1
|
Venugopalan A, Lynberg M, Cultraro CM, Nguyen KDP, Zhang X, Waris M, Dayal N, Abebe A, Maity TK, Guha U. SCAMP3 is a mutant EGFR phosphorylation target and a tumor suppressor in lung adenocarcinoma. Oncogene 2021; 40:3331-3346. [PMID: 33850265 PMCID: PMC8514158 DOI: 10.1038/s41388-021-01764-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 02/01/2023]
Abstract
Mutations in the epidermal growth factor receptor (EGFR) tyrosine kinase domain constitutively activate EGFR resulting in lung tumorigenesis. Activated EGFR modulates downstream signaling by altering phosphorylation-driven interactions that promote growth and survival. Secretory carrier membrane proteins (SCAMPs) are a family of transmembrane proteins that regulate recycling of receptor proteins, including EGFR. The potential role of SCAMPs in mutant EGFR function and tumorigenesis has not been elucidated. Using quantitative mass-spectrometry-based phosphoproteomics, we identified SCAMP3 as a target of mutant EGFRs in lung adenocarcinoma and sought to further investigate the role of SCAMP3 in the regulation of lung tumorigenesis. Here we show that activated EGFR, either directly or indirectly phosphorylates SCAMP3 at Y86 and this phosphorylation increases the interaction of SCAMP3 with both wild-type and mutant EGFRs. SCAMP3 knockdown increases lung adenocarcinoma cell survival and increases xenograft tumor growth in vivo, demonstrating a tumor suppressor role of SCAMP3 in lung tumorigenesis. The tumor suppressor function is a result of SCAMP3 promoting EGFR degradation and attenuating MAP kinase signaling pathways. SCAMP3 knockdown also increases multinucleated cells in culture, suggesting that SCAMP3 is required for efficient cytokinesis. The enhanced growth, increased colony formation, reduced EGFR degradation and multinucleation phenotype of SCAMP3-depleted cells were reversed by re-expression of wild-type SCAMP3, but not SCAMP3 Y86F, suggesting that Y86 phosphorylation is critical for SCAMP3 function. Taken together, the results of this study demonstrate that SCAMP3 functions as a novel tumor suppressor in lung cancer by modulating EGFR signaling and cytokinesis that is partly Y86 phosphorylation-dependent.
Collapse
Affiliation(s)
- Abhilash Venugopalan
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| | - Matthew Lynberg
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Constance M Cultraro
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Khoa Dang P Nguyen
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Xu Zhang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Maryam Waris
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Noelle Dayal
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Asebot Abebe
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Tapan K Maity
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Udayan Guha
- Thoracic and GI Malignancies Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
- Bristol Myers Squibb, Lawrenceville, NJ, USA.
| |
Collapse
|
2
|
Neben CL, Lo M, Jura N, Klein OD. Feedback regulation of RTK signaling in development. Dev Biol 2017; 447:71-89. [PMID: 29079424 DOI: 10.1016/j.ydbio.2017.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Precise regulation of the amplitude and duration of receptor tyrosine kinase (RTK) signaling is critical for the execution of cellular programs and behaviors. Understanding these control mechanisms has important implications for the field of developmental biology, and in recent years, the question of how augmentation or attenuation of RTK signaling via feedback loops modulates development has become of increasing interest. RTK feedback regulation is also important for human disease research; for example, germline mutations in genes that encode RTK signaling pathway components cause numerous human congenital syndromes, and somatic alterations contribute to the pathogenesis of diseases such as cancers. In this review, we survey regulators of RTK signaling that tune receptor activity and intracellular transduction cascades, with a focus on the roles of these genes in the developing embryo. We detail the diverse inhibitory mechanisms utilized by negative feedback regulators that, when lost or perturbed, lead to aberrant increases in RTK signaling. We also discuss recent biochemical and genetic insights into positive regulators of RTK signaling and how these proteins function in tandem with negative regulators to guide embryonic development.
Collapse
Affiliation(s)
- Cynthia L Neben
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA
| | - Megan Lo
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco 94143, USA; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco 94143, USA.
| |
Collapse
|
3
|
Anastasi S, Lamberti D, Alemà S, Segatto O. Regulation of the ErbB network by the MIG6 feedback loop in physiology, tumor suppression and responses to oncogene-targeted therapeutics. Semin Cell Dev Biol 2015; 50:115-24. [PMID: 26456277 DOI: 10.1016/j.semcdb.2015.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/02/2015] [Indexed: 01/08/2023]
Abstract
The ErbB signaling network instructs the execution of key cellular programs, such as cell survival, proliferation and motility, through the generation of robust signals of defined strength and duration. In contrast, unabated ErbB signaling disrupts tissue homeostasis and leads to cell transformation. Cells oppose the threat inherent in excessive ErbB activity through several mechanisms of negative feedback regulation. Inducible feedback inhibitors (IFIs) are expressed in the context of transcriptional responses triggered by ErbB signaling, thus being uniquely suited to regulate ErbB activity during the execution of complex cellular programs. This review focuses on MIG6, an IFI that restrains ErbB signaling by mediating ErbB kinase suppression and receptor down-regulation. We will review key issues in MIG6 function, regulation and tumor suppressor activity. Subsequently, the role for MIG6 loss in the pathogenesis of tumors driven by ErbB oncogenes as well as in the generation of cellular addiction to ErbB signaling will be discussed. We will conclude by analyzing feedback inhibition by MIG6 in the context of therapies directed against ErbB and non-ErbB oncogenes.
