1
|
Wang Y, Wang R, Ma H, Yang M, Li Z, Zhang L. Wnt3a signaling with serum supply induces replication stress in cultured cells. Biochem Biophys Rep 2023; 35:101499. [PMID: 37601449 PMCID: PMC10439351 DOI: 10.1016/j.bbrep.2023.101499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 08/22/2023] Open
Abstract
Wnt signaling plays a central role in tissue development and homeostasis, and its deregulation is implicated in many human diseases, including cancer. As an essential posttranslational modification, protein phosphorylation is critical in Wnt signaling and has been a focus of investigation using systematic approaches, including proteomics. Typically, studies were conducted by applying purified Wnt ligands to cells in a "starvation" condition to minimize the background noise. Despite leading to many important discoveries, such an approach may omit pivotal integrative effects of Wnt signaling in a complex physiological environment. In this study, we investigated the temporal dynamics of the phosphoproteome following treatments of Wnt3a conditioned medium (CM) with serum supply. This revealed three clusters of phosphoproteome changes with distinct temporal profiles with implications in gene expressions and chromatin organizations. Among these, we observed enhanced phosphorylation at the Thr543 residue of 53BP1, which is a key event in the cellular response to DNA damage. Functionally, it triggered the replication stress response pathway mediated by γH2AX accumulation and Chk1 activation, leading to a significant reduction of cells in the S phase of the cell cycle. Intriguingly, Wnt3a treatment in the serum-free condition did not activate 53BP1-Chk1 and replication stress response. Our study indicates the importance of noting the presence or absence of serum supply when studying the signaling pathways.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Rui Wang
- Pingshan Translational Medicine Centre, Shenzhen Bay Laboratory, Shenzhen, 518118, PR China
| | - Haiying Ma
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| | - Zigang Li
- Pingshan Translational Medicine Centre, Shenzhen Bay Laboratory, Shenzhen, 518118, PR China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Liang Zhang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Precision Diagnostic and Therapeutic Technology, City University of Hong Kong Futian Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Ali SR, Humphreys KJ, Simpson K, McKinnon RA, Meech R, Michael MZ. Functional high-throughput screen identifies microRNAs that promote butyrate-induced death in colorectal cancer cells. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 30:30-47. [PMID: 36189423 PMCID: PMC9485215 DOI: 10.1016/j.omtn.2022.08.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022]
Abstract
The gut fermentation product butyrate displays anti-cancer properties in the human proximal colon, including the ability to inhibit proliferation and induce apoptosis in colorectal cancer (CRC) cells. A natural histone deacetylase inhibitor (HDACi), butyrate can alter histone acetylation patterns in CRC cells, and thereby regulate global gene expression, including the non-coding transcriptome and microRNAs (miRNAs). Dysregulated miRNA expression affects CRC development and progression; however, the interplay between miRNA activity and butyrate response remains to be elucidated. A high-throughput functional screen was employed to identify miRNAs that can act as enhancers of the anti-cancer properties of butyrate. Validation studies confirmed that several miRNAs, including miR-125b, miR-181a, miR-593, and miR-1227, enhanced apoptosis, decreased proliferation, and promoted cell-cycle arrest in the presence of butyrate. Pathway analyses of predicted miRNA target genes highlighted their likely involvement in critical cancer-related growth pathways, including WNT and PI3K signaling. Several cancer-associated miRNA targets, including TRIM29, COX2, PIK3R3, CCND1, MET, EEF2K, DVL3, and NUP62 were synergistically regulated by the combination of cognate miRNAs and butyrate. Overall, this study has exposed the potential of miRNAs to act as enhancers of the anti-cancer effects of HDAC inhibition and identifies specific miRNAs that might be exploited for therapeutic benefit.
