1
|
Lee LC, Lo KK. Leveraging the Photofunctions of Transition Metal Complexes for the Design of Innovative Phototherapeutics. SMALL METHODS 2024; 8:e2400563. [PMID: 39319499 PMCID: PMC11579581 DOI: 10.1002/smtd.202400563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/03/2024] [Indexed: 09/26/2024]
Abstract
Despite the advent of various medical interventions for cancer treatment, the disease continues to pose a formidable global health challenge, necessitating the development of new therapeutic approaches for more effective treatment outcomes. Photodynamic therapy (PDT), which utilizes light to activate a photosensitizer to produce cytotoxic reactive oxygen species (ROS) for eradicating cancer cells, has emerged as a promising approach for cancer treatment due to its high spatiotemporal precision and minimal invasiveness. However, the widespread clinical use of PDT faces several challenges, including the inefficient production of ROS in the hypoxic tumor microenvironment, the limited penetration depth of light in biological tissues, and the inadequate accumulation of photosensitizers at the tumor site. Over the past decade, there has been increasing interest in the utilization of photofunctional transition metal complexes as photosensitizers for PDT applications due to their intriguing photophysical and photochemical properties. This review provides an overview of the current design strategies used in the development of transition metal complexes as innovative phototherapeutics, aiming to address the limitations associated with PDT and achieve more effective treatment outcomes. The current challenges and future perspectives on the clinical translation of transition metal complexes are also discussed.
Collapse
Affiliation(s)
- Lawrence Cho‐Cheung Lee
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| | - Kenneth Kam‐Wing Lo
- Department of ChemistryCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
- State Key Laboratory of Terahertz and Millimeter WavesCity University of Hong KongTat Chee AvenueKowloonHong KongP. R. China
| |
Collapse
|
2
|
Müller VVL, Moreth D, Kowalski K, Kowalczyk A, Gapińska M, Kutta RJ, Nuernberger P, Schatzschneider U. Tuning The Intracellular Distribution of [3+2+1] Iridium(III) Complexes In Bacterial And Mammalian Cells By iClick Reaction With Biomolecular Carriers Functionalized With Alkynone Groups. Chemistry 2024; 30:e202401603. [PMID: 39288294 DOI: 10.1002/chem.202401603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Indexed: 09/19/2024]
Abstract
Three iridium(III) triazolato complexes of the general formula [Ir(triazolatoR,R')(ppy)(terpy)]PF6 with ppy=2-phenylpyridine and terpy=2,2':6',2''-terpyridine were efficiently prepared by iClick reaction of [Ir(N3)(ppy)(terpy)]PF6, with alkynes and alkynones, which allowed facile introduction of biological carriers such as biotin and cholic acid. In contrast to the precursor azido complex, which decomposed upon photoexcitation on a very short time scale, the triazolato complexes were stable in solution for up to 48 h. They emit in the spectral region around 540 nm with a quantum yield of 15-35 % in aerated acetonitrile solution and exhibit low cytotoxicity with IC50 values >50 μM for most complexes in L929 and HeLa cells, demonstrating their high suitability as luminescent probes. Cell uptake studies with confocal luminescence microscopy in prokaryotic Gram-positive S. aureus and Gram-negative E. coli bacteria as well as eukaryotic mammalian L929 and HeLa cells showed significant uptake in particular of the cholic acid conjugates iridium(III) moiety and distinct intracellular distribution modulated by the nature of the peripheral functional groups that can easily be modified by the iClick reaction.
