1
|
Gladwell TA, Ferguson D, Clarke N, Brown MD, Gardner P. Insights into the cellular lipid cascade of prostate cells explored using infrared microspectroscopy. Analyst 2025; 150:2280-2287. [PMID: 40326216 DOI: 10.1039/d5an00126a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Background: Although prostate cancer (PCa) is the most diagnosed cancer in men worldwide, there is geographical variance in both incidence and morbidity, with higher levels in developed "Western Diet" countries. In particular the high levels of the omega-6 polyunsaturated fatty acid, arachidonic acid (AA), in Western diets has been shown to promote aggressive PCa in vitro. However the exact mechanism through which AA induces the aggressive phenotype has not been fully characterised. Methods: In this study Fourier transform infrared (FTIR) imaging coupled with fluorescence microscopy (FM), is used to follow AA metabolism in PCa cell lines. This is achieved using partially deuterated AA, with a distinctive C-D stretch seen at 2251 cm-1 providing molecular specificity, coupled with Nile Red Fluorescence imaging. Results: We show that, invasive cell lines PC-3, LNCaP C4-2B and DU145 readily uptake and metabolise AA, producing prostaglandins via the COX-2 pathway. Inhibition of the COX-2 pathway with either NS938 or the omega-3 polyunsaturated fatty acid Docosahexaenoic acid (DHA), reduces the invasive stimulus of AA and blocks its uptake. Conclusion: This demonstrates that FTIR imaging can be utilised to follow metabolomics processes within a PCa model and provide an insight to the molecular pathways underlying the cancer metabolome. Additionally, these works provide key insights into the rapid uptake of AA within certain invasive cell lines of prostate cancer, suggesting that AA exposure initiates early cellular responses prior to the uptake and processing of lipids within the cells.
Collapse
Affiliation(s)
- Thomas A Gladwell
- Department of Chemical Engineering, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Dougal Ferguson
- Department of Chemical Engineering, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Noel Clarke
- Department of Surgery, The Christie Hospital NHS Foundation Trust, UK
- Department of Urology, Salford Royal Hospital, UK
| | | | - Peter Gardner
- Department of Chemical Engineering, School of Engineering, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Photon Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
2
|
Yan L, Sun Y, Ding K, Peng T. Bioorthogonal chemical reporters for profiling retinoic acid-modified and retinoic acid-interacting proteins. Bioorg Med Chem 2025; 119:118065. [PMID: 39808893 DOI: 10.1016/j.bmc.2025.118065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/28/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Vitamin A and its primary active derivative, all-trans retinoic acid (RA), are endogenous signaling molecules essential for numerous biological processes, including cell proliferation, differentiation, and immune modulation. Owing to its differentiation-inducing effect, RA was the first differentiating agent approved for the clinical treatment of acute myeloid leukemia. While the classical mechanisms of RA signaling involve nuclear receptors, such as retinoic acid receptors (RARs), emerging evidence suggests that RA also engages in non-covalent and covalent interactions with a broader range of proteins. However, tools for thoroughly characterizing these interactions have been lacking, and a comprehensive understanding of the landscape of RA-modified and RA-interacting proteins remains limited. Here, we report the development of two RA-based chemical reporters, RA-yne and RA-diazyne, to profile RA-modified and RA-interacting proteins, respectively, in live cells. RA-yne features a clickable alkyne group for metabolic labeling of RA-modified proteins, while RA-diazyne incorporates a photoactivatable diazirine and an alkyne handle for crosslinking and capturing RA-interacting proteins. Using quantitative proteomics, we demonstrate the high-throughput identification of these proteins, revealing that non-covalent interactions are more prevalent than covalent modifications. Our global profiling also uncovers a large number of RA-interacting proteins mainly enriched in pathways related to mitochondrial processes, ER homeostasis, and lipid metabolism. Overall, this work introduces new RA-derived chemical reporters, expands the resource for studying RA biology, and enhances our understanding of RA-associated pathways in health and disease.
Collapse
Affiliation(s)
- Long Yan
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yanan Sun
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ke Ding
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Gao Y, Yang Z, Bajpai AK, Wang W, Zhang L, Xia Z. Resveratrol enhances the antiliver cancer effect of cisplatin by targeting the cell membrane protein PLA2. Front Oncol 2024; 14:1453164. [PMID: 39381045 PMCID: PMC11458693 DOI: 10.3389/fonc.2024.1453164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024] Open
Abstract
Background In this study, we aimed to explore the mechanism by which resveratrol promotes cisplatin-induced death of HepG2 cells and to provide a potential strategy for resveratrol in the treatment of cancer. Methods HepG2 cells were exposed to a range of drug concentrations for 24 h: resveratrol (2.5 μg/mL [10.95 μM], 5 μg/mL [21.91 μM], 10 μg/mL [43.81 μM], 20 μg/mL [87.62 μM], 40 μg/mL [175.25 μM], and 80 μg/mL [350.50 μM]), cisplatin (0.625 μg/mL [2.08 μM], 1.25 μg/mL [4.17 μM], 2.5 μg/mL [8.33 μM], 4.5 μg/mL [15.00 μM], and 10 μg/mL [33.33 μM]), 24 μg/mL (105.15 μM) resveratrol + 9 μg/mL (30.00 μM) cisplatin, and 12 μg/mL (52.57 μM) resveratrol + 4.5 μg/mL (15.00 μM) cisplatin. The interaction of two drugs was evaluated by coefficient of drug interaction (CDI), which was based on the Pharmacological Additivity model. The MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to detect the effect of different concentrations of drugs on cell viability, while transcriptome sequencing was used to identify pathways associated with higher gene enrichment. Synchrotron radiation FTIR microspectroscopy experiments and data analysis were conducted to obtain detailed spectral information. The second-derivative spectra were calculated using the Savitzky-Golay algorithm. Single-cell infrared spectral absorption matrices were constructed to analyze the spectral characteristics of individual cells. The Euclidean distance between cells was calculated to assess their spectral similarity. The cell-to-cell Euclidean distance was computed to evaluate the spatial relationships between cells. The target protein of resveratrol was verified by performing a Western blot analysis. Results After 24 h of treatment with resveratrol, HepG2 cell growth was inhibited in a dose-dependent manner. Resveratrol promotes cisplatin-induced HepG2 cell death through membrane-related pathways. It also significantly changes the membrane components of HepG2 cells. Additionally, resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2. Conclusion Resveratrol changes the morphology of the HepG2 cell membrane by decreasing the expression of PLA2G2 and promotes cisplatin-induced HepG2 cell death. The combination of cisplatin and resveratrol can play a synergistic therapeutic effect on HepG2 cells.