Collapse
|
3
|
Bandmann V, Mirsanaye AS, Schäfer J, Thiel G, Holstein T, Mikosch-Wersching M. Membrane capacitance recordings resolve dynamics and complexity of receptor-mediated endocytosis in Wnt signalling. Sci Rep 2019; 9:12999. [PMID: 31506500 PMCID: PMC6736968 DOI: 10.1038/s41598-019-49082-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 08/20/2019] [Indexed: 11/26/2022] Open
Abstract
Receptor-mediated endocytosis is an essential process in signalling pathways for activation of intracellular signalling cascades. One example is the Wnt signalling pathway that seems to depend on endocytosis of the ligand-receptor complex for initiation of Wnt signal transduction. To date, the roles of different endocytic pathways in Wnt signalling, molecular players and the kinetics of the process remain unclear. Here, we monitored endocytosis in Wnt3a and Wnt5a-mediated signalling with membrane capacitance recordings of HEK293 cells. Our measurements revealed a swift and substantial increase in the number of endocytic vesicles. Extracellular Wnt ligands specifically triggered endocytotic activity, which started immediately upon ligand binding and ceased within a period of ten minutes. By using specific inhibitors, we were able to separate Wnt-induced endocytosis into two independent pathways. We demonstrate that canonical Wnt3a is taken up mainly by clathrin-independent endocytosis whereas noncanonical Wnt5a is exclusively regulated via clathrin-mediated endocytosis. Our findings show that membrane capacitance recordings allow the resolution of complex cellular processes in plasma membrane signalling pathways in great detail.
Collapse
Affiliation(s)
- Vera Bandmann
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Ann Schirin Mirsanaye
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Johanna Schäfer
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Gerhard Thiel
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Thomas Holstein
- Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany
| | - Melanie Mikosch-Wersching
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany. .,Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, Heidelberg, 69120, Germany.
| |
Collapse
|
4
|
Bowling HL, Nayak S, Deinhardt K. Proteomic Approaches to Dissect Neuronal Signalling Pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:469-475. [PMID: 31347065 DOI: 10.1007/978-3-030-15950-4_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognised by both governments and funding agencies, and it includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.
Collapse
Affiliation(s)
| | - Shruti Nayak
- Proteomics Laboratory, Alexandria Center for Life Science, NYU Langone, New York, NY, USA
| | - Katrin Deinhardt
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
5
|
Liu D, Skomorovska Y, Song J, Bowler E, Harris R, Ravasz M, Bai S, Ayati M, Tamai K, Koyuturk M, Yuan X, Wang Z, Wang Y, Ewing R. ELF3 is an antagonist of oncogenic-signalling-induced expression of EMT-TF ZEB1. Cancer Biol Ther 2018; 20:90-100. [PMID: 30148686 PMCID: PMC6292503 DOI: 10.1080/15384047.2018.1507256] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/22/2018] [Accepted: 07/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background: Epithelial-to-mesenchymal transition (EMT) is a key step in the transformation of epithelial cells into migratory and invasive tumour cells. Intricate positive and negative regulatory processes regulate EMT. Many oncogenic signalling pathways can induce EMT, but the specific mechanisms of how this occurs, and how this process is controlled are not fully understood. Methods: RNA-Seq analysis, computational analysis of protein networks and large-scale cancer genomics datasets were used to identify ELF3 as a negative regulator of the expression of EMT markers. Western blotting coupled to siRNA as well as analysis of tumour/normal colorectal cancer panels was used to investigate the expression and function of ELF3. Results: RNA-Seq analysis of colorectal cancer cells expressing mutant and wild-type β-catenin and analysis of colorectal cancer cells expressing inducible mutant RAS showed that ELF3 expression is reduced in response to oncogenic signalling and antagonizes Wnt and RAS oncogenic signalling pathways. Analysis of gene-expression patterns across The Cancer Genome Atlas (TCGA) and protein localization in colorectal cancer tumour panels showed that ELF3 expression is anti-correlated with β-catenin and markers of EMT and correlates with better clinical prognosis. Conclusions: ELF3 is a negative regulator of the EMT transcription factor (EMT-TF) ZEB1 through its function as an antagonist of oncogenic signalling.
