1
|
Zheng XJ, Pan QJ, Dong YP. Relativistic DFT investigation for reaction energies and electronic/bonding properties of Schiff-base polypyrrolic uranyl(V) complexes: effects of group 14-functionalized uranyl exo-oxo group. J Mol Model 2025; 31:159. [PMID: 40366458 DOI: 10.1007/s00894-025-06382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
CONTEXT The safe immobilization of radionuclides and the removal of nuclear waste contamination from environment require a thorough understanding of the structures, reaction behaviour and bonding properties of uranium complexes. The cation-cation interaction (CCI), which is also known as the direct actinyl-actinyl bonding interaction, is common only for An(V). A series of binuclear uranyl compounds of Schiff-base polypyrrolic macrocycle (H4L), [{(Me3R)OUVO}2(L)] (R = C (1), Si (2), Ge (3), Sn (4) and Pb (5)), featuring CCIs, were systematically investigated by relativistic density functional theory (DFT). Three electronic states of singlet (fαβ), symmetry-broken (fαfβ), and triplet (fαfα) were calculated, which are labeled as s, s' and t, respectively. Calculations show that the latter two electronic states are energy-degenerate, and much lower in energy than the singlet state. Along compounds 1 t to 5 t, R - Oexo bonds gradually decrease in strength, while U - Oexo bond gradually increases. The quantum theory of atoms in molecule (QTAIM) analyses show that the R - Oexo bond is a covalent one for 1 t, and it turns a covalent/ionic mixed bond in 2 t and 3 t, and is attributed to a dative bond for 4 t and 5 t. From 1 t to 4 t, the HOMO and H-1 orbitals, as well as the π(R - Oexo) and π(U - Oexo) orbitals ascend to the higher energy level. In addition, the shortest bond distance, the maximum vibration wavenumber and the most negative interaction energy Eint of R - Oexo bond result in the strongest CCI in 1 t among 1 t - 5 t, along with the corresponding lowest reaction free energy. Our calculations reveal that the CCIs are instrumental in enhancing the stability of 1 t - 5 t. METHODS Structural optimizations of all compounds were performed in the gas phase using the Priroda code. A generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhoff (PBE) functional was used. All-electron correlation-consistent double-ς polarized quality basis sets were used in all calculations. Single point calculations have been performed by using the ADF 2012 code on the basis of optimized geometries from Priroda code. The scalar relativistic zero-order regular approximation (ZORA) method and Slater-type triple-zeta polarization (TZP) basis sets were employed. Solvation effects were considered with the Conductor-Like Screening Model (COSMO) and spin-orbit coupling (SOC) effects were explicitly included in the calculations. Single-point calculations were carried out using the Gaussian09 program. Stuttgart relativistic large-core effective core potentials (RLC-ECPs) and corresponding basis sets were applied for U, def2SVP for Sn and Pb, and 6-31G* for other atoms. Then, the quantum theory of atoms in molecules (QTAIM) data were computed with the Multiwfn 3.3.3 package.
Collapse
Affiliation(s)
- Xiu-Jun Zheng
- Institute of Food Engineering, Harbin University, Harbin, 150086, China.
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, China
| | - Yan-Ping Dong
- Institute of Food Engineering, Harbin University, Harbin, 150086, China
| |
Collapse
|
2
|
Huang X, Wu QY, Wang CZ, Lan JH, Wang HQ, Shi WQ. Theoretical study on the kinetic behavior of Np(VI) reduction by hydroxylamine and its derivatives: substituent effect. Phys Chem Chem Phys 2025; 27:6014-6023. [PMID: 40033898 DOI: 10.1039/d4cp04616a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Spent fuel reprocessing entails controlling the valence state of Np and its routing in the plutonium-uranium reduction extraction (PUREX) process. Hydroxylamine (HA) and its derivatives are effective salt-free reductants that can reduce Np(VI) to Np(V) without its further reduction. Experimentally, hydroxylamine, N-methylhydroxylamine (MHA) and N,N-dimethylhydroxylamine (DMHA) reduce Np(VI) at different reaction rates. To investigate the impact of methyl substitution on the Np(VI) reduction mechanism, we theoretically studied the Np(VI) reduction reaction by HA, MHA and DMHA. It was observed that the reduction of Np(VI) involves hydrogen atom transfer from these reductants. The two steps for Np(VI) reduction by HA occurre via hydrogen transfer. Alternatively, Np(VI) reduction by both MHA and DMHA initially proceede via hydrogen atom transfer, followed by an outer-sphere electron transfer mechanism. The rate-determining step for MHA and DMHA is the first Np(VI) reduction step, and the energy barrier for DMHA is lower than that for MHA, which are 6.2 and 7.7 kcal mol-1, respectively. So the reaction rate for the reduction of Np(VI) by DMHA is faster than that by MHA due to the influence of the methyl group, which is consistent with the experimental results. Finally, we analyzed the bonding evolution using the quantum theory of atoms in molecules (QTAIM), interaction region indicator (IRI), Mayer bond order (MBO), localized molecular orbitals (LMO) and spin density. This study presents kinetic insights into the effect of methyl substitution on the reduction of Np(VI) by hydroxylamine, providing an in-depth understanding of Np(VI) reduction by hydroxylamine derivatives in spent fuel reprocessing.
Collapse
Affiliation(s)
- Xin Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Hong-Qing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Poliakova T, Nevolin I, Shiryaev A, Fedoseev A, Grigoriev M, Averin A, Zubkova V, Novichkov D, Trigub A, Krot A, Volgin M, Matveev P. Structural Regularities, Thermal Stability, and Nature of Chemical Bonding in the Series of Actinide Double Sulfates Cs[An(SO 4) 2(H 2O) 3]·H 2O (An = U, Np, Pu, or Am). Inorg Chem 2025; 64:3664-3676. [PMID: 39964104 DOI: 10.1021/acs.inorgchem.4c04102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Investigation of the properties of the trivalent light actinide compounds is hindered by their low stability under normal conditions. In this study, the An3+ double sulfates Cs[An(SO4)2(H2O)3]·H2O (An = U, Np, Pu, or Am) were synthesized and characterized by complementary methods. Their structure was solved using single-crystal X-ray diffraction (XRD), and peculiarities of the sulfate anion environment were addressed with vibrational spectroscopy. The oxidation states of the actinides were confirmed by using X-ray absorption near edge spectroscopy (XANES) and solid-state absorption spectroscopy. Changes in the local environment of Am ions caused by self-irradiation are observed after several months of storage. Decomposition of the compounds in air and in the inert atmosphere at temperatures up to 1000 °C and the final products were studied using thermal analysis and powder diffraction. Computational investigation employing approaches such as QTAIM, Löwdin bond order analysis, and atomic charge calculations was used to investigate trends in the nature of chemical bonds in these compounds. It is shown that the covalent interaction decreases from U to Am with a corresponding increase in ion charge.
