-functionalized hydrogels were commonly used for covalent binding of cis-diol-contained molecules such as glucose, but noncovalent adsorption by boronic acids was less studied. DNA as an important polymer has been used to enhance the function of hydrogels including boronic acid-containing gels. In this work, noncovalent interactions between DNA oligonucleotides and boronic acid-containing hydrogel nanoparticles were studied in detail. The gels were composed of either poly(N-isopropylacrylamide) or with additional 5.6 mol % of 3-acrylamidophenylboronic acid (AAPBA). DNA adsorption on the AAPBA-containing gels was achieved with a high salt concentration, which can be explained by electrostatic repulsion between DNA and boronic acid. The critical role of boronic acid was confirmed by adding competing cis-diol-containing molecules such as glucose, fructose, and cytidine. Hydrogen bonding and hydrophobic interactions are important for DNA adsorption based on inhibited adsorption by urea and dimethyl sulfoxide. Polycytosine DNA showed a higher adsorption capacity compared to the other three types of DNA homopolymers. When T15 and T14-rU were compared, no covalent binding was detected for T14-rU, suggesting that a single terminal diol was insufficient to support covalent binding at the low concentration of DNA used. Finally, the boronic acid-containing gels were able to adsorb an aptamer and inhibit its binding function. Binding was rescued by adding glucose to block the boronic acids. This study demonstrates noncovalent boronic acid interactions with DNA, and this information could be useful for designing and optimization of related biosensors and materials.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Ave. West , Waterloo , Ontario N2L 3G1 , Canada
| | - Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Ave. West , Waterloo , Ontario N2L 3G1 , Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Ave. West , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Ave. West , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
30
|
Hugelshofer CL, Palani V, Sarpong R. Calyciphylline B-type Alkaloids: Evolution of a Synthetic Strategy to (−)-Daphlongamine H. J Org Chem 2019; 84:14069-14091. [DOI: 10.1021/acs.joc.9b02223] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cedric L. Hugelshofer
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Vignesh Palani
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Pandith A, Kim HY, Shin T, Seo YJ. Unprecedented green-emissive boranyl-hydrazone supramolecular assemblies and their in vitro diagnostic applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 197:111553. [PMID: 31326845 DOI: 10.1016/j.jphotobiol.2019.111553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
This paper describes a novel symmetric N,N'-diethylsalicylaldehyde boranyl hydrazone (1) and its in situ-generated assemblies displaying opto-analytical capabilities for the diagnosis of nucleic acids under physiological conditions. The sensing capabilities of these unprecedented supramolecular assemblies were characterized using UV-Vis spectroscopy, fluorescence spectroscopy, 1D and 2D NMR spectroscopy, dynamic light scattering, and zeta potential measurements. Model compounds lacking boranyl units (2, 3) were prepared to correlate and evaluate the sensing mechanism. The rationally designed probe 1 displays unusual aggregation-induced emissive (AIE) properties, with an average particle size of 1096 nm exhibiting green emission upon excitation at 377 nm in pH-7.2 TRIZMA buffer. A selective switch on response toward organic PO43- accompanied through specific nano-aggregations patterns and sizes, thereby causing a significant red-shift through AIE. Exploiting such switch on in green channel behavior has allowed the monitoring of DNase I activities and polymerase chain reactions.
Collapse
Affiliation(s)
- Anup Pandith
- Department of Chemistry, Chonbuk National University, Jeonju 54398, Republic of Korea
| | - Hye-Yeon Kim
- Department of Chemistry, Chonbuk National University, Jeonju 54398, Republic of Korea
| | - Taeho Shin
- Department of Chemistry, Chonbuk National University, Jeonju 54398, Republic of Korea
| | - Young Jun Seo
- Department of Chemistry, Chonbuk National University, Jeonju 54398, Republic of Korea; Department of Bioactive Materials, Chonbuk National University, Jeonju 54398, Republic of Korea.
| |
Collapse
|
32
|
Abstract
Borane phosphonate DNA is a promising molecule for biological applications as well as post-synthesis DNA modification, including DNA functionalization.
Collapse
Affiliation(s)
- Rajen Kundu
- Department of Chemistry and Biochemistry
- University of Colorado
- Boulder
- USA
- CSIR – Central Mechanical Engineering Research Institute
| |
Collapse
|
33
|
António JPM, Russo R, Carvalho CP, Cal PMSD, Gois PMP. Boronic acids as building blocks for the construction of therapeutically useful bioconjugates. Chem Soc Rev 2019; 48:3513-3536. [DOI: 10.1039/c9cs00184k] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review summarizes boronic acid's contribution to the development of bioconjugates with a particular focus on the molecular mechanisms underlying its role in the construction and function of the bioconjugate, namely as a bioconjugation warhead, as a payload and as part of a bioconjugate linker.