Collapse
Affiliation(s)
- D Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Y Skomorovska
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - J Song
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - E Bowler
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - R Harris
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - M Ravasz
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - S Bai
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - M Ayati
- Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - K Tamai
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - M Koyuturk
- Electrical Engineering and Computer Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - X Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Z Wang
- School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Y Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - R.M. Ewing
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Ewing RM, Song J, Gokulrangan G, Bai S, Bowler EH, Bolton R, Skipp P, Wang Y, Wang Z. Multiproteomic and Transcriptomic Analysis of Oncogenic β-Catenin Molecular Networks. J Proteome Res 2018; 17:2216-2225. [PMID: 29747501 DOI: 10.1021/acs.jproteome.8b00180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The dysregulation of Wnt signaling is a frequent occurrence in many different cancers. Oncogenic mutations of CTNNB1/β-catenin, the key nuclear effector of canonical Wnt signaling, lead to the accumulation and stabilization of β-catenin protein with diverse effects in cancer cells. Although the transcriptional response to Wnt/β-catenin signaling activation has been widely studied, an integrated understanding of the effects of oncogenic β-catenin on molecular networks is lacking. We used affinity-purification mass spectrometry (AP-MS), label-free liquid chromatography-tandem mass spectrometry, and RNA-Seq to compare protein-protein interactions, protein expression, and gene expression in colorectal cancer cells expressing mutant (oncogenic) or wild-type β-catenin. We generate an integrated molecular network and use it to identify novel protein modules that are associated with mutant or wild-type β-catenin. We identify a DNA methyltransferase I associated subnetwork that is enriched in cells with mutant β-catenin and a subnetwork enriched in wild-type cells associated with the CDKN2A tumor suppressor, linking these processes to the transformation of colorectal cancer cells through oncogenic β-catenin signaling. In summary, multiomics analysis of a defined colorectal cancer cell model provides a significantly more comprehensive identification of functional molecular networks associated with oncogenic β-catenin signaling.
Collapse
Affiliation(s)
- Rob M Ewing
- School of Biological Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Jing Song
- School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Giridharan Gokulrangan
- School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Sheldon Bai
- School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Emily H Bowler
- School of Biological Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Rachel Bolton
- School of Biological Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Paul Skipp
- School of Biological Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Yihua Wang
- School of Biological Sciences , University of Southampton , Southampton SO17 1BJ , United Kingdom
| | - Zhenghe Wang
- School of Medicine , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| |
Collapse
|
7
|
Kumar R, Kotapalli V, Naz A, Gowrishankar S, Rao S, Pollack JR, Bashyam MD. XPNPEP3 is a novel transcriptional target of canonical Wnt/β-catenin signaling. Genes Chromosomes Cancer 2018; 57:304-310. [PMID: 29383790 DOI: 10.1002/gcc.22531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
Canonical Wnt/β-catenin signaling plays important roles in embryonic development and adult tissue regeneration while aberrant Wnt activation is the major driver of sporadic colorectal cancer (CRC). Thus, it is important to characterize the complete β-catenin target transcriptome. We previously performed microarray-based mRNA profiling of rectal cancer samples stratified for Wnt status. In addition to AXIN2 and EPHB2, XPNPEP3 transcripts were significantly elevated in tumors exhibiting activated Wnt/β-catenin signaling, validated by Q-PCR. Three different cell lines supported elevated XPNPEP3 transcript levels upon activation of Wnt signaling, confirmed using promoter-luciferase assays. Ectopic expression of XPNPEP3 promoted tumorigenic properties in CRC cells. Immunohistochemistry on a CRC tissue microarray revealed significant correlation between β-catenin nuclear localization and XPNPEP3 levels. More importantly, XPNPEP3 expression was upregulated compared to normal samples in published expression data sets from several cancers including CRC. Finally, XPNPEP3 expression correlated with poor survival in many cancers. Our results therefore suggest XPNPEP3 to be a transcriptional target of Wnt/β-catenin pathway with particular significance for CRC.