Collapse
Affiliation(s)
- Tatiana Poliakova
- Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russian Federation
- MSU-BIT University, Chemistry Department, Shenzhen 517182, China
| | - Iurii Nevolin
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Andrey Shiryaev
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Alexander Fedoseev
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Mikhail Grigoriev
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Alexey Averin
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Vladislava Zubkova
- Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russian Federation
| | - Daniil Novichkov
- Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russian Federation
| | - Alexander Trigub
- National Research Center "Kurchatov Institute", Moscow 123182, Russian Federation
| | - Anna Krot
- Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russian Federation
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Mikhail Volgin
- Russian Academy of Sciences, Frumkin Institute of Physical Chemistry, Moscow 119071, Russian Federation
| | - Petr Matveev
- Lomonosov Moscow State University, Chemistry Department, Moscow 119991, Russian Federation
| |
Collapse
|
4
|
Ordoñez O, Yu X, Schuerlein MA, Wu G, Autschbach J, Hayton TW. An Actinide Complex with a Nucleophilic Allenylidene Ligand. J Am Chem Soc 2024. [PMID: 39371031 DOI: 10.1021/jacs.4c09076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The reaction of [Cp3Th(3,3-diphenylcyclopropenyl)] (Cp = η5-C5H5) with 1 equiv of lithium diisopropylamide (LDA) results in cyclopropenyl ring opening and formation of the thorium allenylidene complex, [Li(Et2O)2][Cp3Th(CCCPh2)] ([Li(Et2O)2][1]), in good yield. Additionally, deprotonation of [Cp3Th(3,3-diphenylcyclopropenyl)] with 1 equiv of LDA, in the presence of 12-crown-4 or 2.2.2-cryptand, results in the formation of discrete cation/anion pairs, [Li(12-crown-4)(THF)][Cp3Th(CCCPh2)] ([Li(12-crown-4)(THF)][1]) and [Li(2.2.2-cryptand)][Cp3Th(CCCPh2)] ([Li(2.2.2-cryptand)][1]), respectively. Interestingly, the complex [Li(Et2O)2][1] undergoes dimerization upon standing at room temperature, resulting in the formation of [Cp2Th(μ:η1:η3-CCCPh2)]2 (2), via loss of LiCp. The reaction of [Li(Et2O)2][1] with MeI results in electrophilic attack at the Cγ carbon atom, leading to the formation of a thorium acetylide complex, [Cp3Th(C≡CC(Me)Ph2)] (3), which can be isolated in 83% yield upon workup, whereas the reaction of [Li(Et2O)2][1] with benzophenone results in the formation of 1,1,4,4-tetraphenylbutatriene (4) in 99% yield, according to integration against an internal standard. Density functional theory (DFT) calculations performed on [1]- and 2 reveal significant electron delocalization across the allenylidene ligand. Additionally, calculations of the 13C NMR chemical shifts for the Cα, Cβ, and Cγ nuclei of the allenylidene ligand were in good agreement with the experimental shifts. The calculations reveal modest deshielding induced by spin-orbital effects originating at Th due to the involvement of the 5f orbitals in the Th-C bonds. According to a DFT analysis, the cyclopropenyl ring-opening reaction proceeds via [Cp3Th(η1-3,3-Ph2-cyclo-C3)]- (IM), which features a carbanion character at Cβ.
Collapse
Affiliation(s)
- Osvaldo Ordoñez
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Xiaojuan Yu
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Megan A Schuerlein
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Trevor W Hayton
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Huang Q, Liang YT, Li AY. A Theoretical Study on the Influence of Five- and Six-Membered N-Heterocyclic Ring Side Chains of the N-Donor Extractants on Am(III)/Eu(III) Extraction and Separation. J Phys Chem A 2024; 128:6834-6846. [PMID: 39140223 DOI: 10.1021/acs.jpca.4c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
According to the green development requirements of carbon neutrality and carbon peaking, the effective separation of lanthanides and actinides is one of the key factors for nuclear energy to become a sustainable energy source. In recent years, o-phenanthroline-based ligands have been proven to be effective in the separation of lanthanides and actinides. In this work, based on 5,9b-dihydro-4aH-cyclopenta[1,2-b:5,4-b']dipyridines, we designed six N-heterocyclic ring ligands and theoretically studied their extraction capacity and separation selectivity for the Am(III) and Eu(III) ions. Various theoretical methods were used to analyze the properties of the ligands and study the bonding nature of the ligands with the metal ions. Thermodynamic parameters were calculated to measure the extraction ability of the ligands to the metal ions and to explore the separation capacity of the ligand for the Am(III) and Eu(III) ions. The calculated results show that the five- and six-membered N-heterocyclic ring side chains of the ligands and the distribution of the N atoms on the side chain rings have obvious effects on the bonding of the ligands to metal ions and on the extraction and separation properties of the ligands for the metal ions. It was found that the extractants with six-membered ring side chains possess an extraction ability slightly better than that of the ligands with five-membered ring side chains and that the ligands with a pair of adjacent N atoms on the side chains have a stronger separation selectivity for the Am(III)/Eu(III) ions. The theoretical research in this work will help to understand the details of binding and extraction properties of similar ligands and provide insights for the future design of five- and six-membered heterocyclic ligands.
Collapse
Affiliation(s)
- Qijie Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| | - Yu Ting Liang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| | - An Yong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 P. R. China
| |
Collapse
|
6
|
Mikeska ER, Wilson RE, Sen A, Autschbach J, Blakemore JD. Preparation of Neptunyl and Plutonyl Acetates To Access Nonaqueous Transuranium Coordination Chemistry. J Am Chem Soc 2024; 146:21509-21524. [PMID: 39047184 DOI: 10.1021/jacs.4c04613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Uranyl diacetate dihydrate is a useful reagent for the preparation of uranyl (UO22+) coordination complexes, as it is a well-defined stoichiometric compound featuring moderately basic acetates that can facilitate protonolysis reactivity, unlike other anions commonly used in synthetic actinide chemistry such as halides or nitrate. Despite these attractive features, analogous neptunium (Np) and plutonium (Pu) compounds are unknown to date. Here, a modular synthetic route is reported for accessing stoichiometric neptunyl(VI) and plutonyl(VI) diacetate compounds that can serve as starting materials for transuranic coordination chemistry. The new NpO22+ and PuO22+ complexes, as well as a corresponding molecular UO22+ complex, are isomorphous in the solid state, and in solution show similar solubility properties that facilitate their use in synthesis. In both solid and solution state, the +VI oxidation state (O.S.) is maintained, as demonstrated by vibrational and optical spectroscopy, confirming that acetate anions stabilize the oxidizing, high-valent +VI states of Np and Pu as they do for the more stable U(VI). All three acetate salts readily react with a model diprotic ligand, affording incorporation of U(VI), Np(VI), and Pu(VI) cores into molecular coordination compounds that occurs concomitantly with elimination of acetic acid; the new complexes are high-valent, yet overall charge neutral, facilitating entry into nonaqueous chemistry by rational synthesis. Computational studies reveal that the dianionic ligand framework assists in stabilizing the +VI O.S. via donation to the 5f shells of the actinides, highlighting the potential usefulness of protonolysis reactivity toward preparation of stabilized high-valent transuranic species.
Collapse
Affiliation(s)
- Emily R Mikeska
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Richard E Wilson
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Asmita Sen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
7
|
Chowdhury SR, Goodwin CAP, Vlaisavljevich B. What is the nature of the uranium(iii)-arene bond? Chem Sci 2024; 15:1810-1819. [PMID: 38303954 PMCID: PMC10829017 DOI: 10.1039/d3sc04715f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/14/2023] [Indexed: 02/03/2024] Open
Abstract
Complexes of the form [U(η6-arene)(BH4)3] where arene = C6H6; C6H5Me; C6H3-1,3,5-R3 (R = Et, iPr, tBu, Ph); C6Me6; and triphenylene (C6H4)3 were investigated towards an understanding of the nature of the uranium-arene interaction. Density functional theory (DFT) shows the interaction energy reflects the interplay between higher energy electron rich π-systems which drive electrostatic contributions, and lower energy electron poor π-systems which give rise to larger orbital contributions. The interaction is weak in all cases, which is consistent with the picture that emerges from a topological analysis of the electron density where metrics indicative of covalency show limited dependence on the nature of the ligand - the interaction is predominantly electrostatic in nature. Complete active space natural orbital analyses reveal low occupancy U-arene π-bonding interactions dominate in all cases, while δ-bonding interactions are only found with high-symmetry and electron-rich C6Me6. Finally, both DFT and multireference calculations on a reduced, formally U(ii), congener, [U(C6Me6)(BH4)3]-, suggests the electronic structure (S = 1 or 2), and hence metal oxidation state, of such a species cannot be deduced from structural features such as arene distortion alone. We show that arene geometry strongly depends on the spin-state of the complex, but that in both spin-states the complex is best described as U(iii) with an arene-centred radical.