Collapse
Affiliation(s)
- Sergio Anastasi
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Dante Lamberti
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| | - Stefano Alemà
- Institute of Cell Biology and Neurobiology, CNR, 00016 Monterotondo, Italy.
| | - Oreste Segatto
- Laboratory of Cell Signaling, Regina Elena National Cancer Institute, via E. Chianesi, 53, 00144 Rome, Italy.
| |
Collapse
|
4
|
Maity TK, Venugopalan A, Linnoila I, Cultraro CM, Giannakou A, Nemati R, Zhang X, Webster JD, Ritt D, Ghosal S, Hoschuetzky H, Simpson RM, Biswas R, Politi K, Morrison DK, Varmus HE, Guha U. Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor-Driven Lung Adenocarcinoma. Cancer Discov 2015; 5:534-49. [PMID: 25735773 DOI: 10.1158/2159-8290.cd-14-0750] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 02/20/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Somatic mutations in the EGFR kinase domain drive lung adenocarcinoma. We have previously identified MIG6, an inhibitor of ERBB signaling and a potential tumor suppressor, as a target for phosphorylation by mutant EGFRs. Here, we demonstrate that MIG6 is a tumor suppressor for the initiation and progression of mutant EGFR-driven lung adenocarcinoma in mouse models. Mutant EGFR-induced lung tumor formation was accelerated in Mig6-deficient mice, even with Mig6 haploinsufficiency. We demonstrate that constitutive phosphorylation of MIG6 at Y394/Y395 in EGFR-mutant human lung adenocarcinoma cell lines is associated with an increased interaction of MIG6 with mutant EGFR, which may stabilize EGFR protein. MIG6 also fails to promote mutant EGFR degradation. We propose a model whereby increased tyrosine phosphorylation of MIG6 decreases its capacity to inhibit mutant EGFR. Nonetheless, the residual inhibition is sufficient for MIG6 to delay mutant EGFR-driven tumor initiation and progression in mouse models. SIGNIFICANCE This study demonstrates that MIG6 is a potent tumor suppressor for mutant EGFR-driven lung tumor initiation and progression in mice and provides a possible mechanism by which mutant EGFR can partially circumvent this tumor suppressor in human lung adenocarcinoma.
Collapse
Affiliation(s)
- Tapan K Maity
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Abhilash Venugopalan
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Ilona Linnoila
- Cell and Cancer Biology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Constance M Cultraro
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Andreas Giannakou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roxanne Nemati
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xu Zhang
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Joshua D Webster
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Daniel Ritt
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Sarani Ghosal
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | | | - R Mark Simpson
- Laboratory of Cancer Biology and Genetics, NCI, Bethesda, Maryland
| | - Romi Biswas
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Katerina Politi
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI, Frederick, Maryland
| | - Harold E Varmus
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Udayan Guha
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, NCI, Bethesda, Maryland. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
5
|
Hampton KK, Craven RJ. Pathways driving the endocytosis of mutant and wild-type EGFR in cancer. Oncoscience 2014; 1:504-12. [PMID: 25594057 PMCID: PMC4278327 DOI: 10.18632/oncoscience.67] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/20/2014] [Indexed: 12/25/2022] Open
Abstract
EGFR (epidermal growth factor receptor) is activated through changes in expression or mutations in a number of tumors and is a driving force in cancer progression. EGFR is targeted by numerous inhibitors, including chimeric antibodies targeting the extracellular domain and small molecule kinase domain inhibitors. The kinase domain inhibitors are particularly active against mutant forms of the receptor, and subsequent mutations drive resistance to the inhibitors. Here, we review recent developments on the trafficking of wild-type and mutant EGFR, focusing on the roles of MIG6, SPRY2, ITSN, SHP2, S2RPGRMC1 and RAK. Some classes of EGFR regulators affect wild-type and mutant EGFR equally, while others are specific for either the wild-type or mutant form of the receptor. Below we summarize multiple signaling-associated pathways that are important in trafficking wild-type and mutant EGFR with the goal being stimulation of new approaches for targeting the distinct forms of the receptor.
Collapse
Affiliation(s)
- Kaia K Hampton
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| | - Rolf J Craven
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY
| |
Collapse
|