1
|
Perfect JR, Kronstad JW. Cryptococcal nutrient acquisition and pathogenesis: dining on the host. Microbiol Mol Biol Rev 2025; 89:e0001523. [PMID: 39927764 PMCID: PMC11948494 DOI: 10.1128/mmbr.00015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYPathogens must acquire essential nutrients to successfully colonize and proliferate in host tissue. Additionally, nutrients provide signals that condition pathogen deployment of factors that promote disease. A series of transcriptomics experiments over the last 20 years, primarily with Cryptococcus neoformans and to a lesser extent with Cryptococcus gattii, provide insights into the nutritional requirements for proliferation in host tissues. Notably, the identified functions include a number of transporters for key nutrients including sugars, amino acids, metals, and phosphate. Here, we first summarize the in vivo gene expression studies and then discuss the follow-up analyses that specifically test the relevance of the identified transporters for the ability of the pathogens to cause disease. The conclusion is that predictions based on transcriptional profiling of cryptococcal cells in infected tissue are well supported by subsequent investigations using targeted mutations. Overall, the combination of transcriptomic and genetic approaches provides substantial insights into the nutritional requirements that underpin proliferation in the host.
Collapse
Affiliation(s)
- John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - James W. Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Dallinger R, Pedrini‐Martha V, Burdisso ML, Capdevila M, Palacios O, Albalat R. Experimental recombining of repetitive motifs leads to large functional metallothioneins and demonstrates their modular evolvability potential. Protein Sci 2025; 34:e5247. [PMID: 39673460 PMCID: PMC11645667 DOI: 10.1002/pro.5247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/04/2024] [Accepted: 11/23/2024] [Indexed: 12/16/2024]
Abstract
Protein modularity is acknowledged for promoting the emergence of new protein variants via domain rearrangements. Metallothioneins (MTs) offer an excellent model system for experimentally examining the consequences of domain rearrangements due to the possibility to assess the functional properties of native and artificially created variants using spectroscopic methods and metal tolerance assays. In this study, we have investigated the functional properties of AbiMT4 from the snail Alinda biplicata (Gastropoda, Mollusca), a large MT comprising 10 putative β domains (β39β1), alongside four artificially designed variants differing in domain number, type, or order. Our findings reveal that AbiMT4 is a cadmium-selective protein with a high metal-binding capacity, characterized by structurally and functionally independent domains repeated in tandem along the protein. Our results indicate that due to its modular organization, AbiMT4 remains functional even when the number, type, and order of the domains are significantly altered. Furthermore, we demonstrate that the metal-binding properties of AbiMT4 are not dictated by the overall architecture of the protein but primarily arise from the properties of each individual domain. Using MTs as example, this work provides empirical evidence that domain rearrangements are an effective strategy for exploring new viable sequences and creating novel protein variants subject to adaptive selection. Thus, our study highlights the importance of the modular structure of proteins, as increasing their functional flexibility enhances their evolvability. Additionally, our work demonstrates a simple way to design and model new proteins for predefined functions.
Collapse
Affiliation(s)
- Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Veronika Pedrini‐Martha
- Institute of Zoology and Center of Molecular Biosciences InnsbruckUniversity of InnsbruckInnsbruckAustria
| | - Maria Lucia Burdisso
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI‐CONICET)Universidad Nacional de RosarioRosarioArgentina
| | - Mercè Capdevila
- Departament de Química, Facultat de CiènciesUniversitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
| | - Oscar Palacios
- Departament de Química, Facultat de CiènciesUniversitat Autònoma de Barcelona (UAB)Cerdanyola del VallèsSpain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de Barcelona (UB)BarcelonaSpain
- Institut de Recerca de la Biodiversitat (IRBio)Universitat de Barcelona (UB)BarcelonaSpain
| |
Collapse
|
3
|
Proteomic Profiling and In Silico Characterization of the Secretome of Anisakis simplex Sensu Stricto L3 Larvae. Pathogens 2022; 11:pathogens11020246. [PMID: 35215189 PMCID: PMC8879239 DOI: 10.3390/pathogens11020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex sensu stricto (s.s.) L3 larvae are one of the major etiological factors of human anisakiasis, which is one of the most important foodborne parasitic diseases. Nevertheless, to date, Anisakis secretome proteins, with important functions in nematode pathogenicity and host-parasite interactions, have not been extensively explored. Therefore, the aim of this study was to identify and characterize the excretory-secretory (ES) proteins of A. simplex L3 larvae. ES proteins of A. simplex were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis, and the identified proteins were then analyzed using bioinformatics tools. A total of 158 proteins were detected. Detailed bioinformatic characterization of ES proteins was performed, including Gene Ontology (GO) analysis, identification of enzymes, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis, protein family classification, secretory pathway prediction, and detection of essential proteins. Furthermore, of all detected ES proteins, 1 was identified as an allergen, which was Ani s 4, and 18 were potential allergens, most of which were homologs of nematode and arthropod allergens. Nine potential pathogenicity-related proteins were predicted, which were predominantly homologs of chaperones. In addition, predicted host-parasite interactions between the Anisakis ES proteins and both human and fish proteins were identified. In conclusion, this study represents the first global analysis of Anisakis ES proteins. The findings provide a better understanding of survival and invasion strategies of A. simplex L3 larvae.