Collapse
Affiliation(s)
- Raju Kumar
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Ashmala Naz
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, India
| | | | - Satish Rao
- Krishna Institute of Medical Sciences, Hyderabad, India
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
8
|
Vergara D, Stanca E, Guerra F, Priore P, Gaballo A, Franck J, Simeone P, Trerotola M, De Domenico S, Fournier I, Bucci C, Salzet M, Giudetti AM, Maffia M. β-Catenin Knockdown Affects Mitochondrial Biogenesis and Lipid Metabolism in Breast Cancer Cells. Front Physiol 2017; 8:544. [PMID: 28798698 PMCID: PMC5529387 DOI: 10.3389/fphys.2017.00544] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/12/2017] [Indexed: 12/27/2022] Open
Abstract
β-catenin plays an important role as regulatory hub in several cellular processes including cell adhesion, metabolism, and epithelial mesenchymal transition. This is mainly achieved by its dual role as structural component of cadherin-based adherens junctions, and as a key nuclear effector of the Wnt pathway. For this dual role, different classes of proteins are differentially regulated via β-catenin dependent mechanisms. Here, we applied a liquid chromatography-mass spectrometry (LC-MS/MS) approach to identify proteins modulated after β-catenin knockdown in the breast cancer cell line MCF-7. We used a label free analysis to compare trypsin-digested proteins from CTR (shCTR) and β-catenin knockout cells (shβcat). This led to the identification of 98 differentially expressed proteins, 53 of them were up-regulated and 45 down-regulated. Loss of β-catenin induced morphological changes and a significant modulation of the expression levels of proteins associated with primary metabolic processes. In detail, proteins involved in carbohydrate metabolism and tricarboxylic acid cycle were found to be down-regulated, whereas proteins associated to lipid metabolism were found up-regulated in shβcat compared to shCTR. A loss of mitochondrial mass and membrane potential was also assessed by fluorescent probes in shβcat cells with respect to the controls. These data are consistent with the reduced expression of transcriptional factors regulating mitochondrial biogenesis detected in shβcat cells. β-catenin driven metabolic reprogramming resulted also in a significant modulation of lipogenic enzyme expression and activity. Compared to controls, β-catenin knockout cells showed increased incorporation of [1-14C]acetate and decreased utilization of [U-14C]glucose for fatty acid synthesis. Our data highlight a role of β-catenin in the regulation of metabolism and energy homeostasis in breast cancer cells.
Collapse
Affiliation(s)
- Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| | - Eleonora Stanca
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Paola Priore
- CNR NANOTEC - Institute of NanotechnologyLecce, Italy
| | | | - Julien Franck
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Pasquale Simeone
- Unit of Cytomorphology, CeSI-MeT and Department of Medicine and Aging Sciences, School of Medicine and Health Sciences, University "G. d'Annunzio"Chieti, Italy
| | - Marco Trerotola
- Unit of Cancer Pathology, CeSI-MeT and Department of Medical, Oral and Biotechnological Sciences, University "G. d'Annunzio"Chieti, Italy
| | | | - Isabelle Fournier
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Michel Salzet
- University of Lille, Institut national de la santé et de la recherche médicale, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISMLille, France
| | - Anna M Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of SalentoLecce, Italy.,Laboratory of Clinical Proteomic, "Giovanni Paolo II" HospitalLecce, Italy
| |
Collapse
|
9
|
Long MJ, Lin HY, Parvez S, Zhao Y, Poganik JR, Huang P, Aye Y. β-TrCP1 Is a Vacillatory Regulator of Wnt Signaling. Cell Chem Biol 2017; 24:944-957.e7. [PMID: 28736239 DOI: 10.1016/j.chembiol.2017.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/16/2017] [Accepted: 06/17/2017] [Indexed: 12/22/2022]
Abstract
Simultaneous hyperactivation of Wnt and antioxidant response (AR) are often observed during oncogenesis. However, it remains unclear how the β-catenin-driven Wnt and the Nrf2-driven AR mutually regulate each other. The situation is compounded because many players in these two pathways are redox sensors, rendering bolus redox signal-dosing methods uninformative. Herein we examine the ramifications of single-protein target-specific AR upregulation in various knockdown lines. Our data document that Nrf2/AR strongly inhibits β-catenin/Wnt. The magnitude and mechanism of this negative regulation are dependent on the direct interaction between β-catenin N terminus and β-TrCP1 (an antagonist of both Nrf2 and β-catenin), and independent of binding between Nrf2 and β-TrCP1. Intriguingly, β-catenin positively regulates AR. Because AR is a negative regulator of Wnt regardless of β-catenin N terminus, this switch of function is likely sufficient to establish a new Wnt/AR equilibrium during tumorigenesis.