Collapse
Affiliation(s)
- Victoria V L Müller
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Dominik Moreth
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| | - Konrad Kowalski
- University of Lodz, Faculty of Chemistry, Department of Organic Chemistry, Tamka 12, 91-403, Lodz, Poland
| | - Aleksandra Kowalczyk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Molecular Microbiology, Banacha 12/16, 90-237, Lodz, Poland
| | - Magdalena Gapińska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237, Lodz, Poland
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053, Regensburg, Germany
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074, Würzburg, Germany
| |
Collapse
|
3
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
4
|
Phosphorescent Ir(III) Complexes for Biolabeling and Biosensing. Top Curr Chem (Cham) 2022; 380:35. [PMID: 35948820 DOI: 10.1007/s41061-022-00389-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/27/2022] [Indexed: 10/15/2022]
Abstract
Cyclometalated Ir(III) complexes exhibit strong phosphorescence emission with lifetime of submicroseconds to several microseconds at room temperature. Their synthetic versatility enables broad control of physical properties, such as charge and lipophilicity, as well as emission colors. These favorable properties have motivated the use of Ir(III) complexes in luminescent bioimaging applications. This review examines the recent progress in the development of phosphorescent biolabels and sensors based on Ir(III) complexes. It begins with a brief introduction about the basic principles of the syntheses and photophysical processes of cyclometalated Ir(III) complexes. Focus is placed on illustrating the broad imaging utility of Ir(III) complexes. Phosphorescent labels illuminating intracellular organelles, including mitochondria, lysosomes, and cell membranes, are summarized. Ir(III) complexes capable of visualization of tumor spheroids and parasites are also introduced. Facile chemical modification of the cyclometalating ligands endows the Ir(III) complexes with strong sensing ability. Sensors of temperature, pH, CO2, metal ions, anions, biosulfur species, reactive oxygen species, peptides, and viscosity have recently been added to the molecular imaging tools. This diverse utility demonstrates the potential of phosphorescent Ir(III) complexes toward bioimaging applications.
Collapse
|
5
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
6
|
Lee LCC, Lo KKW. Strategic design of photofunctional transition metal complexes for cancer diagnosis and therapy. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Gillam TA, Caporale C, Brooks RD, Bader CA, Sorvina A, Werrett MV, Wright PJ, Morrison JL, Massi M, Brooks DA, Zacchini S, Hickey SM, Stagni S, Plush SE. Neutral Re(I) Complex Platform for Live Intracellular Imaging. Inorg Chem 2021; 60:10173-10185. [PMID: 34210122 DOI: 10.1021/acs.inorgchem.1c00418] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Luminescent metal complexes are a valuable platform for the generation of cell imaging agents. However, many metal complexes are cationic, a factor that can dominate the intracellular accumulation to specific organelles. Neutral Re(I) complexes offer a more attractive platform for the development of bioconjugated imaging agents, where charge cannot influence their intracellular distribution. Herein, we report the synthesis of a neutral complex (ReAlkyne), which was used as a platform for the generation of four carbohydrate-conjugated imaging agents via Cu(I)-catalyzed azide-alkyne cycloaddition. A comprehensive evaluation of the physical and optical properties of each complex is provided, together with a determination of their utility as live cell imaging agents in H9c2 cardiomyoblasts. Unlike their cationic counterparts, many of which localize within mitochondria, these neutral complexes have localized within the endosomal/lysosomal network, a result consistent with examples of dinuclear carbohydrate-appended neutral Re(I) complexes that have been reported. This further demonstrates the utility of these neutral Re(I) complex imaging platforms as viable imaging platforms for the development of bioconjugated cell imaging agents.
Collapse
Affiliation(s)
- Todd A Gillam
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia.,UniSA STEM, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Chiara Caporale
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Robert D Brooks
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Christie A Bader
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Alexandra Sorvina
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Melissa V Werrett
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Phillip J Wright
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Janna L Morrison
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Massimiliano Massi
- Department of Chemistry, Curtin University, Kent St., Bentley, Western Australia 6102, Australia
| | - Doug A Brooks
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Shane M Hickey
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, Bologna 40136, Italy
| | - Sally E Plush
- UniSA Clinical and Health Sciences, University of South Australia, North Tce, Adelaide, South Australia 5000, Australia.,UniSA STEM, Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
8
|
Karges J, Chao H, Gasser G. Critical discussion of the applications of metal complexes for 2-photon photodynamic therapy. J Biol Inorg Chem 2020; 25:1035-1050. [DOI: 10.1007/s00775-020-01829-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
|
9
|
Photophysical and Biological Properties of Iridium Tetrazolato Complexes Functionalised with Fatty Acid Chains. INORGANICS 2020. [DOI: 10.3390/inorganics8040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five cyclometalated Ir(III) tetrazolato complexes functionalised with fatty acid chains (octanoic, palmitic, stearic, palmitoleic, and oleic) have been synthesised. The fatty acids were chosen to evaluate the potential effect of the length and degree of unsaturation on the biological properties of the complexes for use as cellular imaging agents. The complexes were analysed in both organic and aqueous media to determine if the presence and nature of the fatty acid chains had a significant effect on their photophysical properties. The complexes display green–yellow emission in dichloromethane solutions with relatively long excited state decays, within the range 360–393 ns, and quantum yields between 5.4% and 6.7% (from degassed solutions). Temperature-dependent photophysical studies suggest that the emitting excited states of the complexes might be quenched by the thermal population of dark states. In water, the quantum yields drop within the range of 0.5%–2.4%, and the photophysical measurements are influenced by the variable degrees of aggregation. In general, the entire series displayed low cytotoxicity and relatively high photostability, which are favourable attributes in the design of cellular imaging agents. Images of live HeLa cells were obtained for all the complexes, but those functionalised with palmitic and stearic acids had limitations due the lower solubility conferred by the saturated aliphatic chains. The complexes were mainly detected within the endoplasmic reticulum.
