1
|
Falanga AP, Massaro M, Borbone N, Notarbartolo M, Piccialli G, Liotta LF, Sanchez-Espejo R, Viseras Iborra C, Raymo FM, Oliviero G, Riela S. Carrier capability of halloysite nanotubes for the intracellular delivery of antisense PNA targeting mRNA of neuroglobin gene. J Colloid Interface Sci 2024; 663:9-20. [PMID: 38387188 DOI: 10.1016/j.jcis.2024.02.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/28/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
Peptide nucleic acid (PNA) is a DNA mimic that shows good stability against nucleases and proteases, forming strongly recognized complementary strands of DNA and RNA. However, due to its feeble ability to cross the cellular membrane, PNA activity and its targeting gene action is limited. Halloysite nanotubes (HNTs) are a natural and low-cost aluminosilicate clay. Because of their peculiar ability to cross cellular membrane, HNTs represent a valuable candidate for delivering genetic materials into cells. Herein, two differently charged 12-mer PNAs capable of recognizing as molecular target a 12-mer DNA molecule mimicking a purine-rich tract of neuroglobin were synthetized and loaded onto HNTs by electrostatic attraction interactions. After characterization, the kinetic release was also assessed in media mimicking physiological conditions. Resonance light scattering measurements assessed their ability to bind complementary single-stranded DNA. Furthermore, their intracellular delivery was assessed by confocal laser scanning microscopy on living MCF-7 cells incubated with fluorescence isothiocyanate (FITC)-PNA and HNTs labeled with a probe. The nanomaterials were found to cross cellular membrane and cell nuclei efficiently. Finally, it is worth mentioning that the HNTs/PNA can reduce the level of neuroglobin gene expression, as shown by reverse transcription-quantitative polymerase chain reaction and western blotting analysis.
Collapse
Affiliation(s)
- Andrea P Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy.
| | - Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Leonarda F Liotta
- Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)-CNR, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Rita Sanchez-Espejo
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain
| | - Cesar Viseras Iborra
- University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Françisco M Raymo
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables 33146-0431, FL, United States
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Via Sergio Pansini 5, 80131 Napoli, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
2
|
Falanga AP, Lupia A, Tripodi L, Morgillo CM, Moraca F, Roviello GN, Catalanotti B, Amato J, Pastore L, Cerullo V, D'Errico S, Piccialli G, Oliviero G, Borbone N. Exploring the DNA 2-PNA heterotriplex formation in targeting the Bcl-2 gene promoter: A structural insight by physico-chemical and microsecond-scale MD investigation. Heliyon 2024; 10:e24599. [PMID: 38317891 PMCID: PMC10839560 DOI: 10.1016/j.heliyon.2024.e24599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups' research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches. Specifically, we identified a seven bases-long PNA sequence, complementary to the longer loop of the main G-quadruplex structure formed by the bcl2midG4 promoter sequence, capable of downregulating the expression of the antiapoptotic Bcl-2 protein and enhancing the anticancer activity of an oncolytic adenovirus. Here, we extended the length of the PNA probe with the aim of including the double-stranded Bcl-2 promoter among the targets of the PNA probe. Our investigation primarily focused on the structural aspects of the resulting DNA2-PNA heterotriplex that were determined by employing conventional and accelerated microsecond-scale molecular dynamics simulations and chemical-physical analysis. Additionally, we conducted preliminary biological experiments using cytotoxicity assays on human A549 and MDA-MB-436 adenocarcinoma cell lines, employing the oncolytic adenovirus delivery strategy.