Collapse
Affiliation(s)
- Yu Gao
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhanyi Yang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Wenben Wang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Liyuan Zhang
- Department of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zhenhong Xia
- Department of Pharmacy, Binzhou Medical University, Yantai, China
- Key Laboratory of Ion Beam Bioengineering, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
4
|
Matsuoka T, Kajiwara K, Kawasaki T, Wada S, Samura O, Sago H, Okamoto A, Umezawa A, Akutsu H. Inhibitory effect of all-trans retinoic acid on ferroptosis in BeWo cells mediated by the upregulation of heme Oxygenase-1. Placenta 2024; 154:110-121. [PMID: 38945098 DOI: 10.1016/j.placenta.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/02/2024]
Abstract
INTRODUCTION This study aimed to explore the association between ferroptosis, a newly identified type of cell death, and the role of retinoic acid in developing pregnancy complications. Therefore, the effects of all-trans retinoic acid (ATRA) on ferroptosis susceptibility in BeWo cells were assessed to understand abnormal placental development. METHODS BeWo cells were used as surrogates for cytotrophoblasts. The effect of ATRA on ferroptosis sensitivity was assessed on BeWo cells pretreated with ATRA or dimethyl sulfoxide (DMSO; control), following which the LDH-releasing assay was performed. The effects of ATRA pretreatment on the antioxidant defense system (including glutathione [GSH], mitochondrial membrane potential, and heme oxygenase-1 [HMOX1]) in BeWo cells were assessed using assay kits, RT-qPCR, and HMOX1 immunostaining. To evaluate the effect of ATRA on BeWo cells, HMOX1 was silenced in BeWo cells using shRNA. RESULTS ATRA pretreatment increased ferroptosis resistance in BeWo cells. Although with pretreatment, qPCR indicated upregulation of HMOX1, no significant change was observed in the GSH levels or mitochondrial membrane potential. This was corroborated by intensified immunostaining for heme oxygenase-1 protein (HO-1). Notably, the protective effect of ATRA against ferroptosis was negated when HO-1 was inhibited. Although HMOX1-silenced BeWo cells exhibited heightened ferroptosis sensitivity compared with controls, ATRA pretreatment counteracted ferroptosis in these cells. DISCUSSION ATRA pretreatment promotes BeWo cell viability by suppressing ferroptosis and upregulating HMOX1 and this can be used as a potential therapeutic strategy for addressing placental complications associated with ferroptosis.
Collapse
Affiliation(s)
- Tomona Matsuoka
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Kazuhiro Kajiwara
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan; Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Tomoyuki Kawasaki
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Seiji Wada
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Haruhiko Sago
- Center of Maternal-Fetal, Neonatal, and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 1058471, Japan.
| | - Akihiro Umezawa
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Tokyo, 1578535, Japan.
| |
Collapse
|
5
|
Wang G, Du Y, Cui X, Xu T, Li H, Dong M, Li W, Li Y, Cai W, Xu J, Li S, Yang X, Wu Y, Chen H, Li X. Directed differentiation of human embryonic stem cells into parathyroid cells and establishment of parathyroid organoids. Cell Prolif 2024; 57:e13634. [PMID: 38494923 PMCID: PMC11294423 DOI: 10.1111/cpr.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Differentiation of human embryonic stem cells (hESCs) into human embryonic stem cells-derived parathyroid-like cells (hESC-PT) has clinical significance in providing new therapies for congenital and acquired parathyroid insufficiency conditions. However, a highly reproducible, well-documented method for parathyroid differentiation remains unavailable. By imitating the natural process of parathyroid embryonic development, we proposed a new hypothesis about the in vitro differentiation of parathyroid-like cells. Transcriptome, differentiation marker protein detection and parathyroid hormone (PTH) secretion assays were performed after the completion of differentiation. To optimize the differentiation protocol and further improve the differentiation rate, we designed glial cells missing transcription factor 2 (GCM2) overexpression lentivirus transfection assays and constructed hESCs-derived parathyroid organoids. The new protocol enabled hESCs to differentiate into hESC-PT. HESC-PT cells expressed PTH, GCM2 and CaSR proteins, low extracellular calcium culture could stimulate hESC-PT cells to secrete PTH. hESC-PT cells overexpressing GCM2 protein secreted PTH earlier than their counterpart hESC-PT cells. Compared with the two-dimensional cell culture environment, hESCs-derived parathyroid organoids secreted more PTH. Both GCM2 lentiviral transfection and three-dimensional cultures could make hESC-PT cells functionally close to human parathyroid cells. Our study demonstrated that hESCs could differentiate into hESC-PT in vitro, which paves the road for applying the technology to treat hypoparathyroidism and introduces new approaches in the field of regenerative medicine.