Collapse
Affiliation(s)
- João P. M. António
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Roberto Russo
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Cátia Parente Carvalho
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. S. D. Cal
- Instituto de Medicina Molecular
- Faculty of Medicine
- Universidade de Lisboa
- Lisbon
- Portugal
| | - Pedro M. P. Gois
- Research Institute for Medicines (iMed.ULisboa)
- Faculty of Pharmacy
- Universidade de Lisboa
- Lisbon
- Portugal
| |
Collapse
|
34
|
Pasek MA. The Origin of the Ionized Linker: Geochemical Predestination for Phosphate? ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-319-93584-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
35
|
Gabrielli L, Carril M, Padro D, Mancin F. Multimodal 19
F NMR Dopamine Detection and Imaging with a Nanoparticle-Based Displacement Assay. Chemistry 2018; 24:13036-13042. [DOI: 10.1002/chem.201802482] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/07/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Luca Gabrielli
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| | - Monica Carril
- CIC biomaGUNE; Paseo Miramón 182 20014 San Sebastián Spain
- Ikerbasque, Basque Foundation for Science; 48011 Bilbao Spain
| | - Daniel Padro
- CIC biomaGUNE; Paseo Miramón 182 20014 San Sebastián Spain
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche; Università di Padova; via Marzolo 1 35131 Padova Italy
| |
Collapse
|
36
|
Gołębiewska J, Rachwalak M, Jakubowski T, Romanowska J, Stawinski J. Reaction of Boranephosphonate Diesters with Amines in the Presence of Iodine: The Case for the Intermediacy of H-Phosphonate Derivatives. J Org Chem 2018; 83:5496-5505. [DOI: 10.1021/acs.joc.8b00419] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Justyna Gołębiewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Marta Rachwalak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Tomasz Jakubowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Joanna Romanowska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Jacek Stawinski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| |
Collapse
|
37
|
Hugelshofer CL, Palani V, Sarpong R. Oxazaborinines from Vinylogous N-Allylic Amides: Reactivities of Underexplored Heterocyclic Building Blocks. Org Lett 2018; 20:2649-2653. [PMID: 29667837 DOI: 10.1021/acs.orglett.8b00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Access to a new class of oxazaborinines using an efficient transition-metal-catalyzed rearrangement is demonstrated. The method overcomes the synthetic challenge of achieving an aza-Claisen rearrangement of vinylogous N-allylic amide substrates, giving rise to a variety of highly modifiable oxazaborinine products. An investigation of the unique reactivity of these boron-based heterocycles has unveiled their underexplored potential as valuable building blocks and intermediates for organic synthesis.
Collapse
Affiliation(s)
- Cedric L Hugelshofer
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Vignesh Palani
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Richmond Sarpong
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| |
Collapse
|
38
|
Dikmen G, Alver Ö, Parlak C. NMR determination of solvent dependent behavior and XRD structural properties of 4-carboxy phenylboronic acid: A DFT supported study. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Feng P, Chen Y, Zhang L, Qian CG, Xiao X, Han X, Shen QD. Near-Infrared Fluorescent Nanoprobes for Revealing the Role of Dopamine in Drug Addiction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4359-4368. [PMID: 29308644 DOI: 10.1021/acsami.7b12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Brain imaging techniques enable visualizing the activity of central nervous system without invasive neurosurgery. Dopamine is an important neurotransmitter. Its fluctuation in brain leads to a wide range of diseases and disorders, like drug addiction, depression, and Parkinson's disease. We designed near-infrared fluorescence dopamine-responsive nanoprobes (DRNs) for brain activity imaging during drug abuse and addiction process. On the basis of light-induced electron transfer between DRNs and dopamine and molecular wire effect of the DRNs, we can track the dynamical change of the neurotransmitter level in the physiological environment and the releasing of the neurotransmitter in living dopaminergic neurons in response to nicotine stimulation. The functional near-infrared fluorescence imaging can dynamically track the dopamine level in the mice midbrain under normal or drug-activated condition and evaluate the long-term effect of addictive substances to the brain. This strategy has the potential for studying neural activity under physiological condition.