Collapse
|
4
|
Toh-E A, Ohkusu M, Ishiwada N, Watanabe A, Kamei K. Genetic system underlying responses of Cryptococcus neoformans to cadmium. Curr Genet 2021; 68:125-141. [PMID: 34761291 DOI: 10.1007/s00294-021-01222-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Cryptococcus neoformans, basidiomycetous pathogenic yeast, is basically an environmental fungus and, therefore, challenged by ever changing environments. In this study, we focused on how C. neoformans responds to stress caused by cadmium that is one of high-risk pollutants. By tracking phenotypes of the resistance or sensitivity to cadmium, we undertook forward and reverse genetic studies to identify genes involved in cadmium metabolism in C. neoformans. We found that the main route of Cd2+ influx is through Mn2+ ion transporter, Smf1, which is an ortholog of Nramp (natural resistance-associated macrophage protein 1) of mouse. We found that serotype A strains are generally more resistant to cadmium than serotype D strains and that cadmium resistance of H99, a representative of serotype A strains, was found to be due to a partial defect in SMF1. We found that calcium channel has a subsidiary role for cadmium uptake. We also showed that Pca1 (P-type-ATPase) functions as an extrusion pump for cadmium. We examined the effects of some metals on cadmium toxicity and suggested (i) that Ca2+ and Zn2+ could exert their protective function against Cd2+ via restoring cadmium-inhibited cellular processes and (ii) that Mg2+ and Mn2+ could have antagonistic roles in an unknown Smf1-independent Cd2+ uptake system. We proposed a model for Cd2+-response of C. neoformans, which will serve as a platform for understanding how this organism copes with the toxic metal.
Collapse
Affiliation(s)
- Akio Toh-E
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan.
| | - Misako Ohkusu
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Naruhiko Ishiwada
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chiba, 260-8673, Japan
| |
Collapse
|
5
|
Calatayud S, Garcia-Risco M, Palacios Ò, Capdevila M, Cañestro C, Albalat R. Tunicates Illuminate the Enigmatic Evolution of Chordate Metallothioneins by Gene Gains and Losses, Independent Modular Expansions, and Functional Convergences. Mol Biol Evol 2021; 38:4435-4448. [PMID: 34146103 PMCID: PMC8476144 DOI: 10.1093/molbev/msab184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
To investigate novel patterns and processes of protein evolution, we have focused in the metallothioneins (MTs), a singular group of metal-binding, cysteine-rich proteins that, due to their high degree of sequence diversity, still represents a "black hole" in Evolutionary Biology. We have identified and analyzed more than 160 new MTs in nonvertebrate chordates (especially in 37 species of ascidians, 4 thaliaceans, and 3 appendicularians) showing that prototypic tunicate MTs are mono-modular proteins with a pervasive preference for cadmium ions, whereas vertebrate and cephalochordate MTs are bimodular proteins with diverse metal preferences. These structural and functional differences imply a complex evolutionary history of chordate MTs-including de novo emergence of genes and domains, processes of convergent evolution, events of gene gains and losses, and recurrent amplifications of functional domains-that would stand for an unprecedented case in the field of protein evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
6
|
Calatayud S, Garcia-Risco M, Capdevila M, Cañestro C, Palacios Ò, Albalat R. Modular Evolution and Population Variability of Oikopleura dioica Metallothioneins. Front Cell Dev Biol 2021; 9:702688. [PMID: 34277643 PMCID: PMC8283569 DOI: 10.3389/fcell.2021.702688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/09/2021] [Indexed: 01/29/2023] Open
Abstract
Chordate Oikopleura dioica probably is the fastest evolving metazoan reported so far, and thereby, a suitable system in which to explore the limits of evolutionary processes. For this reason, and in order to gain new insights on the evolution of protein modularity, we have investigated the organization, function and evolution of multi-modular metallothionein (MT) proteins in O. dioica. MTs are a heterogeneous group of modular proteins defined by their cysteine (C)-rich domains, which confer the capacity of coordinating different transition metal ions. O. dioica has two MTs, a bi-modular OdiMT1 consisting of two domains (t-12C and 12C), and a multi-modular OdiMT2 with six t-12C/12C repeats. By means of mass spectrometry and spectroscopy of metal-protein complexes, we have shown that the 12C domain is able to autonomously bind four divalent metal ions, although the t-12C/12C pair –as it is found in OdiMT1– is the optimized unit for divalent metal binding. We have also shown a direct relationship between the number of the t-12C/12C repeats and the metal-binding capacity of the MTs, which means a stepwise mode of functional and structural evolution for OdiMT2. Finally, after analyzing four different O. dioica populations worldwide distributed, we have detected several OdiMT2 variants with changes in their number of t-12C/12C domain repeats. This finding reveals that the number of repeats fluctuates between current O. dioica populations, which provides a new perspective on the evolution of domain repeat proteins.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Mario Garcia-Risco
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Kumar V, Dwivedi SK. Mycoremediation of heavy metals: processes, mechanisms, and affecting factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10375-10412. [PMID: 33410020 DOI: 10.1007/s11356-020-11491-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 10/30/2020] [Indexed: 05/27/2023]