Collapse
Affiliation(s)
- Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoqing Cui
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tao Xu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hanning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Menglu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wei Li
- Department of Clinical and Diagnostic SciencesUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Yajie Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Wenjun Cai
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Jia Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shuyu Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xue Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yonglin Wu
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
6
|
De Santis E, Faruqui N, Russell CT, Noble JE, Kepiro IE, Hammond K, Tsalenchuk M, Ryadnov EM, Wolna M, Frogley MD, Price CJ, Barbaric I, Cinque G, Ryadnov MG. Hyperspectral Mapping of Human Primary and Stem Cells at Cell-Matrix Interfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2154-2165. [PMID: 38181419 DOI: 10.1021/acsami.3c17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Extracellular matrices interface with cells to promote cell growth and tissue development. Given this critical role, matrix mimetics are introduced to enable biomedical materials ranging from tissue engineering scaffolds and tumor models to organoids for drug screening and implant surface coatings. Traditional microscopy methods are used to evaluate such materials in their ability to support exploitable cell responses, which are expressed in changes in cell proliferation rates and morphology. However, the physical imaging methods do not capture the chemistry of cells at cell-matrix interfaces. Herein, we report hyperspectral imaging to map the chemistry of human primary and embryonic stem cells grown on matrix materials, both native and artificial. We provide the statistical analysis of changes in lipid and protein content of the cells obtained from infrared spectral maps to conclude matrix morphologies as a major determinant of biochemical cell responses. The study demonstrates an effective methodology for evaluating bespoke matrix materials directly at cell-matrix interfaces.
Collapse
Affiliation(s)
| | - Nilofar Faruqui
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Craig T Russell
- EMBL-EBI, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, U.K
| | - James E Noble
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Ibolya E Kepiro
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Katharine Hammond
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
| | - Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London W12 0BZ, U.K
| | - Eugeni M Ryadnov
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, U.K
| | - Magda Wolna
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Mark D Frogley
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | | | - Ivana Barbaric
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, U.K
| | - Gianfelice Cinque
- Diamond Light Source Ltd., Chilton-Didcot, Oxfordshire OX11 0DE, U.K
| | - Maxim G Ryadnov
- National Physical Laboratory, Hampton Road, Teddington TW11 0LW, U.K
- Department of Physics, King's College London, London WC2R 2LS, U.K
| |
Collapse
|
7
|
Määttä A, Nixon R, Robinson N, Ambler CA, Goncalves K, Maltman V, Przyborski S. Regulation of epidermal proliferation and hair follicle cycling by synthetic photostable retinoid EC23. J Cosmet Dermatol 2023; 22:1658-1669. [PMID: 36718827 DOI: 10.1111/jocd.15629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND Retinoid signaling is an important regulator of the epidermis and skin appendages. Therefore, synthetic retinoids have been developed for therapeutic use for skin disorders such as psoriasis and acne. AIMS In previous studies, we showed how the photostable retinoid EC23 induces neuronal differentiation in stem cell-like cell populations, and here, we aim to investigate its ability to influence epidermal and hair follicle growth. METHODS EC23 influence on skin biology was investigated initially in cultures of monolayer keratinocytes and three-dimentional in vitro models of skin, and finally in in vivo studies of mice back skin. RESULTS EC23 induces keratinocyte hyperproliferation in vitro and in vivo, and when applied to mouse skin increases the number of involucrin-positive suprabasal cell layers. These phenotypic changes are similar in skin treated with the natural retinoid all-trans retinoic acid (ATRA); however, EC23 is more potent; a tenfold lower dose of EC23 is sufficient to induce epidermal thickening, and resulting hyperproliferation is sustained for a longer time period after first dose. EC23 treatment resulted in a disorganized stratum corneum, reduced cell surface lipids and compromised barrier, similar to ATRA treatment. However, EC23 induces a rapid telogen to anagen transition and hair re-growth in 6-week-old mice with synchronously resting back skin follicles. The impact of EC23 on the hair cycle was surprising as similar results have not been seen with ATRA. CONCLUSIONS These data suggest that synthetic retinoid EC23 is a useful tool in exploring the turnover and differentiation of cells and has a potent effect on skin physiology.
Collapse
Affiliation(s)
- Arto Määttä
- Department of Biosciences, Durham University, Durham, UK
| | - Rebecca Nixon
- Department of Biosciences, Durham University, Durham, UK
| | - Neil Robinson
- Department of Biosciences, Durham University, Durham, UK
| | | | | | | | - Stefan Przyborski
- Department of Biosciences, Durham University, Durham, UK.,Reprocell Europe Ltd, West of Scotland Science Park, Glasgow, UK
| |
Collapse
|
8
|
Annuario E, Ng K, Vagnoni A. High-Resolution Imaging of Mitochondria and Mitochondrial Nucleoids in Differentiated SH-SY5Y Cells. Methods Mol Biol 2022; 2431:291-310. [PMID: 35412283 DOI: 10.1007/978-1-0716-1990-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.
Collapse
Affiliation(s)
- Emily Annuario
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kristal Ng
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
9
|
Spadea A, Denbigh J, Lawrence MJ, Kansiz M, Gardner P. Analysis of Fixed and Live Single Cells Using Optical Photothermal Infrared with Concomitant Raman Spectroscopy. Anal Chem 2021; 93:3938-3950. [PMID: 33595297 PMCID: PMC8018697 DOI: 10.1021/acs.analchem.0c04846] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 12/24/2022]
Abstract
This paper reports the first use of a novel completely optically based photothermal method (O-PTIR) for obtaining infrared spectra of both fixed and living cells using a quantum cascade laser (QCL) and optical parametric oscillator (OPO) laser as excitation sources, thus enabling all biologically relevant vibrations to be analyzed at submicron spatial resolution. In addition, infrared data acquisition is combined with concomitant Raman spectra from exactly the same excitation location, meaning the full vibrational profile of the cell can be obtained. The pancreatic cancer cell line MIA PaCa-2 and the breast cancer cell line MDA-MB-231 are used as model cells to demonstrate the capabilities of the new instrumentation. These combined modalities can be used to analyze subcellular structures in both fixed and, more importantly, live cells under aqueous conditions. We show that the protein secondary structure and lipid-rich bodies can be identified on the submicron scale.