Collapse
Affiliation(s)
| | - Conrad A P Goodwin
- Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | | |
Collapse
|
8
|
Wang YL, Li FF, Xiao Z, Wang CZ, Liu Y, Shi WQ, He H. Experimental and theoretical studies on the extraction behavior of Cf(iii) by NTAamide(C8) ligand and the separation of Cf(iii)/Cm(iii). RSC Adv 2023; 13:3781-3791. [PMID: 36756586 PMCID: PMC9890634 DOI: 10.1039/d2ra07660h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/27/2023] Open
Abstract
In this work we studied the extraction behaviors of Cf(iii) by NTAamide (N,N,N',N',N'',N''-hexaocactyl-nitrilotriacetamide, C8) in nitric acid medium. Influencing factors such as contact time, concentration of NTAamide(C8), HNO3 and NO3 - as well as temperature were considered. The slope analysis showed that Cf(iii) should be coordinated in the form of neutral molecules, and the extraction complex should be Cf(NO3)3·2L (L = NTAamide(C8)), which can achieve better extraction effect under the low acidity condition. When the concentration of HNO3 was 0.1 mol L-1, the separation factor (SFCf/Cm) was 3.34. The extractant has application prospect to differentiate the trivalent Cf(iii) and Cm(iii) when the concentration of nitric acid is low. On the other hand, density functional theory (DFT) calculations were conducted to explore the coordination mechanism of NTAamide(C8) ligands with Cf/Cm cations. The NTAamide(C8) complexes of Cf(iii)/Cm(iii) have similar geometric structures, and An(iii) is more likely to form a complex with 1 : 2 stoichiometry (metal ion/ligands). In addition, bonding property and thermodynamics analyses showed that NTAamide(C8) ligands had stronger coordination ability with Cf(iii) over Cm(iii). Our work provides meaningful information with regard to the in-group separation of An(iii) in practical systems.
Collapse
Affiliation(s)
- Yi-Lin Wang
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Feng-Feng Li
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Zhe Xiao
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Hui He
- Department of Radiochemistry, China Institute of Atomic Energy Beijing 102413 P. R. China
| |
Collapse
|
9
|
Mechanistic elucidation of Diels–Alder cycloaddition reactions between quinoflavonoid and substituted butadiene using LOL, ELF, QTAIM, and DFT studies. Struct Chem 2022. [DOI: 10.1007/s11224-022-02058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Ebenezer C, Solomon RV. Uptake of Am(III) Ions and Eu(III) Ions Using Cyclic Substituted N, O‐hybrid 1,10‐Phenanthroline Derived Phosphine Oxide Ligands ‐ A DFT Exploration. ChemistrySelect 2022. [DOI: 10.1002/slct.202200446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) University of Madras, East Tambaram Chennai 600 059 Tamil Nadu India
| |
Collapse
|
11
|
Devi K, Gorantla SMNVT, Mondal KC. EDA-NOCV analysis of carbene-borylene bonded dinitrogen complexes for deeper bonding insight: A fair comparison with a metal-dinitrogen system. J Comput Chem 2022; 43:757-777. [PMID: 35289411 DOI: 10.1002/jcc.26832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 01/09/2023]
Abstract
Binding of dinitrogen (N2 ) to a transition metal center (M) and followed by its activation under milder conditions is no longer impossible; rather, it is routinely studied in laboratories by transition metal complexes. In contrast, binding of N2 by main group elements has been a challenge for decades, until very recently, an exotic cAAC-borylene (cAAC = cyclic alkyl(amino) carbene) species showed similar binding affinity to kinetically inert and non-polar dinitrogen (N2 ) gas under ambient conditions. Since then, N2 binding by short lived borylene species has made a captivating news in different journals for its unusual features and future prospects. Herein, we carried out different types of DFT calculations, including EDA-NOCV analysis of the relevant cAAC-boron-dinitrogen complexes and their precursors, to shed light on the deeper insight of the bonding secret (EDA-NOCV = energy decomposition analysis coupled with natural orbital for chemical valence). The hidden bonding aspects have been uncovered and are presented in details. Additionally, similar calculations have been carried out in comparison with a selected stable dinitrogen bridged-diiron(I) complex. Singlet cAAC ligand is known to be an exotic stable species which, combined with the BAr group, produces an intermediate singlet electron-deficient (cAAC)(BAr) species possessing a high lying HOMO suitable for overlapping with the high lying π*-orbital of N2 via effective π-backdonation. The BN2 interaction energy has been compared with that of the FeN2 bond. Our thorough bonding analysis might answer the unasked questions of experimental chemists about how boron compounds could mimic the transition metal of dinitrogen binding and activation, uncovering hidden bonding aspects. Importantly, Pauling repulsion energy also plays a crucial role and decides the binding efficiency in terms of intrinsic interaction energy between the boron-center and the N2 ligand.
Collapse
Affiliation(s)
- Kavita Devi
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | | | |
Collapse
|
12
|
Liu Y, Wang CZ, Wu QY, Lan JH, Chai ZF, Wu WS, Shi WQ. Theoretical Probing of Size-Selective Crown Ether Macrocycle Ligands for Transplutonium Element Separation. Inorg Chem 2022; 61:4404-4413. [PMID: 35230088 DOI: 10.1021/acs.inorgchem.1c03853] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Effective separation and recovery of chemically similar transplutonium elements from adjacent actinides is extremely challenging in spent fuel reprocessing. Deep comprehension of the complexation of transplutonium elements and ligands is significant for the design and development of ligands for the in-group separation of transplutonium elements. Because of experimental difficulties of transplutonium elements, theoretical calculation has become an effective means of exploring transplutonium complexes. In this work, we systematically investigated the coordination mechanism between transplutonium elements (An = Am, Cm, Bk, Cf) and two crown ether macrocyclic ligands [N,N'- bis[(6-carboxy-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2bp18c6) and N,N'-bis[(6-methylphosphinic-2-pyridyl)methyl]-1,10-diaza-18-crown-6 (H2bpp18c6)] through quasi-relativistic density functional theory. The extraction complexes of [Anbp18c6]+ and [Anbpp18c6]+ possess similar geometrical structures with actinide atoms located in the cavity of the ligands. Bonding nature analysis indicates that the coordination ability of the coordinating atoms in pendent arms is stronger than that in the crown ether macrocycle because of the limitation of the macrocycle. Most of the coordination atoms of the H2bp18c6 ligand have a stronger ability to coordinate with metal ions than those of the H2bpp18c6 ligand. In addition, the bonding strength between the metal ions and ligands gradually weakens from Am to Cf, which is mainly attributed to the size selectivity of the ligands. Thermodynamic analysis shows that the H2bp18c6 ligand has a stronger extraction capacity than the H2bpp18c6 ligand, while the H2bpp18c6 ligand is superior in terms of the in-group separation ability. The extraction capacity of the two ligands for metal ions gradually decreases across the actinide series, indicating that these crown ether macrocycle ligands have size selectivity for these actinide cations as a result of steric constraint of the crown ether ring. We hope that these results offer theoretical clues for the development of macrocycle ligands for in-group transplutonium separation.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wang-Suo Wu
- Radiochemistry Laboratory, School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Woods JJ, Unnerstall R, Hasson A, Abou DS, Radchenko V, Thorek DLJ, Wilson JJ. Stable Chelation of the Uranyl Ion by Acyclic Hexadentate Ligands: Potential Applications for 230U Targeted α-Therapy. Inorg Chem 2022; 61:3337-3350. [PMID: 35137587 PMCID: PMC9382226 DOI: 10.1021/acs.inorgchem.1c03972] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Uranium-230 is an α-emitting radionuclide with favorable properties for use in targeted α-therapy (TAT), a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To successfully implement this radionuclide for TAT, a bifunctional chelator that can stably bind uranium in vivo is required. To address this need, we investigated the acyclic ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox as uranium chelators. The stability constants of these ligands with UO22+ were measured via spectrophotometric titrations, revealing log βML values that are greater than 18 and 26 for the "pa" and "hox" chelators, respectively, signifying that the resulting complexes are exceedingly stable. In addition, the UO22+ complexes were structurally characterized by NMR spectroscopy and X-ray crystallography. Crystallographic studies reveal that all six donor atoms of the four ligands span the equatorial plane of the UO22+ ion, giving rise to coordinatively saturated complexes that exclude solvent molecules. To further understand the enhanced thermodynamic stabilities of the "hox" chelators over the "pa" chelators, density functional theory (DFT) calculations were employed. The use of the quantum theory of atoms in molecules revealed that the extent of covalency between all four ligands and UO22+ was similar. Analysis of the DFT-computed ligand strain energy suggested that this factor was the major driving force for the higher thermodynamic stability of the "hox" ligands. To assess the suitability of these ligands for use with 230U TAT in vivo, their kinetic stabilities were probed by challenging the UO22+ complexes with the bone model hydroxyapatite (HAP) and human plasma. All four complexes were >95% stable in human plasma for 14 days, whereas in the presence of HAP, only the complexes of H2CHXdedpa and H2hox remained >80% intact over the same period. As a final validation of the suitability of these ligands for radiotherapy applications, the in vivo biodistribution of their UO22+ complexes was determined in mice in comparison to unchelated [UO2(NO3)2]. In contrast to [UO2(NO3)2], which displays significant bone uptake, all four ligand complexes do not accumulate in the skeletal system, indicating that they remain stable in vivo. Collectively, these studies suggest that the equatorial-spanning ligands H2dedpa, H2CHXdedpa, H2hox, and H2CHXhox are highly promising candidates for use in 230U TAT.