Abstract
Industrial processes and mining of coal and metal ores are generating a number of threats by polluting natural water bodies. Contamination of heavy metals (HMs) in water and soil is the most serious problem caused by industrial and mining processes and other anthropogenic activities. The available literature suggests that existing conventional technologies are costly and generated hazardous waste that necessitates disposal. So, there is a need for cheap and green approaches for the treatment of such contaminated wastewater. Bioremediation is considered a sustainable way where fungi seem to be good bioremediation agents to treat HM-polluted wastewater. Fungi have high adsorption and accumulation capacity of HMs and can be potentially utilized. The most important biomechanisms which are involved in HM tolerance and removal by fungi are bioaccumulation, bioadsorption, biosynthesis, biomineralisation, bioreduction, bio-oxidation, extracellular precipitation, intracellular precipitation, surface sorption, etc. which vary from species to species. However, the time, pH, temperature, concentration of HMs, the dose of fungal biomass, and shaking rate are the most influencing factors that affect the bioremediation of HMs and vary with characteristics of the fungi and nature of the HMs. In this review, we have discussed the application of fungi, involved tolerance and removal strategies in fungi, and factors affecting the removal of HMs.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
| | - Shiv Kumar Dwivedi
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| |
Collapse
|
8
|
Chatterjee S, Kumari S, Rath S, Priyadarshanee M, Das S. Diversity, structure and regulation of microbial metallothionein: metal resistance and possible applications in sequestration of toxic metals. Metallomics 2020; 12:1637-1655. [PMID: 32996528 DOI: 10.1039/d0mt00140f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metallothioneins (MTs) are a group of cysteine-rich, universal, low molecular weight proteins distributed widely in almost all major taxonomic groups ranging from tiny microbes to highly organized vertebrates. The primary function of this protein is storage, transportation and binding of metals, which enable microorganisms to detoxify heavy metals. In the microbial world, these peptides were first identified in a cyanobacterium Synechococcus as the SmtA protein which exhibits high affinity towards rising level of zinc and cadmium to preserve metal homeostasis in a cell. In yeast, MTs aid in reserving copper and confer protection against copper toxicity by chelating excess copper ions in a cell. Two MTs, CUP1 and Crs5, originating from Saccharomyces cerevisiae predominantly bind to copper though are capable of binding with zinc and cadmium ions. MT superfamily 7 is found in ciliated protozoa which show high affinity towards copper and cadmium. Several tools and techniques, such as western blot, capillary electrophoresis, inductively coupled plasma, atomic emission spectroscopy and high performance liquid chromatography, have been extensively utilized for the detection and quantification of microbial MTs which are utilized for the efficient remediation and sequestration of heavy metals from a contaminated environment.
Collapse
Affiliation(s)
- Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| | | | | | | | | |
Collapse
|
9
|
Dong S, Shirzadeh M, Fan L, Laganowsky A, Russell DH. Ag + Ion Binding to Human Metallothionein-2A Is Cooperative and Domain Specific. Anal Chem 2020; 92:8923-8932. [PMID: 32515580 PMCID: PMC8114364 DOI: 10.1021/acs.analchem.0c00829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metallothioneins (MTs) constitute a family of cysteine-rich proteins that play key biological roles for a wide range of metal ions, but unlike many other metalloproteins, the structures of apo- and partially metalated MTs are not well understood. Here, we combine nano-electrospray ionization-mass spectrometry (ESI-MS) and nano-ESI-ion mobility (IM)-MS with collision-induced unfolding (CIU), chemical labeling using N-ethylmaleimide (NEM), and both bottom-up and top-down proteomics in an effort to better understand the metal binding sites of the partially metalated forms of human MT-2A, viz., Ag4-MT. The results for Ag4-MT are then compared to similar results obtained for Cd4-MT. The results show that Ag4-MT is a cooperative product, and data from top-down and bottom-up proteomics mass spectrometry analysis combined with NEM labeling revealed that all four Ag+ ions of Ag4-MT are bound to the β-domain. The binding sites are identified as Cys13, Cys15, Cys19, Cys21, Cys24, and Cys26. While both Ag+ and Cd2+ react with MT to yield cooperative products, i.e., Ag4-MT and Cd4-MT, these products are very different; Ag+ ions of Ag4-MT are located in the β-domain, whereas Cd2+ ions of Cd4-MT are located in the α-domain. Ag6-MT has been reported to be fully metalated in the β-domain, but our data suggest the two additional Ag+ ions are more weakly bound than are the other four. Higher order Agi-MT complexes (i = 7-17) are formed in solutions that contain excess Ag+ ions, and these are assumed to be bound to the α-domain or shared between the two domains. Interestingly, the excess Ag+ ions are displaced upon addition of NEM to this solution to yield predominantly Ag4NEM14-MT. Results from CIU suggest that Agi-MT complexes are structurally more ordered and that the energy required to unfold these complexes increases as the number of coordinated Ag+ increases.
