1
|
Siddique AB, Weng JH, Yang DK, Chou CF, Swami NS. Controlled Nanoconfinement in a Microfluidic Modular Bead Array Device via Elastomeric Diaphragm Collapse for Enhancing Biomolecular Binding Kinetics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412474. [PMID: 40244082 DOI: 10.1002/smll.202412474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Nanoscale confinement strategies alleviate diffusional transport limitations to enhance target binding kinetics with receptors, motivating their utilization for screening and selecting receptors based on binding affinities with target molecules. Herein, a modular and multiplexed device for creating nanoconfinement is presented through the collapse of an elastomeric diaphragm onto microbead arrays immobilized with biomolecules, followed by repeated diaphragm withdrawal to promote bulk transport, thereby enhancing receptor binding kinetics. To repeatedly create controlled nanoconfinement over large spatial extents on the bead, the diaphragm is integrated on its top side with a strain sensor for modulating vertical displacement, while microfabricated nanoposts (≈500 nm depth) on its bottom side control the lateral extent. The modular platform enables facile assembly of beads, each immobilized with different targets into eight microwells for multiplexed screening of receptors, and facile disassembly for quantifying DNA-binding on each bead by downstream q-PCR. Nanoconfinement enhances biomolecular binding at 1 Hz diaphragm pressurization, as validated by rapid DNA immobilization (time constant of ≈6 min vs >60 min under no confinement) and through saturating the binding of target molecules with optimal aptamer candidates (88% site occupancy vs 5% under no confinement at 10 nm levels), thereby screening candidate receptors based on binding affinity parameters.
Collapse
Affiliation(s)
- Abdullah-Bin Siddique
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904-4743, USA
| | - Jui-Hong Weng
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Deng-Kai Yang
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
- Research Center for Applied Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Nathan S Swami
- Electrical & Computer Engineering, University of Virginia, Charlottesville, VA, 22904-4743, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904-4319, USA
| |
Collapse
|
2
|
Pan W, You R, Zhang S, Chang Y, Zhou F, Li Q, Chen X, Duan X, Han Z. Tunable nanochannel resistive pulse sensing device using a novel multi-module self-assembly. Anal Chim Acta 2023; 1251:341035. [PMID: 36925301 DOI: 10.1016/j.aca.2023.341035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Nanochannel-based resistive pulse sensing (nano-RPS) system is widely used for the high-sensitive measurement and characterization of nanoscale biological particles and biomolecules due to its high surface to volume ratio. However, the geometric dimensions and surface properties of nanochannel are usually fixed, which limit the detections within particular ranges or types of nanoparticles. In order to improve the flexibility of nano-RPS system, it is of great significance to develop nanochannels with tunable dimensions and surface properties. In this work, we proposed a novel multi-module self-assembly (MS) strategy which allows to shrink the geometric dimensions and tune surface properties of the nanochannels simultaneously. The MS-tuned nano-RPS device exhibits an enhanced signal-to-noise ratio (SNR) for nanoparticle detections after shrunk the geometric dimensions by MS strategy. Meanwhile, by tuning the surface charge, an enhanced resolution for viral particles detection was achieved with the MS-tuned nano-RPS devices by analyzing the variation of pulse width due the tuned surface charge. The proposed MS strategy is versatile for various types of surface materials and can be potentially applied for nanoscale surface reconfiguration in various nanofluidic devices.