Collapse
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan Unnerstall
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Abbie Hasson
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Diane S. Abou
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Valery Radchenko
- Life Science Division, TRIUMF, Vancouver, BC Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, BC V6T 2A3, Canada
| | - Daniel L. J. Thorek
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Program in Quantitative Molecular Therapeutics, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
A DFT study of carbon dioxide reduction catalyzed by group 3 metal complexes of silylamides. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2021.139291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Ebenezer C, Vijay Solomon R. Preorganization of N, O-hybrid phosphine oxide chelators for effective extraction of trivalent Am/Eu ions - A computational study. NEW J CHEM 2022. [DOI: 10.1039/d1nj06029e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N, O-hybrid phosphine oxide ligands with N-heterocyclic cores are the advanced extractants for extracting actinides over lanthanides. Yet, the challenging task in designing an efficient hybrid ligand is tracing the...
Collapse
|
16
|
Zhang Y, Wu S, Li A. Theoretically investigating the ability of phenanthroline derivatives to separate transuranic elements and their bonding properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj02160a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bonding and separation properties of actinide Np3+, Pu3+, Am3+, and Cm3+ complexes formed with phenanthroline derivatives were studied using the DFT method.
Collapse
Affiliation(s)
- Yiying Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shouqiang Wu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Anyong Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
17
|
Ebenezer C, Vijay Solomon R. Do nitrate ions preferentially bind to Ln/An ion in Nuclear Waste Treatment? - Answers from DFT calculations. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Yu X, Sergentu DC, Feng R, Autschbach J. Covalency of Trivalent Actinide Ions with Different Donor Ligands: Do Density Functional and Multiconfigurational Wavefunction Calculations Corroborate the Observed "Breaks"? Inorg Chem 2021; 60:17744-17757. [PMID: 34747167 DOI: 10.1021/acs.inorgchem.1c02374] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A comprehensive ab initio study of periodic actinide-ligand bonding trends for trivalent actinides is performed. Relativistic density functional theory (DFT) and complete active-space (CAS) self-consistent field wavefunction calculations are used to dissect the chemical bonding in the [AnCl6]3-, [An(CN)6]3-, [An(NCS)6]3-, [An(S2PMe2)3], [An(DPA)3]3-, and [An(HOPO)]- series of actinide (An = U-Es) complexes. Except for some differences for the early actinide complexes with DPA, bond orders and excess 5f-shell populations from donation bonding show qualitatively similar trends in 5f n active-space CAS vs DFT calculations. The influence of spin-orbit coupling on donation bonding is small for the tested systems. Along the actinide series, chemically soft vs chemically harder ligands exhibit clear differences in bonding trends. There are pronounced changes in the 5f populations when moving from Pu to Am or Cm, which correlate with previously noted "breaks" in chemical trends. Bonding involving 5f becomes very weak beyond Cm/Bk. We propose that Cm(III) is a borderline case among the trivalent actinides that can be meaningfully considered to be involved in ground-state 5f covalent bonding.
Collapse
Affiliation(s)
- Xiaojuan Yu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Dumitru-Claudiu Sergentu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Rulin Feng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, United States
| |
Collapse
|
19
|
Does the length of the alkyl chain affect the complexation and selectivity of phenanthroline-derived phosphonate ligands? – Answers from DFT calculations. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Impact of Coordination Modes of N‐Donor Ligands on Am(III)/Eu(III) Separation in Nuclear Waste Water Treatment – A DFT Study. ChemistrySelect 2021. [DOI: 10.1002/slct.202102543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Cody CC, Kelly HR, Mercado BQ, Batista VS, Crabtree RH, Brudvig GW. Distorted Copper(II) Complex with Unusually Short CF···Cu Distances. Inorg Chem 2021; 60:14759-14764. [PMID: 34546058 DOI: 10.1021/acs.inorgchem.1c01958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We find a Cu(II)-(L-CF3)2 complex (L-CF3 = 2,2,2-trifluoro-N-[2-(pyridin-2-yl)propan-2-yl]acetamide) with a distorted "seesaw" geometry. It has the shortest crystallographic CF···Cu distances yet reported, to the best of our knowledge (<2.6 Å), for which computational and experimental data indicate a secondary bonding interaction. A comparison with a CCl3 version and one without ligand backbone gem-dimethyl groups suggests a steric origin for the distorted geometry, resulting from the specific ligand interactions.
Collapse
Affiliation(s)
- Claire C Cody
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - H Ray Kelly
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Victor S Batista
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Robert H Crabtree
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Gary W Brudvig
- Department of Chemistry, and Yale Energy Sciences Institute, Yale University, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
22
|
George Thomas M, Ebenezer C, Solomon RV. Tuning the structure of disulfonated phenanthroline based ligands for effective separation of Am(III)/Eu(III) ions : A DFT investigation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Liu Y, Wang CZ, Wu QY, Lan JH, Chai ZF, Liu Q, Shi WQ. Theoretical Insights into Transplutonium Element Separation with Electronically Modulated Phenanthroline-Derived Bis-Triazine Ligands. Inorg Chem 2021; 60:10267-10279. [PMID: 34232623 DOI: 10.1021/acs.inorgchem.1c00668] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the process of spent fuel reprocessing, it is highly difficult to extract transplutonium elements from adjacent actinides. A deep understanding of the electronic structure of transplutonium complexes is essential for development of steady ligands for in-group separation of transplutonium actinides. In this work, we have systematically explored the potential in-group separation ability of transplutonium elements of typical quadridentate N-donor ligands (phenanthroline-derived bis-triazine, BTPhen derivatives) through quasi-relativistic density functional theory (DFT). Our calculations demonstrate that ligands with electron-donating groups have stronger coordination abilities, and the substitutions of Br and phenol at the 4-position of the 1,10-phenanthroline have a higher effect on the ligand than those at the 5-position. Bonding analysis indicates that the covalent interaction of An3+ complexes becomes stronger from Am to Cf apart from Cm, which is because the energy of the 5f orbital gradually decreases and becomes energy-degenerate with the 2p orbitals of ligands. The most negative values of binding energies indicate the higher stability of Cf3+ complexes, in line with the larger covalency in the Cf-L bonds compared with An-L (An = Am, Cm, Bk). In addition, electron-donating group phenol can enhance the covalent interaction between ligands and heavy actinides. Consequently, the extraction ability of ligands with electron-donating substituents for heavy actinides is generally stronger than other ligands. Nevertheless, these ligands exhibit diverse separation abilities to in-group actinide recovery. Therefore, the enhancement of covalency does not necessarily lead to the improvement of separation ability, which may be caused by different extraction abilities. Compared with the tetradentate N, O-donor ligands (2,9-diamide-1,10-phenanthrolinel, DAPhen derivatives), species with BTPhen ligands display stronger covalent interaction and higher extraction capacity. In terms of in-group separation ability, the BTPhen ligands seem to have advantages in separation of californium from curium, while the DAPhen ligands possess stronger abilities to separate americium from curium. These results may afford some afflatus for the development of effective agents for in-group separation of transplutonium elements.