Collapse
Affiliation(s)
- Alice Spadea
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Joanna Denbigh
- Seda
Pharmaceutical Development Services, Alderley Park, Alderley
Edge, Cheshire SK10 4TG, U.K.
- School
of Science, Engineering and Environment, University of Salford, Salford, M5 4WT, U.K.
| | - M. Jayne Lawrence
- NorthWest
Centre for Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Division
of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre Oxford
Road, Manchester M13 9PL, U.K.
| | - Mustafa Kansiz
- Photothermal
Spectroscopy Corp. 325
Chapala Street, Santa Barbara, California 93101, United States
| | - Peter Gardner
- Manchester
Institute of Biotechnology, University of
Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- Department
of Chemical Engineering and Analytical Science, School of Engineering, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
10
|
Wang Y, Dai W, Liu Z, Liu J, Cheng J, Li Y, Li X, Hu J, Lü J. Single-Cell Infrared Microspectroscopy Quantifies Dynamic Heterogeneity of Mesenchymal Stem Cells during Adipogenic Differentiation. Anal Chem 2020; 93:671-676. [PMID: 33290049 DOI: 10.1021/acs.analchem.0c04110] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The central relevance of cellular heterogeneity to biological phenomena raises the rational needs for analytical techniques with single-cell resolution. Here, we developed a single-cell FTIR microspectroscopy-based method for the quantitative evaluation of cellular heterogeneity by calculating the cell-to-cell similarity distance of the infrared spectral data. Based on this method, we revealed the infrared phenotypes might reflect the dynamic heterogeneity changes in the cell population during the adipogenic differentiation of the human mesenchymal stem cells. These findings provide an alternative label-free optical approach for quantifying the cellular heterogeneity, and the combination with other single-cell analysis tools will be very helpful for understanding the genotype-to-phenotype relationship in cellular populations.
Collapse
Affiliation(s)
- Yadi Wang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China.,University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wentao Dai
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Zhixiao Liu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Jixiang Liu
- Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Jie Cheng
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Yuanyuan Li
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Huangpu District, Shanghai 200025, China.,Shanghai Center for Bioinformation Technology, No.1278 Ke Yuan Road, Pudong New District, Shanghai 201203, China
| | - Xueling Li
- Shanghai University of Medicine and Health Sciences, National Engineering Research Center for Nanotechnology, No. 28 Jiangchuan East Road, Minhang District, Shanghai 201318, China
| | - Jun Hu
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| | - Junhong Lü
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 239 Zhangheng Road, Pudong New District, Shanghai 201203, China.,Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jia Luo Road, Jiading District, Shanghai 201800, China
| |
Collapse
|
11
|
Abstract
Nuclear receptors have a broad spectrum of biological functions in normal physiology and in the pathology of various diseases, including glomerular disease. The primary therapies for many glomerular diseases are glucocorticoids, which exert their immunosuppressive and direct podocyte protective effects via the glucocorticoid receptor (GR). As glucocorticoids are associated with important adverse effects and a substantial proportion of patients show resistance to these therapies, the beneficial effects of selective GR modulators are now being explored. Peroxisome proliferator-activated receptor-γ (PPARγ) agonism using thiazolidinediones has potent podocyte cytoprotective and nephroprotective effects. Repurposing of thiazolidinediones or identification of novel PPARγ modulators are potential strategies to treat non-diabetic glomerular disease. Retinoic acid receptor-α is the key mediator of the renal protective effects of retinoic acid, and repair of the endogenous retinoic acid pathway offers another potential therapeutic strategy for glomerular disease. Vitamin D receptor, oestrogen receptor and mineralocorticoid receptor modulators regulate podocyte injury in experimental models. Further studies are needed to better understand the mechanisms of these nuclear receptors, evaluate their synergistic pathways and identify their novel modulators. Here, we focus on the role of nuclear receptors in podocyte biology and non-diabetic glomerular disease.
Collapse
|
12
|
Francis NL, Zhao N, Calvelli HR, Saini A, Gifford JJ, Wagner GC, Cohen RI, Pang ZP, Moghe PV. Peptide-Based Scaffolds for the Culture and Transplantation of Human Dopaminergic Neurons. Tissue Eng Part A 2020; 26:193-205. [PMID: 31537172 PMCID: PMC7044800 DOI: 10.1089/ten.tea.2019.0094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/06/2019] [Indexed: 11/12/2022] Open
Abstract
Cell replacement therapy is a promising treatment strategy for Parkinson's disease (PD); however, the poor survival rate of transplanted neurons is a critical barrier to functional recovery. In this study, we used self-assembling peptide nanofiber scaffolds (SAPNS) based on the peptide RADA16-I to support the in vitro maturation and in vivo post-transplantation survival of encapsulated human dopaminergic (DA) neurons derived from induced pluripotent stem cells. Neurons encapsulated within the SAPNS expressed mature neuronal and midbrain DA markers and demonstrated in vitro functional activity similar to neurons cultured in two dimensions. A microfluidic droplet generation method was used to encapsulate cells within monodisperse SAPNS microspheres, which were subsequently used to transplant adherent, functional networks of DA neurons into the striatum of a 6-hydroxydopamine-lesioned PD mouse model. SAPNS microspheres significantly increased the in vivo survival of encapsulated neurons compared with neurons transplanted in suspension, and they enabled significant recovery in motor function compared with control lesioned mice using approximately an order of magnitude fewer neurons than have been previously needed to demonstrate behavioral recovery. These results indicate that such biomaterial scaffolds can be used as neuronal transplantation vehicles to successfully improve the outcome of cell replacement therapies for PD. Impact Statement Transplantation of dopaminergic (DA) neurons holds potential as a treatment for Parkinson's disease (PD), but low survival rates of transplanted neurons is a barrier to successfully improving motor function. In this study, we used hydrogel scaffolds to transplant DA neurons into PD model mice. The hydrogel scaffolds enhanced survival of the transplanted neurons compared with neurons that were transplanted in a conventional manner, and they also improved recovery of motor function by using significantly fewer neurons than have typically been transplanted to see functional benefits. This cell transplantation technology has the capability to improve the outcome of neuron transplantation therapies.