Collapse
Affiliation(s)
- Wenwei Pan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Rui You
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuaihua Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Ye Chang
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Feng Zhou
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Ziyu Han
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
3
|
Sabbagh B, Stolovicki E, Park S, Weitz DA, Yossifon G. Tunable Nanochannels Connected in Series for Dynamic Control of Multiple Concentration-Polarization Layers and Preconcentrated Molecule Plugs. NANO LETTERS 2020; 20:8524-8533. [PMID: 33226817 DOI: 10.1021/acs.nanolett.0c02973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integration of ionic permselective medium (e.g., nanochannels, membranes) within microfluidic channels has been shown to enable on-chip desalination, sample purification, bioparticle sorting, and biomolecule concentration for enhanced detection sensitivity. However, the ion-permselective mediums are generally of fixed properties and cannot be dynamically tuned. Here we study a microfluidic device consisting of an array of individually addressable elastic membranes connected in series on top of a single microfluidic channel that can be deformed to locally reduce the channel cross-section into a nanochannel. Dynamic tunability of the ion-permselective medium, as well as controllability of its location and ionic permselectivity, introduces a new functionality to microfluidics-based lab-on-a-chip devices, for example, dynamic localization of preconcentrated biomolecule plugs at different sensing regions for multiplex detection. Moreover, the ability to simultaneously form a series of preconcentrated plugs at desired locations increases parallelization of the system and the trapping efficiency of target analytes.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| | - Elad Stolovicki
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| |
Collapse
|
4
|
Kwon HJ, Hong SK, Lee M, Lim G. An on-demand micro/nano-convertible channel using an elastomeric nanostructure for multi-purpose use. LAB ON A CHIP 2019; 19:2958-2965. [PMID: 31393468 DOI: 10.1039/c8lc00997j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, nanochannels have been widely adopted in microfluidic systems, especially for biosensing and bio-concentrators. Here, we report an on-demand micro/nano-convertible channel, which consists of a simple configuration of elastic nanostructure underneath a single microchannel. By the degree of pressure applied by a pushrod, the microchannel starts to compress into a size-tunable micro- or nano-porous channel. In this approach, under an electric field, we have successfully derived the electrokinetic characteristics of three different regimes: (1) microchannel regime, (2) microporous regime, and (3) nanochannel regime. Utilizing the practical advantage of the transition between regimes with its low cost and easy integration, we demonstrate the pre-concentration and label-free sensing of DNA using a single on-demand convertible channel. Moreover, we demonstrate an ionic diode by applying asymmetric pressure on the elastic nanostructure to create an asymmetric geometry. We believe that the on-demand convertible channel holds potential for promising applications in bioanalytical and iontronic fields.
Collapse
Affiliation(s)
- Hyukjin J Kwon
- Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
5
|
Huang JH, Haffey K, Arefin A, Akhadov LE, Harris JF, Iyer R, Nath P. A microfluidic method to measure bulging heights for bulge testing of polydimethylsiloxane (PDMS) and polyurethane (PU) elastomeric membranes. RSC Adv 2018; 8:21133-21138. [PMID: 35539930 PMCID: PMC9080891 DOI: 10.1039/c8ra01256c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/22/2018] [Indexed: 01/07/2023] Open
Abstract
Thin and flexible elastomeric membranes are frequently used in many microfluidic applications including microfluidic valves and organs-on-a-chip. The elastic properties of these membranes play an important role in the design of such microfluidic devices. Bulge testing, which is a common method to characterize the elastic behavior of these membranes, involves direct observation of the changes in the bulge height in response to a range of applied pressures. Here, we report a microfluidic approach to measure the bulging height of elastic membranes to replace direct observation of the bulge height under a microscope. Bulging height is measured by tracking the displacement of a fluid inside a microfluidic channel, where the fluid in the channel was designed to be directly in contact with the elastomeric membrane. Polydimethylsiloxane (PDMS) and polyurethane (PU) membranes with thickness 12–35 μm were fabricated by spin coating for bulge testing using both direct optical observation and the microfluidic method. Bulging height determined from the optical method was subject to interpretation by the user, whereas the microfluidic approach provided a simple but sensitive method for determining the bulging height of membranes down to a few micrometers. This work validates the proof of principle that uses microfluidics to accurately measure bulging height in conventional bulge testing for polydimethylsiloxane (PDMS) and polyurethane (PU)eElastomeric membranes. A unique microfluidic platform to rapidly and accurately measure the bulging heights of polymeric membranes.![]()
Collapse
Affiliation(s)
- Jen-Huang Huang
- Bioscience Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | | | - Ayesha Arefin