Collapse
|
10
|
Cyclometalated Iridium (III) complexes: Recent advances in phosphorescence bioimaging and sensing applications. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5413] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
|
12
|
Huang H, Banerjee S, Sadler PJ. Recent Advances in the Design of Targeted Iridium(III) Photosensitizers for Photodynamic Therapy. Chembiochem 2018; 19:1574-1589. [PMID: 30019476 DOI: 10.1002/cbic.201800182] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Huaiyi Huang
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| | - Samya Banerjee
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| | - Peter J. Sadler
- Department of Chemistry; University of Warwick; Gibbet Hill Coventry CV4 7AL UK
| |
Collapse
|
13
|
Mitochondrial dynamics tracking with iridium(III) complexes. Curr Opin Chem Biol 2018; 43:51-57. [DOI: 10.1016/j.cbpa.2017.11.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022]
|
14
|
You Y. Recent Progress on the Exploration of the Biological Utility of Cyclometalated Iridium(III) Complexes. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201700379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Youngmin You
- Division of Chemical Engineering and Materials Science; Ewha Womans University; Seoul 03760 Republic of Korea
| |
Collapse
|
15
|
Tian Z, Yang Y, Guo L, Zhong G, Li J, Liu Z. Dual-functional cyclometalated iridium imine NHC complexes: highly potent anticancer and antimetastatic agents. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00920a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Six cyclometalated iridium(iii) complexes have been synthesized and characterized. They showed strong anticancer and antimetastatic activity.
Collapse
Affiliation(s)
- Zhenzhen Tian
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Yuliang Yang
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Lihua Guo
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Genshen Zhong
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine
- School of Laboratory Medicine
- Xinxiang Medical University
- Xinxiang 453003
- China
| | - Juanjuan Li
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| | - Zhe Liu
- Institute of Anticancer Agents Development and Theranostic Application
- The Key Laboratory of Life-Organic Analysis and Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine
- Department of Chemistry and Chemical Engineering
- Qufu Normal University
- Qufu 273165
| |
Collapse
|
16
|
Lau CTS, Chan C, Zhang KY, Roy VAL, Lo KKW. Photophysical, Cellular-Uptake, and Bioimaging Studies of Luminescent Ruthenium(II)-Polypyridine Complexes Containing a d
-Fructose Pendant. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201701038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chris Tsan-Shing Lau
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Christina Chan
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kenneth Yin Zhang
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Vellaisamy A. L. Roy
- Department of Material Science and Engineering; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Millimeter Waves; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
- Center for Functional Photonics; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
- State Key Laboratory of Millimeter Waves; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
- Center for Functional Photonics; City University of Hong Kong; Tat Chee Avenue Kowloon Hong Kong P. R. China
| |
Collapse
|
17
|
Caporale C, Bader CA, Sorvina A, MaGee KDM, Skelton BW, Gillam TA, Wright PJ, Raiteri P, Stagni S, Morrison JL, Plush SE, Brooks DA, Massi M. Investigating Intracellular Localisation and Cytotoxicity Trends for Neutral and Cationic Iridium Tetrazolato Complexes in Live Cells. Chemistry 2017; 23:15666-15679. [PMID: 28782852 DOI: 10.1002/chem.201701352] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 12/20/2022]
Abstract
A family of five neutral cyclometalated iridium(III) tetrazolato complexes and their methylated cationic analogues have been synthesised and characterised. The complexes are distinguished by variations of the substituents or degree of π conjugation on either the phenylpyridine or tetrazolato ligands. The photophysical properties of these species have been evaluated in organic and aqueous media, revealing predominantly a solvatochromic emission originating from mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. These emissions are characterised by typically long excited-state lifetimes (∼hundreds of ns), and quantum yields around 5-10 % in aqueous media. Methylation of the complexes caused a systematic red-shift of the emission profiles. The behaviour and the effects of the different complexes were then examined in cells. The neutral species localised mostly in the endoplasmic reticulum and lipid droplets, whereas the majority of the cationic complexes localised in the mitochondria. The amount of complexes found within cells does not depend on lipophilicity, which potentially suggests diverse uptake mechanisms. Methylated analogues were found to be more cytotoxic compared to the neutral species, a behaviour that might to be linked to a combination of uptake and intracellular localisation.