Collapse
Affiliation(s)
- Shiyu Dong
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mehdi Shirzadeh
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Liqi Fan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
10
|
Cai Z, Xian P, Wang H, Lin R, Lian T, Cheng Y, Ma Q, Nian H. Transcription Factor GmWRKY142 Confers Cadmium Resistance by Up-Regulating the Cadmium Tolerance 1-Like Genes. FRONTIERS IN PLANT SCIENCE 2020; 11:724. [PMID: 32582254 PMCID: PMC7283499 DOI: 10.3389/fpls.2020.00724] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 05/23/2023]
Abstract
Cadmium (Cd) is a widespread pollutant that is toxic to living organisms. Previous studies have identified certain WRKY transcription factors, which confer Cd tolerance in different plant species. In the present study, we have identified 29 Cd-responsive WRKY genes in Soybean [Glycine max (L.) Merr.], and confirmed that 26 of those GmWRKY genes were up-regulated, while 3 were down-regulated. We have also cloned the novel, positively regulated GmWRKY142 gene from soybean and investigated its regulatory mechanism in Cd tolerance. GmWRKY142 was highly expressed in the root, drastically up-regulated by Cd, localized in the nucleus, and displayed transcriptional activity. The overexpression of GmWRKY142 in Arabidopsis thaliana and soybean hairy roots significantly enhanced Cd tolerance and lead to extensive transcriptional reprogramming of stress-responsive genes. ATCDT1, GmCDT1-1, and GmCDT1-2 encoding cadmium tolerance 1 were induced in overexpression lines. Further analysis showed that GmWRKY142 activated the transcription of ATCDT1, GmCDT1-1, and GmCDT1-2 by directly binding to the W-box element in their promoters. In addition, the functions of GmCDT1-1 and GmCDT1-2, responsible for decreasing Cd uptake, were validated by heterologous expression in A. thaliana. Our combined results have determined GmWRKYs to be newly discovered participants in response to Cd stress, and have confirmed that GmWRKY142 directly targets ATCDT1, GmCDT1-1, and GmCDT1-2 to decrease Cd uptake and positively regulate Cd tolerance. The GmWRKY142-GmCDT1-1/2 cascade module provides a potential strategy to lower Cd accumulation in soybean.
Collapse
Affiliation(s)
- Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Peiqi Xian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Huan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Rongbin Lin
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Tengxiang Lian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Cadmium Uptake, MT Gene Activation and Structure of Large-Sized Multi-Domain Metallothioneins in the Terrestrial Door Snail Alinda biplicata (Gastropoda, Clausiliidae). Int J Mol Sci 2020; 21:ijms21051631. [PMID: 32120996 PMCID: PMC7084494 DOI: 10.3390/ijms21051631] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Terrestrial snails (Gastropoda) possess Cd-selective metallothioneins (CdMTs) that inactivate Cd2+ with high affinity. Most of these MTs are small Cysteine-rich proteins that bind 6 Cd2+ equivalents within two distinct metal-binding domains, with a binding stoichiometry of 3 Cd2+ ions per domain. Recently, unusually large, so-called multi-domain MTs (md-MTs) were discovered in the terrestrial door snail Alinda biplicata (A.b.). The aim of this study is to evaluate the ability of A.b. to cope with Cd stress and the potential involvement of md-MTs in its detoxification. Snails were exposed to increasing Cd concentrations, and Cd-tissue concentrations were quantified. The gene structure of two md-MTs (9md-MT and 10md-MT) was characterized, and the impact of Cd exposure on MT gene transcription was quantified via qRT PCR. A.b. efficiently accumulates Cd at moderately elevated concentrations in the feed, but avoids food uptake at excessively high Cd levels. The structure and expression of the long md-MT genes of A.b. were characterized. Although both genes are intronless, they are still transcribed, being significantly upregulated upon Cd exposure. Overall, our results contribute new knowledge regarding the metal handling of Alinda biplicata in particular, and the potential role of md-MTs in Cd detoxification of terrestrial snails, in general.