Collapse
Affiliation(s)
- Nicola L. Francis
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Nanxia Zhao
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| | - Hannah R. Calvelli
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Astha Saini
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Janace J. Gifford
- Department of Psychology, Rutgers University, Piscataway, New Jersey
| | - George C. Wagner
- Department of Psychology, Rutgers University, Piscataway, New Jersey
| | - Rick I. Cohen
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Prabhas V. Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
13
|
Doherty J, Raoof A, Hussain A, Wolna M, Cinque G, Brown M, Gardner P, Denbigh J. Live single cell analysis using synchrotron FTIR microspectroscopy: development of a simple dynamic flow system for prolonged sample viability. Analyst 2019; 144:997-1007. [PMID: 30403210 DOI: 10.1039/c8an01566j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Synchrotron radiation Fourier transform infrared microspectroscopy (SR-microFTIR) of live biological cells has the potential to provide far greater biochemical and morphological detail than equivalent studies using dehydrated, chemically-fixed single cells. Attempts to measure live cells using microFTIR are complicated by the aqueous environment required and corresponding strong infrared absorbance by water. There is also the additional problem of the limited lifetime of the cells outside of their preferred culture environment. In this work, we outline simple, cost-effective modifications to a commercially available liquid sample holder to perform single live cell analysis under an IR microscope and demonstrate cell viability up to at least 24 hours. A study using this system in which live cells have been measured at increasing temperature has shown spectral changes in protein bands attributed to α-β transition, consistent with other published work, and proves the ability to simultaneously induce and measure biochemical changes. An additional study of deuterated palmitic acid (D31-PA) uptake at different timepoints has made use of over 200 individual IR spectra collected over ∼4 hours, taking advantage of the ability to maintain viable cell samples for longer periods of time in the measurement environment, and therefore acquire greatly increased numbers of spectra without compromising on spectral quality. Further developments of this system are planned to widen the range of possible experiments, and incorporate more complex studies, including drug-cell interaction.
Collapse
Affiliation(s)
- James Doherty
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The Neuroprotective Effect of Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells is Impaired by N-acetyl Cysteine Supplementation. Mol Neurobiol 2019; 55:13-25. [PMID: 28812231 DOI: 10.1007/s12035-017-0714-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxidative stress is a common feature in neurodegenerative diseases associated with neuroinflammation, and therefore, has been proposed as a key target for novel therapies for these diseases. Recently, adipose-derived stem cell (ASC)-based cell therapy has emerged as a novel strategy for neuroprotection. In this study, we evaluate the therapeutic role of ASC-conditioned medium (ASC-CM) against H2O2-induced neurotoxicity in a new in vitro model of ec23/brain-derived neurotrophic factor (BDNF)-differentiated human SH-SY5Y neuron-like cells (SH-SY5Yd). In the presence of ASC-CM, stressed SH-SY5Yd cells recover normal axonal morphology (with an almost complete absence of H2O2-induced axonal beading), electrophysiological features, and cell viability. This beneficial effect of ASC-CM was associated with its antioxidant capacity and the presence of growth factors, namely, BDNF, glial cell line-derived neurotrophic factor, and transforming growth factor β1. Moreover, the neuroprotective effect of ASC-CM was very similar to that obtained from treatment with BDNF, an essential factor for SH-SY5Yd cell survival. Importantly, we also found that the addition of the antioxidant agent N-acetyl cysteine to ASC-CM abolished its restorative effect; this was associated with a strong reduction in reactive oxygen species (ROS), in contrast to the moderate decrease in ROS produced by ASC-CM alone. These results suggest that neuronal restorative effect of ASC-CM is associated with not only the release of essential neurotrophic factors, but also the maintenance of an appropriate redox state to preserve neuronal function.
Collapse
|
15
|
Johnson A, de Hoog E, Tolentino M, Nasser T, Spencer GE. Pharmacological evidence for the role of RAR in axon guidance and embryonic development of a protostome species. Genesis 2019; 57:e23301. [PMID: 31038837 DOI: 10.1002/dvg.23301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023]
Abstract
Retinoic acid (RA), the active metabolite of vitamin A, functions through nuclear receptors, one of which is the retinoic acid receptor (RAR). Though the RAR is essential for various aspects of vertebrate development, little is known about the role of RAR in nonchordate invertebrates. Here, we examined the potential role of an invertebrate RAR in mediating chemotropic effects of retinoic acid. The RAR of the protostome Lymnaea stagnalis is present in the growth cones of regenerating cultured motorneurons, and a synthetic RAR agonist (EC23), was able to mimic the effects of retinoic acid in inducing growth cone turning. We also examined the ability of the natural retinoids, all-trans RA and 9-cis RA, as well as the synthetic RAR agonists, to disrupt embryonic development in Lymnaea. Developmental defects included delays in embryo hatching, arrested eye, and shell development, as well as more severe abnormalities such as halted development. Developmental defects induced by some (but not all) synthetic RAR agonists were found to mimic those induced by addition of high concentrations of the natural retinoid isomers. These pharmacological data support a possible physiological role for the RAR in axon guidance and embryonic development of an invertebrate protostome species.