- Bioscience Division
- Los Alamos National Laboratory
- Los Alamos
- USA
- Department of Nanoscience and Microsystems
| | | | | | - Rashi Iyer
- Analytics, Intelligence and Technology Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| | - Pulak Nath
- Physics Division
- Los Alamos National Laboratory
- Los Alamos
- USA
| |
Collapse
|
6
|
Fu LM, Hou HH, Chiu PH, Yang RJ. Sample preconcentration from dilute solutions on micro/nanofluidic platforms: A review. Electrophoresis 2017; 39:289-310. [DOI: 10.1002/elps.201700340] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Lung-Ming Fu
- Graduate Institute of Materials Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
- Department of Biomechatronics Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Hui-Hsiung Hou
- Department of Engineering Science; National Cheng Kung University; Tainan Taiwan
| | - Ping-Hsien Chiu
- Graduate Institute of Materials Engineering; National Pingtung University of Science and Technology; Pingtung Taiwan
| | - Ruey-Jen Yang
- Department of Engineering Science; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
7
|
Chun H. Electroosmotic Effects on Sample Concentration at the Interface of a Micro/Nanochannel. Anal Chem 2017; 89:8924-8930. [DOI: 10.1021/acs.analchem.7b01392] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Honggu Chun
- Department of Biomedical
Engineering, Korea University, Hana Science Hall 466, Seoul, Korea 02841
| |
Collapse
|
8
|
Microfluidic Neurons, a New Way in Neuromorphic Engineering? MICROMACHINES 2016; 7:mi7080146. [PMID: 30404317 PMCID: PMC6189925 DOI: 10.3390/mi7080146] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/14/2016] [Accepted: 08/18/2016] [Indexed: 01/15/2023]
Abstract
This article describes a new way to explore neuromorphic engineering, the biomimetic artificial neuron using microfluidic techniques. This new device could replace silicon neurons and solve the issues of biocompatibility and power consumption. The biological neuron transmits electrical signals based on ion flow through their plasma membrane. Action potentials are propagated along axons and represent the fundamental electrical signals by which information are transmitted from one place to another in the nervous system. Based on this physiological behavior, we propose a microfluidic structure composed of chambers representing the intra and extracellular environments, connected by channels actuated by Quake valves. These channels are equipped with selective ion permeable membranes to mimic the exchange of chemical species found in the biological neuron. A thick polydimethylsiloxane (PDMS) membrane is used to create the Quake valve membrane. Integrated electrodes are used to measure the potential difference between the intracellular and extracellular environments: the membrane potential.
Collapse
|
9
|
Lee HB, Bae CW, Duy LT, Sohn IY, Kim DI, Song YJ, Kim YJ, Lee NE. Mogul-Patterned Elastomeric Substrate for Stretchable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3069-3077. [PMID: 26917352 DOI: 10.1002/adma.201505218] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/18/2016] [Indexed: 06/05/2023]
Abstract
A mogul-patterned stretchable substrate with multidirectional stretchability and minimal fracture of layers under high stretching is fabricated by double photolithography and soft lithography. Au layers and a reduced graphene oxide chemiresistor on a mogul-patterned poly(dimethylsiloxane) substrate are stable and durable under various stretching conditions. The newly designed mogul-patterned stretchable substrate shows great promise for stretchable electronics.
Collapse
Affiliation(s)
- Han-Byeol Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Chan-Wool Bae
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Le Thai Duy
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Il-Yung Sohn
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Do-Il Kim
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - You-Joon Song
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Youn-Jea Kim
- School of Mechanical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, SKKU Advanced Institute of Nanotechnology (SAINT) and, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Kyunggi-do, 16419, South Korea
| |
Collapse
|
10
|
Cong Y, Katipamula S, Geng T, Prost SA, Tang K, Kelly RT. Electrokinetic sample preconcentration and hydrodynamic sample injection for microchip electrophoresis using a pneumatic microvalve. Electrophoresis 2015; 37:455-62. [PMID: 26255610 DOI: 10.1002/elps.201500286] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A microfluidic platform was developed to perform online electrokinetic sample preconcentration and rapid hydrodynamic sample injection for zone electrophoresis using a single microvalve. The polydimethylsiloxane microchip comprises a separation channel, a side channel for sample introduction, and a control channel which is used as a pneumatic microvalve aligned at the intersection of the two flow channels. The closed microvalve, created by multilayer soft lithography, serves as a nanochannel preconcentrator under an applied electric potential, enabling current to pass through while preventing bulk flow. Once analytes are concentrated, the valve is briefly opened and the stacked sample is pressure injected into the separation channel for electrophoretic separation. Fluorescently labeled peptides were enriched by a factor of ∼450 in 230 s. This method enables both rapid analyte concentration and controlled injection volume for high sensitivity, high-resolution CE.