Collapse
Affiliation(s)
- Andrea P. Falanga
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Antonio Lupia
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lorella Tripodi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Carmine M. Morgillo
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Federica Moraca
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giovanni N. Roviello
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale Delle Ricerche, Naples, 80131, Italy
| | - Bruno Catalanotti
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Jussara Amato
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Lucio Pastore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore S.c.a.r.l., Naples, 80145, Italy
| | - Vincenzo Cerullo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
- ImmunoViroTherapy Lab (IVT), Drug Research Program (DRP), Faculty of Pharmacy, University of Helsinki, 00100, Helsinki, Finland
| | - Stefano D'Errico
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Gennaro Piccialli
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Giorgia Oliviero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| | - Nicola Borbone
- Dipartimento di Farmacia, Università Degli Studi di Napoli Federico II, Naples, 80131, Italy
| |
Collapse
|
3
|
Exploring the Parallel G-Quadruplex Nucleic Acid World: A Spectroscopic and Computational Investigation on the Binding of the c-myc Oncogene NHE III1 Region by the Phytochemical Polydatin. Molecules 2022; 27:molecules27092997. [PMID: 35566347 PMCID: PMC9099682 DOI: 10.3390/molecules27092997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Trans-polydatin (tPD), the 3-β-D-glucoside of the well-known nutraceutical trans-resveratrol, is a natural polyphenol with documented anti-cancer, anti-inflammatory, cardioprotective, and immunoregulatory effects. Considering the anticancer activity of tPD, in this work, we aimed to explore the binding properties of this natural compound with the G-quadruplex (G4) structure formed by the Pu22 [d(TGAGGGTGGGTAGGGTGGGTAA)] DNA sequence by exploiting CD spectroscopy and molecular docking simulations. Pu22 is a mutated and shorter analog of the G4-forming sequence known as Pu27 located in the promoter of the c-myc oncogene, whose overexpression triggers the metabolic changes responsible for cancer cells transformation. The binding of tPD with the parallel Pu22 G4 was confirmed by CD spectroscopy, which showed significant changes in the CD spectrum of the DNA and a slight thermal stabilization of the G4 structure. To gain a deeper insight into the structural features of the tPD-Pu22 complex, we performed an in silico molecular docking study, which indicated that the interaction of tPD with Pu22 G4 may involve partial end-stacking to the terminal G-quartet and H-bonding interactions between the sugar moiety of the ligand and deoxynucleotides not included in the G-tetrads. Finally, we compared the experimental CD profiles of Pu22 G4 with the corresponding theoretical output obtained using DichroCalc, a web-based server normally used for the prediction of proteins’ CD spectra starting from their “.pdb” file. The results indicated a good agreement between the predicted and the experimental CD spectra in terms of the spectral bands’ profile even if with a slight bathochromic shift in the positive band, suggesting the utility of this predictive tool for G4 DNA CD investigations.
Collapse
|
4
|
Nucleic Acids as Biotools at the Interface between Chemistry and Nanomedicine in the COVID-19 Era. Int J Mol Sci 2022; 23:ijms23084359. [PMID: 35457177 PMCID: PMC9031702 DOI: 10.3390/ijms23084359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
The recent development of mRNA vaccines against the SARS-CoV-2 infection has turned the spotlight on the potential of nucleic acids as innovative prophylactic agents and as diagnostic and therapeutic tools. Until now, their use has been severely limited by their reduced half-life in the biological environment and the difficulties related to their transport to target cells. These limiting aspects can now be overcome by resorting to chemical modifications in the drug and using appropriate nanocarriers, respectively. Oligonucleotides can interact with complementary sequences of nucleic acid targets, forming stable complexes and determining their loss of function. An alternative strategy uses nucleic acid aptamers that, like the antibodies, bind to specific proteins to modulate their activity. In this review, the authors will examine the recent literature on nucleic acids-based strategies in the COVID-19 era, focusing the attention on their applications for the prophylaxis of COVID-19, but also on antisense- and aptamer-based strategies directed to the diagnosis and therapy of the coronavirus pandemic.
Collapse
|
5
|
Falanga AP, Cerullo V, Marzano M, Feola S, Oliviero G, Piccialli G, Borbone N. Peptide Nucleic Acid-Functionalized Adenoviral Vectors Targeting G-Quadruplexes in the P1 Promoter of Bcl-2 Proto-Oncogene: A New Tool for Gene Modulation in Anticancer Therapy. Bioconjug Chem 2019; 30:572-582. [PMID: 30620563 DOI: 10.1021/acs.bioconjchem.8b00674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The B-cell lymphoma 2 (Bcl-2) gene encodes for an antiapoptotic protein associated with the onset of many human tumors. Several oligonucleotides (ONs) and ON analogues are under study as potential tools to counteract the Bcl-2 expression. Among these are Peptide Nucleic Acids (PNAs). The absence of charges on PNA backbones allows the formation of PNA/DNA complexes provided with higher stability than the corresponding natural DNA/DNA counterparts. To date, the use of PNAs in antigene or antisense strategies is strongly limited by their inability to efficiently cross the cellular membranes. With the aim of downregulating the expression of Bcl-2, we propose here a novel antigene approach which uses oncolytic adenoviral vectors (OAds) as a new cancer cell-targeted PNA delivery system. The ability of oncolytic Ad5D24 vectors to selectively infect and kill cancer cells was exploited to transfect with high efficiency and selectivity a short cytosine-rich PNA complementary to the longest loop of the main G-quadruplex formed by the 23-base-long bcl2midG4 sequence located 52-30 bp upstream of the P1 promoter of Bcl-2 gene. Physico-chemical and biological investigations confirmed the ability of the PNA-conjugated Ad5D24 vectors to load and transfect their PNA cargo into human A549 and MDA-MB-436 cancer cell lines, as well as the synergistic (OAd+PNA) cytotoxic effect against the same cell lines. This approach holds promise for safer chemotherapy because of reduced toxicity to healthy tissues and organs.