Collapse
Affiliation(s)
- Yang Liu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.,Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
Fiszbein DJ, Brown V, Thiele NA, Woods JJ, Wharton L, MacMillan SN, Radchenko V, Ramogida CF, Wilson JJ. Tuning the Kinetic Inertness of Bi 3+ Complexes: The Impact of Donor Atoms on Diaza-18-Crown-6 Ligands as Chelators for 213Bi Targeted Alpha Therapy. Inorg Chem 2021; 60:9199-9211. [PMID: 34102841 DOI: 10.1021/acs.inorgchem.1c01269] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The radionuclide 213Bi can be applied for targeted α therapy (TAT): a type of nuclear medicine that harnesses α particles to eradicate cancer cells. To use this radionuclide for this application, a bifunctional chelator (BFC) is needed to attach it to a biological targeting vector that can deliver it selectively to cancer cells. Here, we investigated six macrocyclic ligands as potential BFCs, fully characterizing the Bi3+ complexes by NMR spectroscopy, mass spectrometry, and elemental analysis. Solid-state structures of three complexes revealed distorted coordination geometries about the Bi3+ center arising from the stereochemically active 6s2 lone pair. The kinetic properties of the Bi3+ complexes were assessed by challenging them with a 1000-fold excess of the chelating agent diethylenetriaminepentaacetic acid (DTPA). The most kinetically inert complexes contained the most basic pendent donors. Density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) calculations were employed to investigate this trend, suggesting that the kinetic inertness is not correlated with the extent of the 6s2 lone pair stereochemical activity, but with the extent of covalency between pendent donors. Lastly, radiolabeling studies of 213Bi (30-210 kBq) with three of the most promising ligands showed rapid formation of the radiolabeled complexes at room temperature within 8 min for ligand concentrations as low as 10-7 M, corresponding to radiochemical yields of >80%, thereby demonstrating the promise of this ligand class for use in 213Bi TAT.
Collapse
Affiliation(s)
- David J Fiszbein
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Victoria Brown
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada
| | - Nikki A Thiele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States.,Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 Canada.,Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Caterina F Ramogida
- Department of Chemistry, Simon Fraser University, 8888 University Dr, Burnaby, BC V5A 1S6 Canada.,Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3 Canada
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
25
|
Xu XC, Zhao XK, Hu HS. Ligands enhanced the Ac[triple bond, length as m-dash]Ac triple bond. Phys Chem Chem Phys 2021; 23:10244-10250. [PMID: 33885071 DOI: 10.1039/d1cp00014d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The multiple bonds between actinide atoms and their derivatives are computationally investigated extensively and compounds with an unsupported actinide-actinide bond, especially in low oxidation states, have attracted great attention. Herein, high level relativistic quantum chemical methods are used to probe the Ac-Ac bonding in compounds with a general formula LAcAcL (L = AsH3, PH3, NH3, H, CO, NO) at both scalar and spin-orbit coupling relativistic levels. H3AsAcAcAsH3, H3PAcAcPH3 and OCAcAcCO compounds show a type of zero valence Ac[triple bond, length as m-dash]Ac triple bond with a 1σ2g1π4u configuration, and H3AsAcAcAsH3 has been found to have the shortest Ac-Ac bond length of 3.012 Å reported so far. The Ac2 unit is very sensitive to the σ donor ligands and can form triple, double and even single bonds when suitable ligands are introduced, up to 3.652 Å with an Ac-Ac single bond in H3NAcAcNH3.
Collapse
Affiliation(s)
- Xiao-Cheng Xu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Xiao-Kun Zhao
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| | - Han-Shi Hu
- Department of Chemistry & Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
26
|
Zheng XJ, Bacha RUS, Su DM, Pan QJ. Relativistic DFT Probe for Reaction Energies and Electronic/Bonding Properties of Polypyrrolic Hetero-Bimetallic Actinide Complexes: Effects of Uranyl endo-Oxo Functionalization. Inorg Chem 2021; 60:5747-5756. [PMID: 33826313 DOI: 10.1021/acs.inorgchem.1c00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of hetero-bimetallic actinide complexes of the Schiff-base polypyrrolic macrocycle (L), featuring cation-cation interactions (CCIs), were systematically investigated using relativistic density functional theory (DFT). The tetrahydrofuran (THF) solvated complex [(THF)(OUVIOUIV)(THF)(L)]2+ has high reaction free energy (ΔrG), and its replacement with electron-donating iodine promotes the reaction thermodynamics to obtain uranyl iodide [(I)(OUVIOUIV)(I)(L)]2+ (UVI-UIV). Retaining this coordination geometry, calculations have been extended to other An(IV) (An = Th, Pa, Np, Pu), i.e., for the substitution of U(IV) to obtain UVI-AnIV. As a consequence, the reaction free energy is appreciably lowered, suggesting the thermodynamic feasibility for the experimental synthesis of these bimetallic complexes. Among all UVI-AnIV, the electron-spin density and high-lying occupied orbitals of UVI-PaIV show a large extent of electron transfer from electron-rich Pa(IV) to electron-deficient U(VI), leading to a more stable UV-PaV oxidation state. Additionally, the shortest bond distance and the comparatively negative Eint of the Pa-Oendo bond suggest more positive and negative charges (Q) of Pa and endo-oxo atoms, respectively. As a result of the enhanced Pa-Oendo bond and strong CCI in UVI-PaIV along with the corresponding lowest reaction free energy among all of the optimized complexes, uranyl species is a better candidate for the experimental synthesis in the ultimate context of environmental remediation.
Collapse
Affiliation(s)
- Xiu-Jun Zheng
- Institute of Food and Environmental Engineering, East University of Heilongjiang, Harbin 150066, China
| | - Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Dong-Mei Su
- State-Owned Assets Management Division, Harbin University, Harbin 150086, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
27
|
Pace KA, Klepov VV, Berseneva AA, Zur Loye HC. Covalency in Actinide Compounds. Chemistry 2021; 27:5835-5841. [PMID: 33283323 DOI: 10.1002/chem.202004632] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/29/2020] [Indexed: 11/10/2022]
Abstract
Covalency in actinides has emerged as a resounding research topic on account of the technological importance in separating minor actinides from lanthanides for spent nuclear fuel processing, and utilization of their distinct bonding properties has been realized as a route towards overcoming this challenge. Because of the limited radial extent of the 4f orbitals, there is almost no 4f electron participation in bonding in lanthanides; this is not the case for the actinides, which have extended 5f orbitals that are capable of overlapping with ligand orbitals, although not to the degree of overlap as in the d orbitals of transition metals. In this concept paper, a general description of covalency in actinide compounds is provided. After introducing two main approaches to enhance covalency, either by exploiting increased orbital overlap or decreasing energy differences between the orbitals causing orbital energy degeneracy, the current state of the field is illustrated by using several examples from the recent literature. This paper is concluded by proposing the use of actinide chalcogenides as a convenient auxiliary tool to study covalency in actinide compounds.