Collapse
Affiliation(s)
- Alysha Johnson
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Eric de Hoog
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Michael Tolentino
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Tamara Nasser
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
16
|
Chisholm DR, Lamb R, Pallett T, Affleck V, Holden C, Marrison J, O'Toole P, Ashton PD, Newling K, Steffen A, Nelson AK, Mahler C, Valentine R, Blacker TS, Bain AJ, Girkin J, Marder TB, Whiting A, Ambler CA. Photoactivated cell-killing involving a low molecular weight, donor-acceptor diphenylacetylene. Chem Sci 2019; 10:4673-4683. [PMID: 31123578 PMCID: PMC6495688 DOI: 10.1039/c9sc00199a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/20/2019] [Indexed: 01/02/2023] Open
Abstract
Drug-like, donor–acceptor diphenylacetylenes cause efficient cell death upon photoactivation and hence have potential phototherapeutic applications.
Photoactivation of photosensitisers can be utilised to elicit the production of ROS, for potential therapeutic applications, including the destruction of diseased tissues and tumours. A novel class of photosensitiser, exemplified by DC324, has been designed possessing a modular, low molecular weight and ‘drug-like’ structure which is bioavailable and can be photoactivated by UV-A/405 nm or corresponding two-photon absorption of near-IR (800 nm) light, resulting in powerful cytotoxic activity, ostensibly through the production of ROS in a cellular environment. A variety of in vitro cellular assays confirmed ROS formation and in vivo cytotoxic activity was exemplified via irradiation and subsequent targeted destruction of specific areas of a zebrafish embryo.
Collapse
Affiliation(s)
- David R Chisholm
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK .
| | - Rebecca Lamb
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| | - Tommy Pallett
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK.,Biophysical Sciences Institute , Department of Physics , Durham University , South Road , Durham , DH1 3LE , UK
| | - Valerie Affleck
- LightOx Limited , Wynyard Park House , Wynyard Avenue, Wynyard , Billingham , TS22 5TB , UK
| | - Claire Holden
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK . .,Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| | - Joanne Marrison
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Peter O'Toole
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Peter D Ashton
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Katherine Newling
- Bioscience Technology Facility , Department of Biology , University of York , York , YO10 5DD , UK
| | - Andreas Steffen
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Amanda K Nelson
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Christoph Mahler
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Roy Valentine
- High Force Research Ltd. , Bowburn North Industrial Estate , Bowburn , Durham , DH6 5PF , UK
| | - Thomas S Blacker
- Department of Physics & Astronomy , University College London , Gower Street , London , WC1E 6BT , UK
| | - Angus J Bain
- Department of Physics & Astronomy , University College London , Gower Street , London , WC1E 6BT , UK
| | - John Girkin
- Biophysical Sciences Institute , Department of Physics , Durham University , South Road , Durham , DH1 3LE , UK
| | - Todd B Marder
- Institut für Anorganische Chemie , Julius-Maximilians-Universität Würzburg , Am Hubland , 97074 Würzburg , Germany
| | - Andrew Whiting
- Department of Chemistry , Durham University , Science Laboratories , South Road , Durham DH1 3LE , UK .
| | - Carrie A Ambler
- Department of Biosciences , Durham University , South Road , Durham, DH1 3LE , UK
| |
Collapse
|
17
|
Tomlinson CWE, Chisholm DR, Valentine R, Whiting A, Pohl E. Novel Fluorescence Competition Assay for Retinoic Acid Binding Proteins. ACS Med Chem Lett 2018; 9:1297-1300. [PMID: 30613343 PMCID: PMC6295855 DOI: 10.1021/acsmedchemlett.8b00420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 01/16/2023] Open
Abstract
![]()
Vitamin
A derived retinoid compounds have multiple, powerful roles
in the cellular growth and development cycle and, as a result, have
attracted significant attention from both academic and pharmaceutical
research in developing and characterizing synthetic retinoid analogues.
Simplifying the hit development workflow for retinoid signaling will
improve options available for tackling related pathologies, including
tumor growth and neurodegeneration. Here, we present a novel assay
that employs an intrinsically fluorescent synthetic retinoid, DC271,
which allows direct measurement of the binding of nonlabeled compounds
to relevant proteins. The method allows for straightforward initial
measurement of binding using existing compound libraries and is followed
by calculation of binding constants using a dilution series of plausible
hits. The ease of use, high throughput format, and measurement of
both qualitative and quantitative binding offer a new direction for
retinoid-related pharmacological development.