Collapse
Affiliation(s)
- Andrea Patrizia Falanga
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Vincenzo Cerullo
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Maria Marzano
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | | | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies , University of Naples Federico II , Via Sergio Pansini 5 , 80131 Naples , Italy
| | - Gennaro Piccialli
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| | - Nicola Borbone
- Department of Pharmacy , University of Naples Federico II , Via Domenico Montesano 49 , 80131 Naples , Italy
| |
Collapse
|
6
|
Montazersaheb S, Hejazi MS, Nozad Charoudeh H. Potential of Peptide Nucleic Acids in Future Therapeutic Applications. Adv Pharm Bull 2018; 8:551-563. [PMID: 30607328 PMCID: PMC6311635 DOI: 10.15171/apb.2018.064] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
Peptide nucleic acids (PNA) are synthetic analog of DNA with a repeating N-(2-aminoethyl)-glycine peptide backbone connected to purine and pyrimidine nucleobases via a linker. Considering the unique properties of PNA, including resistance to enzymatic digestion, higher biostability combined with great hybridization affinity toward DNA and RNA, it has attracted great attention toward PNA- based technology as a promising approach for gene alteration. However, an important challenge in utilizing PNA is poor intracellular uptake. Therefore, some strategies have been developed to enhance the delivery of PNA in order to reach cognate site. Although PNAs primarily demonstrated to act as an antisense and antigene agents for inhibition of transcription and translation of target genes, more therapeutic applications such as splicing modulation and gene editing are also used to produce specific genome modifications. Hence, several approaches based on PNAs technology have been designed for these purposes. This review briefly presents the properties and characteristics of PNA as well as different gene modulation mechanisms. Thereafter, current status of successful therapeutic applications of PNA as gene therapeutic intervention in different research areas with special interest in medical application in particular, anti-cancer therapy are discussed. Then it focuses on possible use of PNA as anti-mir agent and PNA-based strategies against clinically important bacteria.
Collapse
Affiliation(s)
- Soheila Montazersaheb
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis. Molecules 2017; 22:molecules22071144. [PMID: 28698463 PMCID: PMC6152032 DOI: 10.3390/molecules22071144] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 12/12/2022] Open
Abstract
Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, thus causing or exacerbating the symptoms of CF. In this context, the design of anti-miRNA agents represents a valid functional tool, but its translation to the clinic might lead to unpredictable side effects because of the interference with the expression of other genes regulated by the same miRNAs. Herein, for the first time, is proposed the use of peptide nucleic acids (PNAs) to protect specific sequences in the 3’UTR (untranslated region) of the CFTR messenger RNA (mRNA) by action of miRNAs. Two PNAs (7 and 13 bases long) carrying the tetrapeptide Gly-SerP-SerP-Gly at their C-end, fully complementary to the 3’UTR sequence recognized by miR-509-3p, have been synthesized and the structural features of target PNA/RNA heteroduplexes have been investigated by spectroscopic and molecular dynamics studies. The co-transfection of the pLuc-CFTR-3´UTR vector with different combinations of PNAs, miR-509-3p, and controls in A549 cells demonstrated the ability of the longer PNA to rescue the luciferase activity by up to 70% of the control, thus supporting the use of suitable PNAs to counteract the reduction in the CFTR expression.
Collapse
|
8
|
Bose T, Banerjee A, Nahar S, Maiti S, Kumar VA. β,γ-Bis-substituted PNA with configurational and conformational switch: preferred binding to cDNA/RNA and cell-uptake studies. Chem Commun (Camb) 2016; 51:7693-6. [PMID: 25848728 DOI: 10.1039/c5cc00891c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
(S,S)- and (R,R)-β,γ-Bis-substituted PNAs were synthesized from the C-2 symmetric vicinal diamine system embedded in 1,4 dihydroxybutane and 1,4-dimethoxybutane scaffolds. (R,R)-β,γ-Bis-methoxymethyl-PNA derived from d-tartaric acid was found to be in the right configuration and conformation to be an excellent mimic of PNA, endowed with superior ability to enter into cells.
Collapse
Affiliation(s)
- Tanaya Bose
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pashan Road, Pune, 411008, India.
| | | | | | | | | |
Collapse
|
9
|
Exploitation of a very small peptide nucleic acid as a new inhibitor of miR-509-3p involved in the regulation of cystic fibrosis disease-gene expression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:610718. [PMID: 24829907 PMCID: PMC4009323 DOI: 10.1155/2014/610718] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
Computational techniques, and in particular molecular dynamics (MD) simulations, have been successfully used as a complementary technique to predict and analyse the structural behaviour of nucleic acids, including peptide nucleic acid- (PNA-) RNA hybrids. This study shows that a 7-base long PNA complementary to the seed region of miR-509-3p, one of the miRNAs involved in the posttranscriptional regulation of the CFTR disease-gene of Cystic Fibrosis, and bearing suitable functionalization at its N- and C-ends aimed at improving its resistance to nucleases and cellular uptake, is able to revert the expression of the luciferase gene containing the 3′UTR of the gene in A549 human lung cancer cells, in agreement with the MD results that pointed at the formation of a stable RNA/PNA heteroduplex notwithstanding the short sequence of the latter. The here reported results widen the interest towards the use of small PNAs as effective anti-miRNA agents.
Collapse
|