Collapse
Affiliation(s)
- Chiara Caporale
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Karen D M MaGee
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Brian W Skelton
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Todd A Gillam
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Phillip J Wright
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari"-, University of Bologna, viale del Risorgimento 4, Bologna, 40136, Italy
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Massimiliano Massi
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| |
Collapse
|
18
|
Synthesis of d -fructose conjugated ligands via C6 and C1 and their corresponding [Ru(bpy) 2 (L)]Cl 2 complexes. Carbohydr Res 2017; 446-447:19-27. [DOI: 10.1016/j.carres.2017.04.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 01/14/2023]
|
19
|
Englert C, Pröhl M, Czaplewska JA, Fritzsche C, Preußger E, Schubert US, Traeger A, Gottschaldt M. d-Fructose-Decorated Poly(ethylene imine) for Human Breast Cancer Cell Targeting. Macromol Biosci 2017; 17. [PMID: 28371343 DOI: 10.1002/mabi.201600502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/03/2017] [Indexed: 01/27/2023]
Abstract
The high affinity of GLUT5 transporter for d-fructose in breast cancer cells has been discussed intensely. In this contribution, high molar mass linear poly(ethylene imine) (LPEI) is functionalized with d-fructose moieties to combine the selectivity for the GLUT5 transporter with the delivery potential of PEI for genetic material. The four-step synthesis of a thiol-group bearing d-fructose enables the decoration of a cationic polymer backbone with d-fructose via thiol-ene photoaddition. The functionalization of LPEI is confirmed by 2D NMR techniques, elemental analysis, and size exclusion chromatography. Importantly, a d-fructose decoration of 16% renders the polymers water-soluble and eliminates the cytotoxicity of PEI in noncancer L929 cells, accompanied by a reduced unspecific cellular uptake of the genetic material. In contrast, the cytotoxicity as well as the cell specific uptake is increased for triple negative MDA-MB-231 breast cancer cells. Therefore, the introduction of d-fructose shows superior potential for cell targeting, which can be assumed to be GLUT5 dependent.
Collapse
Affiliation(s)
- Christoph Englert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Pröhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Justyna A Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Carolin Fritzsche
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Elisabeth Preußger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743, Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
20
|
Tabrizi L, Chiniforoshan H. New cyclometalated Ir(iii) complexes with NCN pincer and meso-phenylcyanamide BODIPY ligands as efficient photodynamic therapy agents. RSC Adv 2017. [DOI: 10.1039/c7ra05579j] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of cyclometalated iridium(iii) with NCN pincer andmeso-phenylcyanamide BODIPY ligands has been synthesized and studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland, Galway
- Galway
- Ireland
- Department of Chemistry
| | | |
Collapse
|
21
|
Tabrizi L. The discovery of half-sandwich iridium complexes containing lidocaine and (pyren-1-yl)ethynyl derivatives of phenylcyanamide ligands for photodynamic therapy. Dalton Trans 2017; 46:7242-7252. [DOI: 10.1039/c7dt01091e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The new design of two cyclopentadienyl iridium(iii) complexes with (pyren-1-yl)ethynyl derivatives of phenylcyanamide and lidocaine ligands, have been studied for photodynamic therapy.