Collapse
Affiliation(s)
- Charles W. E. Tomlinson
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - David R. Chisholm
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - Roy Valentine
- High Force Research Ltd., Bowburn North Industrial Estate, Bowburn, Durham, DH6 5PF, U.K
| | - Andrew Whiting
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| | - Ehmke Pohl
- Department of Chemistry, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
- Department of Biosciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, U.K
| |
Collapse
|
18
|
Madden KS, Laroche B, David S, Batsanov AS, Thompson D, Knowles JP, Whiting A. Approaches to Styrenyl Building Blocks for the Synthesis of Polyene Xanthomonadin and its Analogues. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800540] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Katrina S. Madden
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Benjamin Laroche
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Sylvain David
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Andrei S. Batsanov
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Daniel Thompson
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| | - Jonathan P. Knowles
- Department of Chemistry; University fo Bristol; Cantock's Close BS8 1TS Bristol, Avon UK
| | - Andrew Whiting
- Department of Chemistry; Durham University; Science Site, South Road DH1 3LE Durham UK
| |
Collapse
|
19
|
Pahlow S, Weber K, Popp J, Wood BR, Kochan K, Rüther A, Perez-Guaita D, Heraud P, Stone N, Dudgeon A, Gardner B, Reddy R, Mayerich D, Bhargava R. Application of Vibrational Spectroscopy and Imaging to Point-of-Care Medicine: A Review. APPLIED SPECTROSCOPY 2018; 72:52-84. [PMID: 30265133 PMCID: PMC6524782 DOI: 10.1177/0003702818791939] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Susanne Pahlow
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
| | - Karina Weber
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Jürgen Popp
- Friedrich Schiller University Jena, Institute of Physical Chemistry and Abbe Center of Photonics, Jena, Germany
- InfectoGnostics Research Campus Jena, Centre for Applied Research, Jena, Germany
- Leibniz Institute of Photonic Technology-Leibniz Health Technologies, Jena, Germany
| | - Bayden R. Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Kamila Kochan
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Anja Rüther
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - David Perez-Guaita
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Philip Heraud
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Victoria, Australia
| | - Nick Stone
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Alex Dudgeon
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Ben Gardner
- University of Exeter, School of Physics and Astronomy, Exeter, UK
| | - Rohith Reddy
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - David Mayerich
- Department of Electrical Engineering, University of Houston, Houston, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana Champaign, Departments of Mechanical Engineering, Bioengineering, Chemical and Biomolecular Engineering, Electrical and Computer Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
20
|
Ami D, Mereghetti P, Leri M, Giorgetti S, Natalello A, Doglia SM, Stefani M, Bucciantini M. A FTIR microspectroscopy study of the structural and biochemical perturbations induced by natively folded and aggregated transthyretin in HL-1 cardiomyocytes. Sci Rep 2018; 8:12508. [PMID: 30131519 PMCID: PMC6104026 DOI: 10.1038/s41598-018-30995-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023] Open
Abstract
Protein misfolding and aggregation are associated with a number of human degenerative diseases. In spite of the enormous research efforts to develop effective strategies aimed at interfering with the pathogenic cascades induced by misfolded/aggregated peptides/proteins, the necessary detailed understanding of the molecular bases of amyloid formation and toxicity is still lacking. To this aim, approaches able to provide a global insight in amyloid-mediated physiological alterations are of importance. In this study, we exploited Fourier transform infrared microspectroscopy, supported by multivariate analysis, to investigate in situ the spectral changes occurring in cultured intact HL-1 cardiomyocytes exposed to wild type (WT) or mutant (L55P) transthyretin (TTR) in native, or amyloid conformation. The presence of extracellular deposits of amyloid aggregates of WT or L55P TTR, respectively, is a key hallmark of two pathological conditions, known as senile systemic amyloidosis and familial amyloid polyneuropathy. We found that the major effects, associated with modifications in lipid properties and in the cell metabolic/phosphorylation status, were observed when natively folded WT or L55P TTR was administered to the cells. The effects induced by aggregates of TTR were milder and in some cases displayed a different timing compared to those elicited by the natively folded protein.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Paolo Mereghetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Manuela Leri
- Department of Neuroscience, Psychology, Area of Medicine and Health of the Child of the University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.,Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Sofia Giorgetti
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Viale Taramelli 3/B, 27100, Pavia, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Silvia Maria Doglia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.,Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy
| | - Monica Bucciantini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy. .,Interuniversity Center for the Study of Neurodegenerative Diseases (CIMN), Florence, Italy.
| |
Collapse
|
21
|
Liu Z, Tang Y, Chen F, Liu X, Liu Z, Zhong J, Hu J, Lü J. Synchrotron FTIR microspectroscopy reveals early adipogenic differentiation of human mesenchymal stem cells at single-cell level. Biochem Biophys Res Commun 2016; 478:1286-91. [PMID: 27553281 DOI: 10.1016/j.bbrc.2016.08.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have been used as an ideal in vitro model to study human adipogenesis. However, little knowledge of the early stage differentiation greatly hinders our understanding on the mechanism of the adipogenesis processes. In this study, synchrotron radiation-based Fourier transform infrared (SR-FTIR) microspectroscopy was applied to track the global structural and compositional changes of lipids, proteins and nucleic acids inside individual hMSCs along the time course. The multivariate analysis of the SR-FTIR spectra distinguished the dynamic and significant changes of the lipids and nucleic acid at early differentiation stage. Importantly, changes of lipid structure during early days (Day 1-3) of differentiation might serve as a potential biomarker in identifying the state in early differentiation at single cell level. These results proved that SR-FTIR is a powerful tool to study the stem cell fate determination and early lipogenesis events.
Collapse
Affiliation(s)
- Zhixiao Liu
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yuzhao Tang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210, China
| | - Feng Chen
- Cancer Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Xia Liu
- Canadian Light Source Inc. Saskatoon, Canada
| | - Zhaojian Liu
- Department of Cell Biology School of Medicine, Shandong University, Jinan 250012, China
| | - Jiajia Zhong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 201210, China
| | - Jun Hu
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China.
| | - Junhong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS), Shanghai 201800, China.
| |
Collapse
|
22
|
Pilling M, Gardner P. Fundamental developments in infrared spectroscopic imaging for biomedical applications. Chem Soc Rev 2016; 45:1935-57. [PMID: 26996636 DOI: 10.1039/c5cs00846h] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared chemical imaging is a rapidly emerging field with new advances in instrumentation, data acquisition and data analysis. These developments have had significant impact in biomedical applications and numerous studies have now shown that this technology offers great promise for the improved diagnosis of the diseased state. Relying on purely biochemical signatures rather than contrast from exogenous dyes and stains, infrared chemical imaging has the potential to revolutionise histopathology for improved disease diagnosis. In this review we discuss the recent advances in infrared spectroscopic imaging specifically related to spectral histopathology (SHP) and consider the current state of the field. Finally we consider the practical application of SHP for disease diagnosis and consider potential barriers to clinical translation highlighting current directions and the future outlook.