Collapse
|
12
|
Garcia-Santamarina S, Festa RA, Smith AD, Yu CH, Probst C, Ding C, Homer CM, Yin J, Noonan JP, Madhani H, Perfect JR, Thiele DJ. Genome-wide analysis of the regulation of Cu metabolism in Cryptococcus neoformans. Mol Microbiol 2018; 108:473-494. [PMID: 29608794 PMCID: PMC5980777 DOI: 10.1111/mmi.13960] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2018] [Indexed: 12/13/2022]
Abstract
The ability of the human fungal pathogen Cryptococcus neoformans to adapt to variable copper (Cu) environments within the host is key for successful dissemination and colonization. During pulmonary infection, host alveolar macrophages compartmentalize Cu into the phagosome and C. neoformans Cu-detoxifying metallothioneins, MT1 and MT2, are required for survival of the pathogen. In contrast, during brain colonization the C. neoformans Cu+ importers Ctr1 and Ctr4 are required for virulence. Central for the regulation and expression of both the Cu detoxifying MT1/2 and the Cu acquisition Ctr1/4 proteins is the Cu-metalloregulatory transcription factor Cuf1, an established C. neoformans virulence factor. Due to the importance of the distinct C. neoformans Cu homeostasis mechanisms during host colonization and virulence, and to the central role of Cuf1 in regulating Cu homeostasis, we performed a combination of RNA-Seq and ChIP-Seq experiments to identify differentially transcribed genes between conditions of high and low Cu. We demonstrate that the transcriptional regulation exerted by Cuf1 is intrinsically complex and that Cuf1 also functions as a transcriptional repressor. The Cu- and Cuf1-dependent regulon in C. neoformans reveals new adaptive mechanisms for Cu homeostasis in this pathogenic fungus and identifies potential new pathogen-specific targets for therapeutic intervention in fungal infections.
Collapse
Affiliation(s)
- Sarela Garcia-Santamarina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Richard A. Festa
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Aaron D. Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen-Hsin Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Corinna Probst
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chen Ding
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Christina M. Homer
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - Jun Yin
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - James P. Noonan
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hiten Madhani
- Department of Biochemistry and Biophysics, UCSF, San Francisco, California, USA
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Dennis J. Thiele
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
13
|
Duan L, Kong JJ, Wang TQ, Sun Y. Binding of Cd(II), Pb(II), and Zn(II) to a type 1 metallothionein from maize (Zea mays). Biometals 2018; 31:539-550. [PMID: 29766364 DOI: 10.1007/s10534-018-0100-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Lian Duan
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Jing-Jing Kong
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Tong-Qing Wang
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yue Sun
- School of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
| |
Collapse
|
14
|
Calatayud S, Garcia-Risco M, Rojas NS, Espinosa-Sánchez L, Artime S, Palacios Ò, Cañestro C, Albalat R. Metallothioneins of the urochordate Oikopleura dioica have Cys-rich tandem repeats, large size and cadmium-binding preference. Metallomics 2018; 10:1585-1594. [DOI: 10.1039/c8mt00177d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oikopleura dioica has the longest metallothionein described so far, made of repeats generated by a modular and step-wise evolution.
Collapse
Affiliation(s)
- Sara Calatayud
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Mario Garcia-Risco
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Natalia S. Rojas
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Lizethe Espinosa-Sánchez
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Sebastián Artime
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Òscar Palacios
- Departament de Química
- Facultat de Ciències
- Universitat Autònoma de Barcelona
- E-08193 Cerdanyola del Vallès
- Spain
| | - Cristian Cañestro
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| | - Ricard Albalat
- Departament de Genètica
- Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio)
- Facultat de Biologia
- Universitat de Barcelona
- Barcelona
| |
Collapse
|
15
|
Ziller A, Fraissinet-Tachet L. Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 2018; 10:1549-1559. [DOI: 10.1039/c8mt00165k] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallothioneins are diverse, but not represented yet in all phyla. Moreover, they play a central role as a [MT:T:TO] protein system.
Collapse
Affiliation(s)
- Antoine Ziller
- Microbial Ecology
- CNRS UMR 5557
- UMR INRA 1418
- Université Lyon1
- Université de Lyon
| | | |
Collapse
|
16
|
Garcia-Santamarina S, Uzarska MA, Festa RA, Lill R, Thiele DJ. Cryptococcus neoformans Iron-Sulfur Protein Biogenesis Machinery Is a Novel Layer of Protection against Cu Stress. mBio 2017; 8:e01742-17. [PMID: 29089435 PMCID: PMC5666163 DOI: 10.1128/mbio.01742-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/03/2017] [Indexed: 11/20/2022] Open
Abstract