Collapse
Affiliation(s)
- Leila Tabrizi
- School of Chemistry
- National University of Ireland
- Galway
- Ireland
- Department of Chemistry
| |
Collapse
|
22
|
Pröhl M, Bus T, Czaplewska JA, Traeger A, Deicke M, Weiss H, Weigand W, Schubert US, Gottschaldt M. Synthesis and in vitro Toxicity ofd-Glucose andd-Fructose Conjugated Curcumin-Ruthenium Complexes. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600801] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Michael Pröhl
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Tanja Bus
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Deicke
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University Jena; Humboldtstraße 8 07743 Jena Germany
| | - Henning Weiss
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University Jena; Humboldtstraße 8 07743 Jena Germany
| | - Wolfgang Weigand
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University Jena; Humboldtstraße 8 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
23
|
Langille G, Yang H, Zeisler S, Hoehr C, Storr T, Andreoiu C, Schaffer P. Low energy cyclotron production and cyclometalation chemistry of iridium-192. Appl Radiat Isot 2016; 115:81-86. [DOI: 10.1016/j.apradiso.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 11/27/2022]
|
24
|
Prokop A, Czaplewska JA, Clausen M, König M, Wild A, Thorwirth R, Schulze B, Babiuch K, Pretzel D, Schubert US, Gottschaldt M. Iridium(III) Complexes of Terpyridine- and Terpyridine-Analogous Ligands Bearing Sugar Residues and Their in vitro Activity. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aram Prokop
- Department of Pediatric Hematology/Oncology; Children's Hospital Cologne; Amsterdamer Strasse 59 50735 Cologne Germany
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Mara Clausen
- Charité Berlin; Augustenburgerplatz 1 13353 Berlin Germany
| | - Marcel König
- Department of Pediatric Hematology/Oncology; Children's Hospital Cologne; Amsterdamer Strasse 59 50735 Cologne Germany
| | - Andreas Wild
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Rico Thorwirth
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
| | - Benjamin Schulze
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Krzysztof Babiuch
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstrasse 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
25
|
Novel hydroxyamides and amides containing d -glucopyranose or d -fructose units: Biological assays in MCF-7 and MDST8 cell lines. Bioorg Med Chem Lett 2016; 26:1039-1043. [DOI: 10.1016/j.bmcl.2015.12.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/06/2015] [Accepted: 12/10/2015] [Indexed: 01/18/2023]
|
26
|
Lo KKW. Luminescent Iridium(III) and Rhenium(I) Complexes as Biomolecular Probes and Imaging Reagents. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
von der Ehe C, Rinkenauer A, Weber C, Szamosvari D, Gottschaldt M, Schubert US. Selective Uptake of a Fructose Glycopolymer Prepared by RAFT Polymerization into Human Breast Cancer Cells. Macromol Biosci 2015; 16:508-21. [DOI: 10.1002/mabi.201500346] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/04/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Christian von der Ehe
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Alexandra Rinkenauer
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - David Szamosvari
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstraße 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Dutch Polymer Institute (DPI); P.O. Box 902 5600 AX Eindhoven The Netherlands
| |
Collapse
|
28
|
Lo KKW. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc Chem Res 2015; 48:2985-95. [PMID: 26161527 DOI: 10.1021/acs.accounts.5b00211] [Citation(s) in RCA: 421] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kenneth Kam-Wing Lo
- Department of Biology and
Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
29
|
Zhao J, Babiuch K, Lu H, Dag A, Gottschaldt M, Stenzel MH. Fructose-coated nanoparticles: a promising drug nanocarrier for triple-negative breast cancer therapy. Chem Commun (Camb) 2015; 50:15928-31. [PMID: 25382088 DOI: 10.1039/c4cc06651k] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fructose transporter GLUT5 is overexpressed in breast cancer cell lines, but not in healthy tissue. Micelles based on fructose, which were found to be low fouling, showed a high uptake by breast cancer cells (MCF-7 and MDA-MB-231 cells), but only negligible uptake by macrophages.
Collapse
Affiliation(s)
- Jiacheng Zhao
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia.
| | | | | | | | | | | |
Collapse
|
30
|
Tang TSM, Leung KK, Louie MW, Liu HW, Cheng SH, Lo KKW. Phosphorescent biscyclometallated iridium(iii) ethylenediamine complexes functionalised with polar ester or carboxylate groups as bioimaging and visualisation reagents. Dalton Trans 2015; 44:4945-56. [DOI: 10.1039/c4dt02890b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new phosphorescent biscyclometallated iridium(iii) ethylenediamine complexes were designed as bioimaging and visualization reagents.