Collapse
Affiliation(s)
- Michael Pilling
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | |
Collapse
|
23
|
Clemens G, Hands JR, Dorling KM, Baker MJ. Vibrational spectroscopic methods for cytology and cellular research. Analyst 2015; 139:4411-44. [PMID: 25028699 DOI: 10.1039/c4an00636d] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The use of vibrational spectroscopy, FTIR and Raman, for cytology and cellular research has the potential to revolutionise the approach to cellular analysis. Vibrational spectroscopy is non-destructive, simple to operate and provides direct information. Importantly it does not require expensive exogenous labels that may affect the chemistry of the cell under analysis. In addition, the advent of spectroscopic microscopes provides the ability to image cells and acquire spectra with a subcellular resolution. This introductory review focuses on recent developments within this fast paced field and highlights potential for the future use of FTIR and Raman spectroscopy. We particularly focus on the development of live cell research and the new technologies and methodologies that have enabled this.
Collapse
Affiliation(s)
- Graeme Clemens
- Centre for Materials Science, Division of Chemistry, University of Central Lancashire, Preston, Lancashire PR1 2HE, UK.
| | | | | | | |
Collapse
|
24
|
Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol 2015; 60:183-95. [DOI: 10.1016/j.survophthal.2014.10.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/05/2014] [Accepted: 10/07/2014] [Indexed: 02/04/2023]
|
25
|
Jimenez-Hernandez M, Brown MD, Hughes C, Clarke NW, Gardner P. Characterising cytotoxic agent action as a function of the cell cycle using fourier transform infrared microspectroscopy. Analyst 2015; 140:4453-64. [DOI: 10.1039/c5an00671f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infrared spectral signatures of drug–cell interaction, suggest that both the stages of proliferation and the degree of apoptosis need to be taken into account to elucidate the fine biochemical details of the immediate cellular response to the drug.
Collapse
Affiliation(s)
- M. Jimenez-Hernandez
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- M1 7DN UK
- Genito-Urinary Cancer Research Group
| | - M. D. Brown
- Genito-Urinary Cancer Research Group
- Institute of Cancer Sciences
- University of Manchester
- The Christie NHS Foundation Trust
- Manchester Academic Health Sciences Centre
| | - C. Hughes
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- M1 7DN UK
- Genito-Urinary Cancer Research Group
| | - N. W. Clarke
- Genito-Urinary Cancer Research Group
- Institute of Cancer Sciences
- University of Manchester
- The Christie NHS Foundation Trust
- Manchester Academic Health Sciences Centre
| | - P. Gardner
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- M1 7DN UK
| |
Collapse
|
26
|
Rothwell CM, Spencer GE. Retinoid signaling is necessary for, and promotes long-term memory formation following operant conditioning. Neurobiol Learn Mem 2014; 114:127-40. [PMID: 24925874 DOI: 10.1016/j.nlm.2014.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Retinoic acid, a metabolite of vitamin A, is proposed to play an important role in vertebrate learning and memory, as well as hippocampal-dependent synaptic plasticity. However, it has not yet been determined whether retinoic acid plays a similar role in learning and memory in invertebrates. In this study, we report that retinoid signaling in the mollusc Lymnaea stagnalis, is required for long-term memory formation following operant conditioning of its aerial respiratory behaviour. Animals were exposed to inhibitors of the RALDH enzyme (which synthesizes retinoic acid), or various retinoid receptor antagonists. Following exposure to these inhibitors, neither learning nor intermediate-term memory (lasting 2 h) was affected, but long-term memory formation (tested at either 24 or 72 h) was inhibited. We next demonstrated that various retinoid receptor agonists promoted long-term memory formation. Using a training paradigm shown only to produce intermediate-term memory (lasting 2 h, but not 24 h) we found that exposure of animals to synthetic retinoids promoted memory formation that lasted up to 30 h. These findings suggest that the role of retinoids in memory formation is ancient in origin, and that retinoid signaling is also important for the formation of implicit memories, in addition to its previously demonstrated role in hippocampal-dependent memories.
Collapse
Affiliation(s)
- Cailin M Rothwell
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada
| | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, 500 Glenridge Ave, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
27
|
Clemens G, Flower KR, Gardner P, Henderson AP, Knowles JP, Marder TB, Whiting A, Przyborski S. Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity. MOLECULAR BIOSYSTEMS 2013; 9:3124-34. [PMID: 24108350 DOI: 10.1039/c3mb70273a] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
All trans-retinoic acid (ATRA) is widely used to direct the differentiation of cultured stem cells. When exposed to the pluripotent human embryonal carcinoma (EC) stem cell line, TERA2.cl.SP12, ATRA induces ectoderm differentiation and the formation of neuronal cell types. We report in this study that novel polyene chain length analogues of ATRA require a specific chain length to elicit a biological responses of the EC cells TERA2.cl.SP12, with synthetic retinoid AH61 being particularly active, and indeed more so than ATRA. The impacts of both the synthetic retinoid AH61 and natural ATRA on the TERA2.cl.SP12 cells were directly compared using both RT-PCR and Fourier Transform Infrared Micro-Spectroscopy (FT-IRMS) coupled with multivariate analysis. Analytical results produced from this study also confirmed that the synthetic retinoid AH61 had biological activity comparable or greater than that of ATRA. In addition to this, AH61 has the added advantage of greater compound stability than ATRA, therefore, avoiding issues of oxidation or decomposition during use with embryonic stem cells.
Collapse
Affiliation(s)
- Graeme Clemens
- Manchester Institute of Biotechnology, Manchester University, 131 Princess Street, Manchester, M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jimenez-Hernandez M, Hughes C, Bassan P, Ball F, Brown MD, Clarke NW, Gardner P. Exploring the spectroscopic differences of Caki-2 cells progressing through the cell cycle while proliferating in vitro. Analyst 2013; 138:3957-66. [DOI: 10.1039/c3an00507k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|