Collapse
Affiliation(s)
- Yongzheng Cong
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Shanta Katipamula
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Tao Geng
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Spencer A Prost
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Keqi Tang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ryan T Kelly
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
11
|
Abstract
Preconcentration of biomolecules by electrokinetic trapping at the nano/microfluidic interface has been extensively studied due to its significant efficiency. Conventionally, sample preconcentration takes place in continuous flow and therefore suffers from diffusion and dispersion. Encapsulation of the preconcentrated sample into isolated droplets offers a superior way to preserve the sample concentration for further analysis. Nevertheless, the rationale for an optimal design to obviate the sample dilution prior to encapsulation is still lacking. Herein, we propose a pressure-assisted strategy for positioning the concentrated sample plug directly at the ejecting nozzle, which greatly eliminates the concentration decline during sample ejection. A distinctive mechanism for this plug localization was elucidated by two-dimensional numerical simulations. Based on the simulation results, we developed an on-demand nanofluidic concentrator in which the nanochannels were facilely generated through lithography-free nanocracking on a polystyrene substrate. By wisely implementing an on-demand droplet generation module, our system can adaptively encapsulate the highly concentrated sample and effectively enhance the long-term stability. We experimentally demonstrated the preconcentration of a fluorescently labelled biomolecule, bovine serum albumin (BSA), by using an amplification factor of 10(4). We showed that, by adjusting the applied voltage, accumulation time, and pulsed pressure imposed on the control microchannel, our system can generate a droplet of the desired volume with a target sample concentration at a prescribed time. This study not only provides insights into the previously unidentified role of assisted pressure in sample positioning, but also offers an avenue for varied requirements in low-abundance biomolecule detection and analysis.
Collapse
Affiliation(s)
- Miao Yu
- Bioengineering Graduate Program, Biomedical Engineering Division, The Hong Kong University of Science and Technology, Hong Kong, China.
| | | | | | | |
Collapse
|
12
|
Breadmore MC, Tubaon RM, Shallan AI, Phung SC, Abdul Keyon AS, Gstoettenmayr D, Prapatpong P, Alhusban AA, Ranjbar L, See HH, Dawod M, Quirino JP. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012-2014). Electrophoresis 2015; 36:36-61. [DOI: 10.1002/elps.201400420] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/25/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Michael C. Breadmore
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Ria Marni Tubaon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aliaa I. Shallan
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Sui Ching Phung
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Aemi S. Abdul Keyon
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Faculty of Science; Department of Chemistry, Universiti Teknologi Malaysia; Johor Malaysia
| | - Daniel Gstoettenmayr
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Pornpan Prapatpong
- Faculty of Pharmacy; Department of Pharmaceutical Chemistry, Mahidol University; Rajathevee Bangkok Thailand
| | - Ala A. Alhusban
- Faculty of Health Sciences, School of Pharmacy; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Leila Ranjbar
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| | - Hong Heng See
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
- Ibnu Sina Institute for Fundamental Science Studies; Universiti Teknologi Malaysia; Johor Malaysia
| | - Mohamed Dawod
- Department of Chemistry; University of Michigan; Ann Arbor MI USA
- Faculty of Pharmacy; Department of Analytical Chemistry, Al-Azhar University; Cairo Egypt
| | - Joselito P. Quirino
- School of Physical Science; Australian Centre of Research on Separation Science, University of Tasmania; Hobart Tasmania Australia
| |
Collapse
|
13
|
Haywood DG, Saha-Shah A, Baker LA, Jacobson SC. Fundamental studies of nanofluidics: nanopores, nanochannels, and nanopipets. Anal Chem 2014; 87:172-87. [PMID: 25405581 PMCID: PMC4287834 DOI: 10.1021/ac504180h] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel G Haywood
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405-7102, United States
| | | | | | | |
Collapse
|
14
|
Quist J, Vulto P, Hankemeier T. Isotachophoretic Phenomena in Electric Field Gradient Focusing: Perspectives for Sample Preparation and Bioassays. Anal Chem 2014; 86:4078-87. [DOI: 10.1021/ac403764e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Jos Quist
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Paul Vulto
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden
Academic Centre for Drug Research (LACDR), Gorlaeus Laboratories, Einsteinweg 55, Leiden, 2333CC, The Netherlands
- Netherlands Metabolomics
Centre (NMC), Leiden University, Einsteinweg 55, Leiden, South Holland 2333CC, The Netherlands
| |
Collapse
|