Copper (Cu) ions serve as catalytic cofactors to drive key biochemical processes, and yet Cu levels that exceed cellular homeostatic control capacity are toxic. The underlying mechanisms for Cu toxicity are poorly understood. During pulmonary infection by the fungal pathogen Cryptococcus neoformans, host alveolar macrophages compartmentalize Cu to the phagosome, and the ability to detoxify Cu is critical for its survival and virulence. Here, we report that iron-sulfur (Fe-S) clusters are critical targets of Cu toxicity in both Saccharomyces cerevisiae and C. neoformans in a manner that depends on the accessibility of Cu to the Fe-S cofactor. To respond to this Cu-dependent Fe-S stress, C. neoformans induces the transcription of mitochondrial ABC transporter Atm1, which functions in cytosolic-nuclear Fe-S protein biogenesis in response to Cu and in a manner dependent on the Cu metalloregulatory transcription factor Cuf1. As Atm1 functions in exporting an Fe-S precursor from the mitochondrial matrix to the cytosol, C. neoformans cells depleted for Atm1 are sensitive to Cu even while the Cu-detoxifying metallothionein proteins are highly expressed. We provide evidence for a previously unrecognized microbial defense mechanism to deal with Cu toxicity, and we highlight the importance for C. neoformans of having several distinct mechanisms for coping with Cu toxicity which together could contribute to the success of this microbe as an opportunistic human fungal pathogen.IMPORTANCEC. neoformans is an opportunistic pathogen that causes lethal meningitis in over 650,000 people annually. The severity of C. neoformans infections is further compounded by the use of toxic or poorly effective systemic antifungal agents as well as by the difficulty of diagnosis. Cu is a natural potent antimicrobial agent that is compartmentalized within the macrophage phagosome and used by innate immune cells to neutralize microbial pathogens. While the Cu detoxification machinery of C. neoformans is essential for virulence, little is known about the mechanisms by which Cu kills fungi. Here we report that Fe-S cluster-containing proteins, including members of the Fe-S protein biogenesis machinery itself, are critical targets of Cu toxicity and therefore that this biosynthetic process provides an important layer of defense against high Cu levels. Given the role of Cu ionophores as antimicrobials, understanding how Cu is toxic to microorganisms could lead to the development of effective, broad-spectrum antimicrobials. Moreover, understanding Cu toxicity could provide additional insights into the pathophysiology of human diseases of Cu overload such as Wilson's disease.
Collapse
Affiliation(s)
| | - Marta A Uzarska
- Institut für Zytobiologie & Zytopathologie, Philipps-Universität, Marburg, Germany
| | - Richard A Festa
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Roland Lill
- Institut für Zytobiologie & Zytopathologie, Philipps-Universität, Marburg, Germany
- LOEWE Zentrum für Synthetische Mikrobiologie SynMikro, Marburg, Germany
| | - Dennis J Thiele
- Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
17
|
Copper Chaperone CupA and Zinc Control CopY Regulation of the Pneumococcal cop Operon. mSphere 2017; 2:mSphere00372-17. [PMID: 29062896 PMCID: PMC5646241 DOI: 10.1128/msphere.00372-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023] Open
Abstract
As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria. Any metal in excess can be toxic; therefore, metal homeostasis is critical to bacterial survival. Bacteria have developed specialized metal import and export systems for this purpose. For broadly toxic metals such as copper, bacteria have evolved only export systems. The copper export system (cop operon) usually consists of the operon repressor, the copper chaperone, and the copper exporter. In Streptococcus pneumoniae, the causative agent of pneumonia, otitis media, sepsis, and meningitis, little is known about operon regulation. This is partly due to the S. pneumoniae repressor, CopY, and copper chaperone, CupA, sharing limited homology to proteins of putative related function and confirmed established systems. In this study, we examined CopY metal crosstalk, CopY interactions with CupA, and how CupA can control the oxidation state of copper. We found that CopY bound zinc and increased the DNA-binding affinity of CopY by roughly an order of magnitude over that of the apo form of CopY. Once copper displaced zinc in CopY, resulting in operon activation, CupA chelated copper from CopY. After copper was acquired from CopY or other sources, if needed, CupA facilitated the reduction of Cu2+ to Cu1+, which is the exported copper state. Taken together, these data show novel mechanisms for copper processing in S. pneumoniae. IMPORTANCE As mechanisms of copper toxicity are emerging, bacterial processing of intracellular copper, specifically inside Streptococcus pneumoniae, remains unclear. In this study, we investigated two proteins encoded by the copper export operon: the repressor, CopY, and the copper chaperone, CupA. Zinc suppressed transcription of the copper export operon by increasing the affinity of CopY for DNA. Furthermore, CupA was able to chelate copper from CopY not bound to DNA and reduce it from Cu2+ to Cu1+. This reduced copper state is essential for bacterial copper export via CopA. In view of the fact that innate immune cells use copper to kill pathogenic bacteria, understanding the mechanisms of copper export could expose new small-molecule therapeutic targets that could work synergistically with copper against pathogenic bacteria.