Collapse
Affiliation(s)
- Tommy Siu-Ming Tang
- Centre for Functional Photonics and Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Kam-Keung Leung
- Centre for Functional Photonics and Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Man-Wai Louie
- Centre for Functional Photonics and Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Hua-Wei Liu
- Centre for Functional Photonics and Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Shuk Han Cheng
- Centre for Functional Photonics and Department of Biomedical Sciences
- City University of Hong Kong
- Kowloon
- People's Republic of China
| | - Kenneth Kam-Wing Lo
- Centre for Functional Photonics and Department of Biology and Chemistry
- City University of Hong Kong
- Kowloon
- People's Republic of China
| |
Collapse
|
31
|
Phosphorescent iridium(III)-bis-N-heterocyclic carbene complexes as mitochondria-targeted theranostic and photodynamic anticancer agents. Biomaterials 2015; 39:95-104. [PMID: 25477176 DOI: 10.1016/j.biomaterials.2014.10.070] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022]
|
32
|
Xin XL, Chen M, Ai YB, Yang FL, Li XL, Li F. Aggregation-Induced Emissive Copper(I) Complexes for Living Cell Imaging. Inorg Chem 2014; 53:2922-31. [DOI: 10.1021/ic402685u] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xue-Lian Xin
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Min Chen
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Yu-bo Ai
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-lei Yang
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xiu-Ling Li
- School of Chemistry and Chemical Engineering & Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Fuyou Li
- Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
33
|
Phosphorescent Iridium(III) Complexes for Bioimaging. LUMINESCENT AND PHOTOACTIVE TRANSITION METAL COMPLEXES AS BIOMOLECULAR PROBES AND CELLULAR REAGENTS 2014. [DOI: 10.1007/430_2014_166] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Lo KKW, Li SPY. Utilization of the photophysical and photochemical properties of phosphorescent transition metal complexes in the development of photofunctional cellular sensors, imaging reagents, and cytotoxic agents. RSC Adv 2014. [DOI: 10.1039/c3ra47611a] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Bader CA, Brooks RD, Ng YS, Sorvina A, Werrett MV, Wright PJ, Anwer AG, Brooks DA, Stagni S, Muzzioli S, Silberstein M, Skelton BW, Goldys EM, Plush SE, Shandala T, Massi M. Modulation of the organelle specificity in Re(i) tetrazolato complexes leads to labeling of lipid droplets. RSC Adv 2014. [DOI: 10.1039/c4ra00050a] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neutral Re(i) tetrazolato complexes exhibit labeling of lipid droplets with high specificity.
Collapse
Affiliation(s)
- Christie A. Bader
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Robert D. Brooks
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Yeap S. Ng
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Alexandra Sorvina
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | | | | | - Ayad G. Anwer
- Department of Physics and Astronomy
- Macquarie University
- North Ryde, Australia
| | - Douglas A. Brooks
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry
- University of Bologna
- Bologna 40126, Italy
| | - Sara Muzzioli
- Department of Industrial Chemistry
- University of Bologna
- Bologna 40126, Italy
| | | | - Brian W. Skelton
- Centre for Microscopy
- Characterisation and Analysis
- University of Western Australia
- Crawley, Australia
| | - Ewa M. Goldys
- Department of Physics and Astronomy
- Macquarie University
- North Ryde, Australia
| | - Sally E. Plush
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | - Tetyana Shandala
- School of Pharmacy and Medical Science
- University of South Australia
- Adelaide, Australia
| | | |
Collapse
|
36
|
Law WHT, Lee LCC, Louie MW, Liu HW, Ang TWH, Lo KKW. Phosphorescent Cellular Probes and Uptake Indicators Derived from Cyclometalated Iridium(III) Bipyridine Complexes Appended with a Glucose or Galactose Entity. Inorg Chem 2013; 52:13029-41. [DOI: 10.1021/ic401714p] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Wendell Ho-Tin Law
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Man-Wai Louie
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Hua-Wei Liu
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Tim Wai-Hung Ang
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Institute of Molecular Functional
Materials [Areas of Excellence Scheme, University Grants Committee
(Hong Kong)] and Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
37
|
Li SPY, Lau CTS, Louie MW, Lam YW, Cheng SH, Lo KKW. Mitochondria-targeting cyclometalated iridium(III)–PEG complexes with tunable photodynamic activity. Biomaterials 2013; 34:7519-32. [PMID: 23849346 DOI: 10.1016/j.biomaterials.2013.06.028] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 11/30/2022]
|
38
|
Yin Zhang K, Ka-Shun Tso K, Louie MW, Liu HW, Lo KKW. A Phosphorescent Rhenium(I) Tricarbonyl Polypyridine Complex Appended with a Fructose Pendant That Exhibits Photocytotoxicity and Enhanced Uptake by Breast Cancer Cells. Organometallics 2013. [DOI: 10.1021/om400612f] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kenneth Yin Zhang
- Department of Biology and Chemistry, City University of Hong Kong
, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
| | - Karson Ka-Shun Tso
- Department of Biology and Chemistry, City University of Hong Kong
, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
| | - Man-Wai Louie
- Department of Biology and Chemistry, City University of Hong Kong
, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong
, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong
, Tat Chee Avenue, Kowloon, Hong Kong, People’s Republic of China
| |
Collapse
|