Collapse
Affiliation(s)
- Kristen A Pace
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208, USA
| | - Vladislav V Klepov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208, USA
| | - Anna A Berseneva
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208, USA
| | - Hans-Conrad Zur Loye
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, SC, 29208, USA
| |
Collapse
|
28
|
Kloditz R, Radoske T, Schmidt M, Heine T, Stumpf T, Patzschke M. Comprehensive Bonding Analysis of Tetravalent f-Element Complexes of the Type [M(salen)2]. Inorg Chem 2021; 60:2514-2525. [DOI: 10.1021/acs.inorgchem.0c03424] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Roger Kloditz
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Radoske
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Moritz Schmidt
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, Theoretical Chemistry, Technische Universität Dresden, Bergstraße 66c, 01069 Dresden, Germany
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstraße 15, 04318 Leipzig, Germany
| | - Thorsten Stumpf
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Michael Patzschke
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| |
Collapse
|
29
|
Chen G. The nature of the Sulfur-Metallic bonds (Metal = Ni, Pd and Pt) in doped gold nanoclusters: A density functional approach. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2020.113094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Ebenezer C, Vijay Solomon R. Tailoring the selectivity of phenanthroline derivatives for the partitioning of trivalent Am/Eu ions – a relativistic DFT study. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00097g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Preferential binding of actinides over lanthanides using tailored phenanthroline derivative ligands through relativistic DFT calculations.
Collapse
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry
- Madras Christian College (Autonomous)
- (Affiliated to the University of Madras)
- Chennai – 600 059
- India
| | - Rajadurai Vijay Solomon
- Department of Chemistry
- Madras Christian College (Autonomous)
- (Affiliated to the University of Madras)
- Chennai – 600 059
- India
| |
Collapse
|
31
|
Ebenezer C, Solomon RV. Insights into the Extraction of Actinides from Lanthanides Using 3,3’‐Dimethoxy‐phenyl‐bis‐1,2,4‐triazinyl‐2,6‐pyridine Ligand – A DFT Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202003240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cheriyan Ebenezer
- Department of Chemistry Madras Christian College (Autonomous) Affiliated to the University of Madras) Chennai 600 059 India
| | - Rajadurai Vijay Solomon
- Department of Chemistry Madras Christian College (Autonomous) Affiliated to the University of Madras) Chennai 600 059 India
| |
Collapse
|
32
|
Shah Bacha RU, Li L, Guo YR, Jing L, Pan QJ. Actinyl-Modified g-C 3N 4 as CO 2 Activation Materials for Chemical Conversion and Environmental Remedy via an Artificial Photosynthetic Route. Inorg Chem 2020; 59:8369-8379. [PMID: 32468810 DOI: 10.1021/acs.inorgchem.0c00791] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
With the reported CO2 activation for the oxidation of benzene to phenol (-ENE → -OL) by the graphitic carbon nitride g-C3N4 (CN) via an artificial photosynthetic route as inspiration, high-valent actinyls (AnmO2)n+ (An = U, Np, Pu; m = VI, V; n = 2, 1) have been introduced for its further modification. Our calculations indicate thermodynamic spontaneity in the feasibility of g-C3N4-(AnmO2)n+ (CN-Anm) formation. The magnificent structural and electronic properties of CN-Anm are utilized for CO2 activation in terms of the rarely studied -ENE → -OL conversion. The calculated free energies show that most steps of the catalytic cycle are favored by CN-Anm complexes. The first step (carbamate formation) is slightly endothermic in all cases, where CN-U is 0.51 eV higher than CN and CN-Pu is -0.01 eV lower. All benzene addition reactions release energy, with that for CN-U being the lowest. The phenolate formation is favored by some actinyl complexes over CN, and CN-U is only 0.23 eV higher. The phenol release (resulting in formamide complexes) and CO desorption are exothermic for all CN-Anm. The overall process suggests the improved catalytic performance of actinyl-modified CN materials, and the slightly depleted uranyl-carbon nitride could be one of the promising catalysts.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
| |
Collapse
|
33
|
Graphdiyne-actinyl complexes as potential catalytic materials: A DFT perspective from their structural, bonding, electronic and redox properties. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Berryman VEJ, Shephard JJ, Ochiai T, Price AN, Arnold PL, Parsons S, Kaltsoyannis N. Quantum chemical topology and natural bond orbital analysis of M–O covalency in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np). Phys Chem Chem Phys 2020; 22:16804-16812. [DOI: 10.1039/d0cp02947e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
VXC(M,O): the exchange–correlation metric quantifies covalency between M and O atomic basins in M(OC6H5)4 (M = Ti, Zr, Hf, Ce, Th, Pa, U, Np).
Collapse
Affiliation(s)
| | - Jacob J. Shephard
- EaStCHEM School of Chemistry and The Centre for Science at Extreme Conditions
- The University of Edinburgh
- Edinburgh
- UK
| | - Tatsumi Ochiai
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
- Department of Chemistry
| | - Amy N. Price
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
| | - Polly L. Arnold
- EaStCHEM School of Chemistry
- The University of Edinburgh
- Edinburgh
- UK
- Department of Chemistry
| | - Simon Parsons
- EaStCHEM School of Chemistry and The Centre for Science at Extreme Conditions
- The University of Edinburgh
- Edinburgh
- UK
| | - Nikolas Kaltsoyannis
- Department of Chemistry
- School of Natural Sciences
- The University of Manchester
- Manchester
- UK
| |
Collapse
|
35
|
Chemey AT, Celis-Barros C, Sperling JM, Páez-Hernández D, Albrecht-Schmitt TE. Structure, Spectroscopy, and Theoretical Analysis of Zero- and Three-Dimensional Lithium Plutonium Fluorides: Li 4PuF 8 and LiPuF 5. Inorg Chem 2019; 58:14790-14799. [PMID: 31647651 DOI: 10.1021/acs.inorgchem.9b02466] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of 242PuO2 with HF and LiF under hydrothermal conditions results in the formation of Li4PuF8 and LiPuF5. These compounds were structurally characterized using single-crystal X-ray diffraction, and UV-vis-near-IR absorption spectroscopy was employed to confirm the oxidation state of the plutonium in the compounds as 4+. The structure of Li4PuF8 consists of [PuF8]4- anions that adopt a bicapped trigonal-prismatic geometry with approximate C2v symmetry. These molecules are bridged by Li+ cations. In contrast, LiPuF5 forms a dense three-dimensional network constructed from [PuF9]5- units that are bridged by F- anions. The Pu4+ cations are found within tricapped trigonal prisms. Extensive theoretical analysis of the electronic and bonding interactions is included with a comparison between the results derived from complete-active-space self-consistent-field at different levels of theory, quantum theory of atoms in molecules, interacting quantum atom, natural localized molecular orbital, and Wiberg bond order analyses. Covalent interactions in these compounds are examined, and intramolecular trends in covalent and electrostatic interactions are discussed.
Collapse
Affiliation(s)
- Alexander T Chemey
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Cristian Celis-Barros
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph M Sperling
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Dayán Páez-Hernández
- Centro de Nanociencias Aplicadas, Facultad de Ciencias Exactas , Universidad Andrés Bello , Republica 275 , Santiago , Chile
| | - Thomas E Albrecht-Schmitt
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
36
|
Zegke M, Zhang X, Pidchenko I, Hlina JA, Lord RM, Purkis J, Nichol GS, Magnani N, Schreckenbach G, Vitova T, Love JB, Arnold PL. Differential uranyl(v) oxo-group bonding between the uranium and metal cations from groups 1, 2, 4, and 12; a high energy resolution X-ray absorption, computational, and synthetic study. Chem Sci 2019; 10:9740-9751. [PMID: 32055343 PMCID: PMC6993744 DOI: 10.1039/c8sc05717f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 08/26/2019] [Indexed: 11/21/2022] Open
Abstract
Uranyl Pacman takes them all: the bonding of s- and d-block cations to uranyl is compared by experiment, spectroscopy and theory.