Collapse
|
18
|
Palacios Ò, Jiménez-Martí E, Niederwanger M, Gil-Moreno S, Zerbe O, Atrian S, Dallinger R, Capdevila M. Analysis of Metal-Binding Features of the Wild Type and Two Domain-Truncated Mutant Variants of Littorina littorea Metallothionein Reveals Its Cd-Specific Character. Int J Mol Sci 2017; 18:E1452. [PMID: 28684668 PMCID: PMC5535943 DOI: 10.3390/ijms18071452] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/27/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
After the resolution of the 3D structure of the Cd₉-aggregate of the Littorina littorea metallothionein (MT), we report here a detailed analysis of the metal binding capabilities of the wild type MT, LlwtMT, and of two truncated mutants lacking either the N-terminal domain, Lltr2MT, or both the N-terminal domain, plus four extra flanking residues (SSVF), Lltr1MT. The recombinant synthesis and in vitro studies of these three proteins revealed that LlwtMT forms unique M₉-LlwtMT complexes with Zn(II) and Cd(II), while yielding a complex mixture of heteronuclear Zn,Cu-LlwtMT species with Cu(I). As expected, the truncated mutants gave rise to unique M₆-LltrMT complexes and Zn,Cu-LltrMT mixtures of lower stoichiometry with respect to LlwtMT, with the SSVF fragment having an influence on their metal binding performance. Our results also revealed a major specificity, and therefore a better metal-coordinating performance of the three proteins for Cd(II) than for Zn(II), although the analysis of the Zn(II)/Cd(II) displacement reaction clearly demonstrates a lack of any type of cooperativity in Cd(II) binding. Contrarily, the analysis of their Cu(I) binding abilities revealed that every LlMT domain is prone to build Cu₄-aggregates, the whole MT working by modules analogously to, as previously described, certain fungal MTs, like those of C. neoformans and T. mesenterica. It is concluded that the Littorina littorea MT is a Cd-specific protein that (beyond its extended binding capacity through an additional Cd-binding domain) confers to Littorina littorea a particular adaptive advantage in its changeable marine habitat.
Collapse
Affiliation(s)
- Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Elena Jiménez-Martí
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| | - Michael Niederwanger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| |
Collapse
|
19
|
Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P. Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 2016; 120:358-69. [DOI: 10.1016/j.funbio.2015.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/19/2015] [Accepted: 11/12/2015] [Indexed: 01/07/2023]
|
20
|
Iturbe-Espinoza P, Gil-Moreno S, Lin W, Calatayud S, Palacios Ò, Capdevila M, Atrian S. The Fungus Tremella mesenterica Encodes the Longest Metallothionein Currently Known: Gene, Protein and Metal Binding Characterization. PLoS One 2016; 11:e0148651. [PMID: 26882011 PMCID: PMC4755600 DOI: 10.1371/journal.pone.0148651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/21/2016] [Indexed: 12/05/2022] Open
Abstract
Fungal Cu-thioneins, and among them, the paradigmatic Neurospora crassa metallothionein (MT) (26 residues), were once considered as the shortest MTs -the ubiquitous, versatile metal-binding proteins- among all organisms, and thus representatives of their primeval forms. Nowadays, fungal MTs of diverse lengths and sequence features are known, following the huge heterogeneity of the Kingdom of Fungi. At the opposite end of N. crassa MT, the recently reported Cryptococcus neoformans CnMT1 and CnMT2 (122 and 186 aa) constitute the longest reported fungal MTs, having been identified as virulence factors of this pathogen. CnMTs are high-capacity Cu-thioneins that appear to be built by tandem amplification of a basic unit, a 7-Cys segment homologous to N. crassa MT. Here, we report the in silico, in vivo and in vitro study of a still longer fungal MT, belonging to Tremella mesenterica (TmMT), a saprophytic ascomycete. The TmMT gene has 10 exons, and it yields a 779-bp mature transcript that encodes a 257 residue-long protein. This MT is also built by repeated fragments, but of variable number of Cys: six units of the 7-Cys building blocks-CXCX3CSCPPGXCXCAXCP-, two fragments of six Cys, plus three Cys at the N-terminus. TmMT metal binding abilities have been analyzed through the spectrophotometric and spectrometric characterization of its recombinant Zn-, Cd- and Cu-complexes. Results allow it to be unambiguous classified as a Cu-thionein, also of extraordinary coordinating capacity. According to this feature, when the TmMT cDNA is expressed in MT-devoid yeast cells, it is capable of restoring a high Cu tolerance level. Since it is not obvious that T. mesenterica shares the same physiological needs for a high capacity Cu-binding protein with C. neoformans, the existence of this peculiar MT might be better explained on the basis of a possible role in Cu-handling for the Cu-enzymes responsible in lignin degradation pathways.
Collapse
Affiliation(s)
- Paul Iturbe-Espinoza
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Weiyu Lin
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Sara Calatayud
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
21
|
Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT. Int J Mol Sci 2016; 17:ijms17010065. [PMID: 26742040 PMCID: PMC4730310 DOI: 10.3390/ijms17010065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/24/2015] [Indexed: 01/03/2023] Open
Abstract
Earthworms express, as most animals, metallothioneins (MTs)—small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by 1H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.