Collapse
Affiliation(s)
- Marcus John Long
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Hong-Yu Lin
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Saba Parvez
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yi Zhao
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jesse Richard Poganik
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Paul Huang
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Yimon Aye
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA; Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
10
|
Will T, Helms V. Rewiring of the inferred protein interactome during blood development studied with the tool PPICompare. BMC SYSTEMS BIOLOGY 2017; 11:44. [PMID: 28376810 PMCID: PMC5379774 DOI: 10.1186/s12918-017-0400-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Differential analysis of cellular conditions is a key approach towards understanding the consequences and driving causes behind biological processes such as developmental transitions or diseases. The progress of whole-genome expression profiling enabled to conveniently capture the state of a cell's transcriptome and to detect the characteristic features that distinguish cells in specific conditions. In contrast, mapping the physical protein interactome for many samples is experimentally infeasible at the moment. For the understanding of the whole system, however, it is equally important how the interactions of proteins are rewired between cellular states. To overcome this deficiency, we recently showed how condition-specific protein interaction networks that even consider alternative splicing can be inferred from transcript expression data. Here, we present the differential network analysis tool PPICompare that was specifically designed for isoform-sensitive protein interaction networks. RESULTS Besides detecting significant rewiring events between the interactomes of grouped samples, PPICompare infers which alterations to the transcriptome caused each rewiring event and what is the minimal set of alterations necessary to explain all between-group changes. When applied to the development of blood cells, we verified that a reasonable amount of rewiring events were reported by the tool and found that differential gene expression was the major determinant of cellular adjustments to the interactome. Alternative splicing events were consistently necessary in each developmental step to explain all significant alterations and were especially important for rewiring in the context of transcriptional control. CONCLUSIONS Applying PPICompare enabled us to investigate the dynamics of the human protein interactome during developmental transitions. A platform-independent implementation of the tool PPICompare is available at https://sourceforge.net/projects/ppicompare/ .
Collapse
Affiliation(s)
- Thorsten Will
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
- Graduate School of Computer Science, Saarland University, Campus E1.3, Saarbrücken, 66123 Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Campus E2.1, Saarbrücken, 66123 Germany
| |
Collapse
|
11
|
Yeger-Lotem E, Sharan R. Human protein interaction networks across tissues and diseases. Front Genet 2015; 6:257. [PMID: 26347769 PMCID: PMC4541328 DOI: 10.3389/fgene.2015.00257] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein interaction networks are an important framework for studying protein function, cellular processes, and genotype-to-phenotype relationships. While our view of the human interaction network is constantly expanding, less is known about networks that form in biologically important contexts such as within distinct tissues or in disease conditions. Here we review efforts to characterize these networks and to harness them to gain insights into the molecular mechanisms underlying human disease.
Collapse
Affiliation(s)
- Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev Beer-Sheva, Israel
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University Tel Aviv, Israel
| |
Collapse
|
12
|
Chiurillo MA. Role of the Wnt/β-catenin pathway in gastric cancer: An in-depth literature review. World J Exp Med 2015; 5:84-102. [PMID: 25992323 PMCID: PMC4436943 DOI: 10.5493/wjem.v5.i2.84] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 12/05/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer remains one of the most common cancers worldwide and one of the leading cause for cancer-related deaths. Gastric adenocarcinoma is a multifactorial disease that is genetically, cytologically and architecturally more heterogeneous than other gastrointestinal carcinomas. The aberrant activation of the Wnt/β-catenin signaling pathway is involved in the development and progression of a significant proportion of gastric cancer cases. This review focuses on the participation of the Wnt/β-catenin pathway in gastric cancer by offering an analysis of the relevant literature published in this field. Indeed, it is discussed the role of key factors in Wnt/β-catenin signaling and their downstream effectors regulating processes involved in tumor initiation, tumor growth, metastasis and resistance to therapy. Available data indicate that constitutive Wnt signalling resulting from Helicobacter pylori infection and inactivation of Wnt inhibitors (mainly by inactivating mutations and promoter hypermethylation) play an important role in gastric cancer. Moreover, a number of recent studies confirmed CTNNB1 and APC as driver genes in gastric cancer. The identification of specific membrane, intracellular, and extracellular components of the Wnt pathway has revealed potential targets for gastric cancer therapy. High-throughput “omics” approaches will help in the search for Wnt pathway antagonist in the near future.