Collapse
Affiliation(s)
- Peijian Feng
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Yulei Chen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Lei Zhang
- Department of Biomedical Engineering, College of Engineering and Applied Science, Nanjing University , Nanjing 210093, China
| | - Cheng-Gen Qian
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xuanzhong Xiao
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Xu Han
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering, Key Laboratory of High Performance Polymer Materials and Technology of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University , Nanjing 210023, China
| |
Collapse
|
40
|
Nishiyabu R, Shimizu A. Boronic acid as an efficient anchor group for surface modification of solid polyvinyl alcohol. Chem Commun (Camb) 2018; 52:9765-8. [PMID: 27311634 DOI: 10.1039/c6cc02782b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the use of boronic acid as an anchor group for surface modification of solid polyvinyl alcohol (PVA); the surfaces of PVA microparticles, films, and nanofibers were chemically modified with boronic acid-appended fluorescent dyes through boronate esterification using a simple soaking technique in a short time under ambient conditions.
Collapse
Affiliation(s)
- Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| | - Ai Shimizu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan.
| |
Collapse
|
41
|
Verma PK, Shegavi ML, Bose SK, Geetharani K. A nano-catalytic approach for C–B bond formation reactions. Org Biomol Chem 2018; 16:857-873. [DOI: 10.1039/c7ob02958f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nanoparticle-catalysed borylation is one of the most convenient methods for the synthesis of organoboranes to overcome the confines of homogeneous catalysis such as recyclability and heavy metal contamination.
Collapse
Affiliation(s)
- Piyush Kumar Verma
- Department of Inorganic and Physical Chemistry
- Indian institute of Science
- Bangalore-560012
- India
| | - Mahadev L. Shegavi
- Centre for Nano and Material Sciences (CNMS)
- Jain University
- Bangalore-562112
- India
| | | | - K. Geetharani
- Department of Inorganic and Physical Chemistry
- Indian institute of Science
- Bangalore-560012
- India
| |
Collapse
|
42
|
Matsumoto A, Miyahara Y. 'Borono-lectin' based engineering as a versatile platform for biomedical applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2018; 19:18-30. [PMID: 29296128 PMCID: PMC5738650 DOI: 10.1080/14686996.2017.1411143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 05/23/2023]
Abstract
Boronic acids are well known for their ability to reversibly interact with the diol groups, a common motif of biomolecules including sugars and ribose. Due to their ability to interact with carbohydrates, they can be regarded as synthetic mimics of lectins, termed 'borono-lectins'. The borono-lectins can be tailored to elicit a broad profile of binding strength and specificity. This special property has been translated into many creative biomedical applications in a way interactive with biology. This review provides a brief overview of recent efforts of polymeric materials-based engineering taking advantage of such virtue of 'borono-lectins' chemistry, related to the field of biomaterials and drug delivery applications.
Collapse
Affiliation(s)
- Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology (KISTEC-KAST), Kawasaki, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
43
|
Disubstituted cobalt bis(1,2-dicarbollide)(-I) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-I) nucleoside conjugates. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
44
|
Matsumoto A, Tanaka M, Matsumoto H, Ochi K, Moro-oka Y, Kuwata H, Yamada H, Shirakawa I, Miyazawa T, Ishii H, Kataoka K, Ogawa Y, Miyahara Y, Suganami T. Synthetic "smart gel" provides glucose-responsive insulin delivery in diabetic mice. SCIENCE ADVANCES 2017; 3:eaaq0723. [PMID: 29202033 PMCID: PMC5706739 DOI: 10.1126/sciadv.aaq0723] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/27/2017] [Indexed: 05/20/2023]
Abstract
Although previous studies have attempted to create "electronics-free" insulin delivery systems using glucose oxidase and sugar-binding lectins as a glucose-sensing mechanism, no successful clinical translation has hitherto been made. These protein-based materials are intolerant of long-term use and storage because of their denaturing and/or cytotoxic properties. We provide a solution by designing a protein-free and totally synthetic material-based approach. Capitalizing on the sugar-responsive properties of boronic acid, we have established a synthetic polymer gel-based insulin delivery device confined within a single catheter, which exhibits an artificial pancreas-like function in vivo. Subcutaneous implantation of the device in healthy and diabetic mice establishes a closed-loop system composed of "continuous glucose sensing" and "skin layer"-regulated insulin release. As a result, glucose metabolism was controlled in response to interstitial glucose fluctuation under both insulin-deficient and insulin-resistant conditions with at least 3-week durability. Our "smart gel" technology could offer a user-friendly and remarkably economic (disposable) alternative to the current state of the art, thereby facilitating availability of effective insulin treatment not only to diabetic patients in developing countries but also to those patients who otherwise may not be strongly motivated, such as the elderly, infants, and patients in need of nursing care.
Collapse
Affiliation(s)
- Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Corresponding author. (A.M.); (T.S.)