The uranyl(vi) ‘Pacman’ complex [(UO2)(py)(H2L)] A (L = polypyrrolic Schiff-base macrocycle) is reduced by Cp2Ti(η2-Me3SiC
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
CSiMe3) and [Cp2TiCl]2 to oxo-titanated uranyl(v) complexes [(py)(Cp2TiIIIOUO)(py)(H2L)] 1 and [(ClCp2TiIVOUO)(py)(H2L)] 2. Combination of ZrII and ZrIV synthons with A yields the first ZrIV–uranyl(v) complex, [(ClCp2ZrOUO)(py)(H2L)] 3. Similarly, combinations of Ae0 and AeII synthons (Ae = alkaline earth) afford the mono-oxo metalated uranyl(v) complexes [(py)2(ClMgOUO)(py)(H2L)] 4, [(py)2(thf)2(ICaOUO)(py) (H2L)] 5; the zinc complexes [(py)2(XZnOUO)(py)(H2L)] (X = Cl 6, I 7) are formed in a similar manner. In contrast, the direct reactions of Rb or Cs metal with A generate the first mono-rubidiated and mono-caesiated uranyl(v) complexes; monomeric [(py)3(RbOUO)(py)(H2L)] 8 and hexameric [(MOUO)(py)(H2L)]6 (M = Rb 8b or Cs 9). In these uranyl(v) complexes, the pyrrole N–H atoms show strengthened hydrogen-bonding interactions with the endo-oxos, classified computationally as moderate-strength hydrogen bonds. Computational DFT MO (density functional theory molecular orbital) and EDA (energy decomposition analysis), uranium M4 edge HR-XANES (High Energy Resolution X-ray Absorption Near Edge Structure) and 3d4f RIXS (Resonant Inelastic X-ray Scattering) have been used (the latter two for the first time for uranyl(v) in 7 (ZnI)) to compare the covalent character in the UV–O and O–M bonds and show the 5f orbitals in uranyl(vi) complex A are unexpectedly more delocalised than in the uranyl(v) 7 (ZnI) complex. The Oexo–Zn bonds have a larger covalent contribution compared to the Mg–Oexo/Ca–Oexo bonds, and more covalency is found in the U–Oexo bond in 7 (ZnI), in agreement with the calculations.
Collapse
Affiliation(s)
- Markus Zegke
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Xiaobin Zhang
- Department of Chemistry , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada . ; ; Tel: +1-204-474-6261
| | - Ivan Pidchenko
- Institute for Nuclear Waste Disposal (INE) , Karlsruhe Institute of Technology (KIT) , P.O. Box 3640 , 76021 Karlsruhe , Germany .
| | - Johann A Hlina
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Rianne M Lord
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Jamie Purkis
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Gary S Nichol
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Nicola Magnani
- Institute for Transuranium Elements , Joint Research Centre , European Commission , PO Box 2340 , 76125 Karlsruhe , Germany
| | - Georg Schreckenbach
- Department of Chemistry , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada . ; ; Tel: +1-204-474-6261
| | - Tonya Vitova
- Institute for Nuclear Waste Disposal (INE) , Karlsruhe Institute of Technology (KIT) , P.O. Box 3640 , 76021 Karlsruhe , Germany .
| | - Jason B Love
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| | - Polly L Arnold
- EaStCHEM School of Chemistry , The University of Edinburgh , David Brewster Road , Edinburgh EH9 3FJ , UK . ; ; ; Tel: +44(0) 130 650 5429
| |
Collapse
|
37
|
Interactions of phosphorylated cyclohexapeptides with uranyl: insights from experiments and theoretical calculations. J Radioanal Nucl Chem 2019. [DOI: 10.1007/s10967-019-06697-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Teyar B, Boucenina S, Belkhiri L, Le Guennic B, Boucekkine A, Mazzanti M. Theoretical Investigation of the Electronic Structure and Magnetic Properties of Oxo-Bridged Uranyl(V) Dinuclear and Trinuclear Complexes. Inorg Chem 2019; 58:10097-10110. [PMID: 31287673 DOI: 10.1021/acs.inorgchem.9b01237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The uranyl(V) complexes [UO2(dbm)2K(18C6)]2 (dbm = dibenzoylmethanate) and [UO2(L)]3(L = 2-(4-tolyl)-1,3-bis(quinolyl)malondiiminate), exhibiting diamond-shaped U2O2 and triangular-shaped U3O3 cores respectively with 5f1-5f1 and 5f1-5f1-5f1 configurations, have been investigated using relativistic density functional theory (DFT). The bond order and QTAIM analyses reveal that the covalent contribution to the bonding within the oxo cores is slightly more important for U3O3 than for U2O2, in line with the shorter U-O distances existing in the trinuclear complex in comparison to those in the binuclear complex. Using the broken symmetry (BS) approach combined with the B3LYP functional for the calculation of the magnetic exchange coupling constants (J) between the magnetic centers, the antiferromagnetic (AF) character of these complexes was confirmed, the estimated J values being respectively equal to -24.1 and -7.2 cm-1 for the dioxo and trioxo species. It was found that the magnetic exchange is more sensitive to small variations of the core geometry of the dioxo species in comparison to the trioxo species. Although the robust AF exchange coupling within the UxOx cores is generally maintained when small variations of the UOU angle are applied, a weak ferromagnetic character appears in the dioxo species when this angle is higher than 114°, its value for the actual structure being equal to 105.9°. The electronic factors driving the magnetic coupling are discussed.
Collapse
Affiliation(s)
- Billel Teyar
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria.,Université Ziane Achour de Djelfa , 17000 Djelfa , Algeria
| | - Seddik Boucenina
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | - Lotfi Belkhiri
- Faculté des Sciences Exactes , Université des Frères Mentouri , Laboratoire de Physique Mathématique et Subatomique LPMS, 25017 Constantine , Algeria
| | | | | | - Marinella Mazzanti
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
39
|
Bacha RUS, Bi YT, Xuan LC, Pan QJ. Inverse Trans Influence in Low-Valence Actinide-Group 10 Metal Complexes of Phosphinoaryl Oxides: A Theoretical Study via Tuning Metals and Donor Ligands. Inorg Chem 2019; 58:10028-10037. [PMID: 31298034 DOI: 10.1021/acs.inorgchem.9b01193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The recognition and in-depth understanding of inverse trans influence (ITI) have successfully guided the synthesis of novel actinide complexes and enriched actinide chemistry. Those complexes, however, are mainly limited to the involvement of high-valence actinide and/or metal-ligand multiple bonds. Examples containing both low oxidation state actinide and metal-metal single bond remain rare. Herein, more than 20 actinide-transition metal (An-TM) complexes of phosphinoaryl oxide ligands have been designed in accordance with several experimentally known analogs, by changing the metal atoms (An = Th, Pa, U, Np, and Pu; and TM = Ni, Pd, and Pt), actinide oxidation states (IV and III) and metal-metal axial donor ligands (X = Me3SiO, F, Cl, Br, and I). The relativistic density functional theory study of structural (trans-An-X and cis-An-O toward An-TM), bonding (topological electron/energy density), and electronic properties reveals the order of the ITI stabilizing actinide-metal bond. Computed electron affinity (EA) values, related to the electrochemical reduction, linearly correlate with experimentally measured reduction potentials. Although the same ITI order for the ligand donors was shown as in a previous study, the correlation between electrochemical reduction and the ITI was found to be weak when the actinide atoms were changed. For most complexes, the reduction is primarily of an actinide-based mechanism with minor participation of transition metal and phosphinoaryl oxide, whereas that of thorium-nickel complexes is different.