Collapse
|
13
|
Song J, Du Z, Ravasz M, Dong B, Wang Z, Ewing RM. A Protein Interaction between β-Catenin and Dnmt1 Regulates Wnt Signaling and DNA Methylation in Colorectal Cancer Cells. Mol Cancer Res 2015; 13:969-81. [PMID: 25753001 DOI: 10.1158/1541-7786.mcr-13-0644] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 01/26/2015] [Indexed: 01/03/2023]
Abstract
UNLABELLED Aberrant activation of the Wnt signaling pathway is an important step in the initiation and progression of tumor development in diverse cancers. The central effector of canonical Wnt signaling, β-catenin (CTNNB1), is a multifunctional protein, and has been extensively studied with respect to its roles in cell-cell adhesion and in regulation of Wnt-driven transcription. Here, a novel mass spectrometry-based proteomics technique in colorectal cancer cells expressing stabilized β-catenin, was used to identify a protein-protein interaction between β-catenin and DNA methyltransferase I (Dnmt1) protein, the primary regulator of DNA methylation patterns in mammalian cells. Dnmt1 and β-catenin strongly colocalized in the nuclei of colorectal cancer cells, and the interaction is mediated by the central domain of the Dnmt1 protein. Dnmt1 protein abundance is dependent upon the levels of β-catenin, and is increased in cells expressing stabilized mutant β-catenin. Conversely, the Dnmt1 regulates the levels of nuclear β-catenin and β-catenin/TCF-driven transcription. In addition, lysine-specific demethylase 1 (LSD1/KDM1A), a regulator of DNMT1 stability, was identified as a component of the Dnmt1-β-catenin protein complex and perturbation of the Dnmt1-β-catenin interaction altered DNA methylation. In summary, a functional protein-protein interaction was identified between two critically important oncoproteins, in turn revealing a link between Wnt signaling and downstream nuclear functions mediated by Dnmt1. IMPLICATIONS Two critical oncoproteins, Dnmt1 and β-catenin, mutually regulate one each other's levels and activities in colorectal cancer cells.
Collapse
Affiliation(s)
- Jing Song
- Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio
| | - Zhanwen Du
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio
| | - Mate Ravasz
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Bohan Dong
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio. Department of Biochemistry, Wan Nan Medical College, Wu Hu, An Hui, China
| | - Zhenghe Wang
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio.
| | - Rob M Ewing
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
14
|
Franco C, Hess S. Recent proteomic advances in developmental, regeneration, and cancer governing signaling pathways. Proteomics 2014; 15:1014-25. [PMID: 25316175 DOI: 10.1002/pmic.201400368] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022]
Abstract
Embryonic development, adult tissue repair, and cancer share a number of common regulating pathways. The basic processes that govern the events that induce mesenchymal properties in epithelial cells-a process known as epithelial-mesenchymal transition-are central for embryonic development, and can be resumed in adults either during wound healing or tissue regeneration. A misregulation of these pathways is involved in pathological situations, such as tissue fibrosis and cancer. Proteomic approaches have emerged as promising tools to better understand the signaling pathways that govern these complex biological processes. This review focuses on the recent proteomic-based contributions to better understand the modulation of transforming growth factor-beta (TGF-β), wingless-type MMTV integration site family (Wnt), Notch and Receptor tyrosine kinase (RTK) signaling pathways. New advances include the description of new protein interactions, the formation of new protein complexes or the description on how some PTMs are regulating these pathways. Understanding protein interactions and the tempo-spatial modulation of these pathways might lead us to interesting research quests in cancer, embryonic development or even on improving adult tissue regeneration capabilities.
Collapse
Affiliation(s)
- Catarina Franco
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | |
Collapse
|
15
|
Bowling HL, Deinhardt K. Proteomic approaches to dissect neuronal signaling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 806:499-508. [PMID: 24952199 DOI: 10.1007/978-3-319-06068-2_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
With an increasing awareness of mental health issues and neurological disorders, "understanding the brain" is one of the biggest current challenges in biological research. This has been recognized by both governments and funding agencies, and includes the need to understand connectivity of brain regions and coordinated network activity, as well as cellular and molecular mechanisms at play. In this chapter, we will describe how we have taken advantage of different proteomic techniques to unravel molecular mechanisms underlying two modulators of neuronal function: Neurotrophins and antipsychotics.
Collapse
Affiliation(s)
- Heather L Bowling
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, 10016, USA,
| | | |
Collapse
|