Collapse
|
22
|
Gil-Moreno S, Jiménez-Martí E, Palacios Ò, Zerbe O, Dallinger R, Capdevila M, Atrian S. Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein? Int J Mol Sci 2015; 17:E6. [PMID: 26703589 PMCID: PMC4730253 DOI: 10.3390/ijms17010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/11/2015] [Accepted: 12/14/2015] [Indexed: 11/16/2022] Open
Abstract
Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing that, although, the Cys residues are responsible for metal ion coordination, metal specificity or preference is achieved by diversification of the amino acids interspersed between them. The metal-specific MT polypeptides fold into unique, energetically-optimized complexes of defined metal content, when binding their cognate metal ions, while they produce a mixture of complexes, none of them representing a clear energy minimum, with non-cognate metal ions. Another critical, and so far mostly unexplored, region is the stretch linking the individual MT domains, each of which represents an independent metal cluster. In this work, we have designed and analyzed two HpCdMT constructs with substituted linker segments, and determined their coordination behavior when exposed to both cognate and non-cognate metal ions. Results unequivocally show that neither length nor composition of the inter-domain linker alter the features of the Zn(II)- and Cd(II)-complexes, but surprisingly that they influence their ability to bind Cu(I), the non-cognate metal ion.
Collapse
Affiliation(s)
- Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Elena Jiménez-Martí
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Oliver Zerbe
- Institute of Organic Chemistry, University of Zurich, 8057 Zurich, Switzerland.
| | - Reinhard Dallinger
- Institute of Zoology, University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, E-08193 Cerdanyola del Vallès, Spain.
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, E-08028 Barcelona, Spain.
| |
Collapse
|
23
|
Espart A, Gil-Moreno S, Palacios Ò, Capdevila M, Atrian S. Understanding the 7-Cys module amplification of C. neoformans metallothioneins: how high capacity Cu-binding polypeptides are built to neutralize host nutritional immunity. Mol Microbiol 2015; 98:977-92. [PMID: 26287377 DOI: 10.1111/mmi.13171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2015] [Indexed: 11/27/2022]
Abstract
Cryptococcus neoformans metallothioneins (MTs), CnMT1 and CnMT2, have been identified as essential infectivity and virulence factors of this pathogen. Both MTs are unusually long Cu-thioneins, exhibiting protein architecture and metal-binding abilities compatible with the hypothesis of resulting from three and five tandem repetitions of 7-Cys motives, respectively, each of them folding into Cu5-clusters. Through the study of the Zn(II)- and Cu(I)-binding capabilities of several CnMT1 truncated mutants, we show that a 7-Cys segment of CnMT1 folds into Cu5-species, of additive capacity when joined in tandem. All the obtained Cu-complexes share practically similar architectural features, if judging by their almost equivalent CD fingerprints, and they also share their capacity to restore copper tolerance in MT-devoid yeast cells. Besides the analysis of the modular composition of these long fungal MTs, we evaluate the features of the Cys-rich stretch spacer and flanking sequences that allow the construction of stable metal clusters by adjacent union of binding modules. Overall, our data support a mechanism by which some microbial MTs may have evolved to enlarge their original metal co-ordination capacity under the specific selective pressure of counteracting the Cu-based immunity mechanisms evolved by the infected hosts.
Collapse
Affiliation(s)
- Anna Espart
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Selene Gil-Moreno
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Òscar Palacios
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Mercè Capdevila
- Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193, Cerdanyola de Vallès, Spain
| | - Sílvia Atrian
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028, Barcelona, Spain
| |
Collapse
|
24
|
Abstract
Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology & Cancer Biology and Biochemistry, Duke University, School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
25
|
Espart A, Marín M, Gil-Moreno S, Palacios Ò, Amaro F, Martín-González A, Gutiérrez JC, Capdevila M, Atrian S. Hints for metal-preference protein sequence determinants: different metal binding features of the five tetrahymena thermophila metallothioneins. Int J Biol Sci 2015; 11:456-71. [PMID: 25798065 PMCID: PMC4366644 DOI: 10.7150/ijbs.11060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/21/2015] [Indexed: 11/12/2022] Open
Abstract
The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn2+-, Cd2+- or Cu+-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd2+ coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn2+, they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu+, although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd2+ and for Cu+, and although not optimally, it yielded the best result when coordinating Zn2+. The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).
Collapse
Affiliation(s)
- Anna Espart
- 1. Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028-Barcelona, Spain
| | - Maribel Marín
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Selene Gil-Moreno
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Òscar Palacios
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Francisco Amaro
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Ana Martín-González
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Juan C Gutiérrez
- 3. Departamento de Microbiología-III, Facultad de Biología, Universidad Complutense, 28040-Madrid, Spain
| | - Mercè Capdevila
- 2. Departament de Química, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193-Cerdanyola del Vallès (Barcelona), Spain
| | - Sílvia Atrian
- 1. Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, 08028-Barcelona, Spain
| |
Collapse
|
26
|
Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P. Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 2014; 6:1693-701. [DOI: 10.1039/c4mt00141a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The first evidence of the existence of gene-encoded Zn-binding peptides that sequester a substantial portion of intracellular Zn in ectomycorrhizal fungi under natural conditions.
Collapse
Affiliation(s)
- Tereza Leonhardt
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jan Sácký
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Šimek
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Jiří Šantrůček
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| | - Pavel Kotrba
- Institute of Chemical Technology, Prague
- Department of Biochemistry and Microbiology
- 166 28 Prague, Czech Republic
| |
Collapse
|