Collapse
Affiliation(s)
- Raza Ullah Shah Bacha
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Li-Chun Xuan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science , Heilongjiang University , Harbin 150080 , China
| |
Collapse
|
40
|
Mullane KC, Hrobárik P, Cheisson T, Manor BC, Carroll PJ, Schelter EJ. 13C NMR Shifts as an Indicator of U-C Bond Covalency in Uranium(VI) Acetylide Complexes: An Experimental and Computational Study. Inorg Chem 2019; 58:4152-4163. [PMID: 30848588 DOI: 10.1021/acs.inorgchem.8b03175] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of uranium(VI)-acetylide complexes of the general formula UVI(O)(C≡C-C6H4-R)[N(SiMe3)2]3, with variation of the para substituent (R = NMe2, OMe, Me, Ph, H, Cl) on the aryl(acetylide) ring, was prepared. These compounds were analyzed by 13C NMR spectroscopy, which showed that the acetylide carbon bound to the uranium(VI) center, U- C≡C-Ar, was shifted strongly downfield, with δ(13C) values ranging from 392.1 to 409.7 ppm for Cl and NMe2 substituted complexes, respectively. These extreme high-frequency 13C resonances are attributed to large negative paramagnetic (σpara) and relativistic spin-orbit (σSO) shielding contributions, associated with extensive U(5f) and C(2s) orbital contributions to the U-C bonding in title complexes. The trend in the 13C chemical shift of the terminal acetylide carbon is opposite that observed in the series of parent (aryl)acetylenes, due to shielding effects of the para substituent. The 13C chemical shifts of the acetylide carbon instead correlate with DFT computed U-C bond lengths and corresponding QTAIM delocalization indices or Wiberg bond orders. SQUID magnetic susceptibility measurements were indicative of the Van Vleck temperature independent paramagnetism (TIP) of the uranium(VI) complexes, suggesting a magnetic field-induced mixing of the singlet ground-state (f0) of the U(VI) ion with low-lying (thermally inaccessible) paramagnetic excited states (involved also in the perturbation-theoretical treatment of the unusually large paramagnetic and SO contributions to the 13C shifts). Thus, together with reported data, we demonstrate that the sensitive 13C NMR shifts serve as a direct, simple, and accessible measure of uranium(VI)-carbon bond covalency.
Collapse
Affiliation(s)
- Kimberly C Mullane
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Peter Hrobárik
- Department of Inorganic Chemistry, Faculty of Natural Sciences , Comenius University , SK-84215 Bratislava , Slovakia.,Institut für Chemie , Technische Universität Berlin , Straße des 17. Juni 135 , D-10623 Berlin , Germany
| | - Thibault Cheisson
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
41
|
Matczak P. N → Sn coordination in the complexes of tin halides with pyridine: A comparison between Sn(II) and Sn(IV). Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Piotr Matczak
- Department of Physical Chemistry, Faculty of Chemistry; University of Łódź; Pomorska 163/165 90-236 Lodz Poland
| |
Collapse
|
42
|
Bi YT, Li L, Guo YR, Pan QJ. Heterobimetallic Uranium–Nickel/Palladium/Platinum Complexes of Phosphinoaryl Oxide Ligands: A Theoretical Probe for Metal–Metal Bonding and Electronic Spectroscopy. Inorg Chem 2019; 58:1290-1300. [DOI: 10.1021/acs.inorgchem.8b02787] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yan-Ting Bi
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
43
|
Tian JN, Zheng M, Li L, Schreckenbach G, Guo YR, Pan QJ. Theoretical investigation of U(i) arene complexes: is the elusive monovalent oxidation state accessible? NEW J CHEM 2019. [DOI: 10.1039/c8nj04722g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the goal to extend the uranium oxidation state, relativistic DFT unravels an energetically favored U(i) complex of a heterocalix[4]arene.
Collapse
Affiliation(s)
- Jia-Nan Tian
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| | | | - Yuan-Ru Guo
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education)
- College of Material Science and Engineering
- Northeast Forestry University
- Harbin 150040
- China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education)
- School of Chemistry and Materials Science
- Heilongjiang University
- Harbin 150080
- China
| |
Collapse
|
44
|
Zheng M, Chen FY, Li L, Guo YR, Pan QJ. Accessibility of Uranyl–Plutonium Complex Supported by a Polypyrrolic Macrocycle: An Implication for Experimental Synthesis. Inorg Chem 2018; 58:950-959. [DOI: 10.1021/acs.inorgchem.8b03112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Li Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Yuan-Ru Guo
- Key Laboratory of Bio-Based Material Science & Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
45
|
Kong XH, Wu QY, Lan JH, Wang CZ, Chai ZF, Nie CM, Shi WQ. Theoretical Insights into Preorganized Pyridylpyrazole-Based Ligands toward the Separation of Am(III)/Eu(III). Inorg Chem 2018; 57:14810-14820. [DOI: 10.1021/acs.inorgchem.8b02550] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Kong
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Hui Lan
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Zhi Wang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Engineering Laboratory of Nuclear Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo, Zhejiang 315201, China
| | - Chang-Ming Nie
- School of Resource and Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Influence of complexing species on the extraction of trivalent actinides from lanthanides with CyMe4–BTBP: a theoretical study. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-6263-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
47
|
Surbella RG, Ducati LC, Autschbach J, Pellegrini KL, McNamara BK, Schwantes JM, Cahill CL. Plutonium chlorido nitrato complexes: ligand competition and computational metrics for assembly and bonding. Chem Commun (Camb) 2018; 54:12014-12017. [PMID: 30295690 DOI: 10.1039/c8cc05578e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new [Pu(iv)Cln(NO3)6-n]2- (n = 0, 2, 3) and [Pu(vi)O2Cl3(NO3)]2- containing materials were crystallized from acidic, aqueous media and structurally characterized. The anions are assembled via hydrogen and halogen bonding motifs, which are rationalized computationally. The Pu-NO3 and -Cl bonds were probed using QTAIM and NLMO analyses and found to be polar and largely ionic.
Collapse
Affiliation(s)
- Robert G Surbella
- Pacific Northwest National Laboratory, 902 Battelle boulevard, Richland, WA 99354, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Rungthanaphatsophon P, Huang P, Walensky JR. Phosphorano-Stabilized Carbene Complexes with Short Thorium(IV)– and Uranium(IV)–Carbon Bonds. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00137] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
49
|
Zheng M, Chen FY, Tian JN, Pan QJ. Electron-Transfer-Enhanced Cation–Cation Interactions in Homo- and Heterobimetallic Actinide Complexes: A Relativistic Density Functional Theory Study. Inorg Chem 2018; 57:3893-3902. [DOI: 10.1021/acs.inorgchem.8b00051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ming Zheng
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Fang-Yuan Chen
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Jia-Nan Tian
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Qing-Jiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry of Education Ministry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
50
|
Wu QY, Song YT, Ji L, Wang CZ, Chai ZF, Shi WQ. Theoretically unraveling the separation of Am(iii)/Eu(iii): insights from mixed N,O-donor ligands with variations of central heterocyclic moieties. Phys Chem Chem Phys 2018; 19:26969-26979. [PMID: 28956572 DOI: 10.1039/c7cp04625a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the fast development of nuclear energy, the issue related to spent nuclear fuel reprocessing has been regarded as an imperative task, especially for the separation of minor actinides. In fact, it still remains a worldwide challenge to separate trivalent An(iii) from Ln(iii) because of their similar chemical properties. Therefore, understanding the origin of extractant selectivity for the separation of An(iii)/Ln(iii) by using theoretical methods is quite necessary. In this work, three ligands with similar structures but different bridging frameworks, Et-Tol-DAPhen (La), Et-Tol-BPyDA (Lb) and Et-Tol-PyDA (Lc), have been investigated and compared using relativistic density functional theory. The electrostatic potential and molecular orbitals of the ligands indicate that ligand La is a better electron donor compared to ligands Lb and Lc. The results of QTAIM, NOCV and NBO suggest that the Am-N bonds in the studied complexes have more covalent character compared to the Eu-N bonds. Based on the thermodynamic analysis, [M(NO3)(H2O)8]2+ + L + 2NO3- = [ML(NO3)3] + 8H2O should be the most probable reaction in the solvent extraction system. Our results clearly verify that the relatively harder oxygen atoms offer these ligands higher coordination affinities toward both of the An(iii) and Ln(iii) ions compared to the relatively softer nitrogen atoms. However, the latter possess stronger affinities toward An(iii) over Ln(iii), which partly results in the selectivity of these ligands. This work can afford useful information on achieving efficient An(iii)/Ln(iii) separation through tuning the structural rigidity and hardness or softness of the functional moieties of the ligands.
Collapse
Affiliation(s)
- Qun-Yan Wu
- Laboratory of Nuclear Energy Chemistry and Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
| | | | | | | | | | | |
Collapse
|