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hiroko Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yuki Moro-oka
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirohito Kuwata
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Diabetology, Nara Medical University, Nara, Japan
| | - Hironori Yamada
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ibuki Shirakawa
- Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taiki Miyazawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hitoshi Ishii
- Department of Diabetology, Nara Medical University, Nara, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Japan
- Policy Alternatives Research Institute, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (CREST), Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Corresponding author. (A.M.); (T.S.)
| |
Collapse
|
45
|
Liu X, Li Z, Xu H, Zhan Y, Ma P, Chen H, Jiang B. Tris(2-carboxyethyl)phosphine promotes hydrolysis of iminoboronates. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.06.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Xiao Y, Sun H, Du J. Sugar-Breathing Glycopolymersomes for Regulating Glucose Level. J Am Chem Soc 2017; 139:7640-7647. [DOI: 10.1021/jacs.7b03219] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yufen Xiao
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department
of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- Shanghai
Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
47
|
Li Y, Liu Y, Ma R, Xu Y, Zhang Y, Li B, An Y, Shi L. A G-Quadruplex Hydrogel via Multicomponent Self-Assembly: Formation and Zero-Order Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13056-13067. [PMID: 28357860 DOI: 10.1021/acsami.7b00957] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Stimuli-sensitive hydrogels are ideal candidates for biomedical and bioengineering purposes, although applications of hydrogels may be limited, due in part to the limited choice of suitable materials for constructing hydrogels, the complexity in the synthesis of the source materials, and the undesired fast-then-slow drug-release behaviors of usual hydrogels. Herein, we describe the fabrication of a new supramolecular guanosine (G)-quadruplex hydrogel by multicomponent self-assembly of endogenous guanosine (G), 2-formylboronic acid (2-FPBA), and tris(2-aminoethyl)amine (TAEA) in the presence of KCl in an easy and convenient way. The features of the G-quadruplex hydrogel include (1) versatility and commercial availability of building blocks with different functions, (2) dynamic iminoboronate bonds with pH and glucose responsiveness, and (3) zero-order drug-release behavior because of the superficial peel-off of the hydrogel in response to stimuli. The structure, morphology, and properties of the G-quadruplex hydrogel were well-characterized, and satisfactory zero-order drug release was successfully achieved. This kind of supramolecular G-quadruplex hydrogels may find applications in biological fields.
Collapse
Affiliation(s)
| | | | | | - Yanling Xu
- Department of Biological Pharmacy, College of Basic Science, Tianjin Agricultural University , Tianjin 300384, China
| | - Yunliang Zhang
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | - Baoxin Li
- Endocrinology Department, Baoding First Central Hospital , Baoding 071000, Hebei, China
| | | | | |
Collapse
|
48
|
Lou C, Samuelsen SV, Christensen NJ, Vester B, Wengel J. Oligonucleotides Containing Aminated 2'-Amino-LNA Nucleotides: Synthesis and Strong Binding to Complementary DNA and RNA. Bioconjug Chem 2017; 28:1214-1220. [PMID: 28332825 DOI: 10.1021/acs.bioconjchem.7b00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mono- and diaminated 2'-amino-LNA monomers were synthesized and introduced into oligonucleotides. Each modification imparts significant stabilization of nucleic acid duplexes and triplexes, excellent sequence selectivity, and significant nuclease resistance. Molecular modeling suggested that structural stabilization occurs via intrastrand electrostatic attraction between the protonated amino groups of the aminated 2'-amino-LNA monomers and the host oligonucleotide backbone.
Collapse
Affiliation(s)
| | | | - Niels Johan Christensen
- Department of Chemistry, Biomolecular Nanoscale Engineering Center, University of Copenhagen , Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | | | | |
Collapse
|
49
|
Barbeyron R, Vasseur JJ, Baraguey C, Smietana M. Synthesis of 3′-deoxy-3′-iminodiacetic acid and 3′-deoxy-3′-aminodiethanol thymidine analogues and NMR study of their complexation with boronic acids. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Scharnagl FK, Bose SK, Marder TB. Acylboranes: synthetic strategies and applications. Org Biomol Chem 2017; 15:1738-1752. [DOI: 10.1039/c6ob02425d] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acylboranes are an attractive class of compounds, of which the synthesis has very recently been documented as summarised in this review. Access to these compounds provides a path to study their properties and reactivity.
Collapse
Affiliation(s)
- Florian Korbinian Scharnagl
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| | - Shubhankar Kumar Bose
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
- Centre for Nano and Material Sciences (CNMS)
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron
- Julius-Maximilians-Universität Würzburg
- 97074 Würzburg
- Germany
| |
Collapse
|