1
|
Zhang J, Zhao J, Jin C, Chen Z, Liu J. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30692-30703. [PMID: 35767898 DOI: 10.1021/acsami.2c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strained platinum-based materials with high performance have been regarded as the most promising electrocatalysts for proton exchange membrane fuel cells (PEMFCs) recently. Herein, self-strained platinum clusters with finite size (about 1 nm) are prepared by a combining liquid- and solid-phase UV irradiation cycle strategy. It started with a fresh H2PtCl6 solution irradiated by UV light and then mixed with a graphitized carbon, followed by the dried mixture being subjected to UV light to generate monodispersed Pt clusters on the carbon surface. The obtained platinum clusters feature narrower size distribution and higher loading on carbon, exhibiting significantly improved activity and durability, much higher than that of the-state-of-art commercial Pt/C for the oxygen reduction reaction. More importantly, the self-strained Pt clusters display a surprising CO tolerance, which can be attributed to the unique adaptive lattice compressive strain that triggers an electron enrichment phenomenon for the Pt clusters. Therefore, this stepwise UV irradiation method solves the long-standing problem of both wide size distribution and low loading of metal clusters fabricated by one-step photochemical reduction, providing a potential route for the synthesis of other metal clusters with strained structures.
Collapse
Affiliation(s)
- Jingyan Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chun Jin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhiguo Chen
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Zhang M, Peng X, Fan P, Zhou Y, Xiao P. Recent Progress in Preparation and Application of Fibers using Microfluidic Spinning Technology. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mengfan Zhang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Xiaotong Peng
- Research School of Chemistry Australian National University Canberra 2601 Australia
| | - Penghui Fan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials Ministry of Education Wuhan Textile University Wuhan 430073 People's Republic of China
- College of Materials Science and Engineering Wuhan Textile University Wuhan 430073 People's Republic of China
- Humanwell Healthcare Group Medical Supplies Co. Ltd. Wuhan 430073 People's Republic of China
| | - Pu Xiao
- Research School of Chemistry Australian National University Canberra 2601 Australia
| |
Collapse
|
3
|
Deniz SA, Goker S, Toppare L, Soylemez S. Fabrication of D–A–D type conducting polymer, carbon nanotubes and silica nanoparticle-based laccase biosensor for catechol detection. NEW J CHEM 2022. [DOI: 10.1039/d2nj02147a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A sensing platform for catechol detection incorporating triple key materials based on SiNPs, D–A–D type conducting polymer, and MWCNTs.
Collapse
Affiliation(s)
| | - Seza Goker
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Solid Propellant Department, Roketsan Missiles Inc, Ankara 06780, Turkey
| | - Levent Toppare
- Department of Chemistry, Middle East Technical University, Ankara 06800, Turkey
- Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Saniye Soylemez
- Department of Biomedical Engineering, Necmettin Erbakan University, Konya 42090, Turkey
- Department of Chemistry, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
4
|
Idumah CI, Ezeani E, Nwuzor I. A review: advancements in conductive polymers nanocomposites. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1850783] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christopher Igwe Idumah
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
- EnPro, Universiti Teknologi Malaysia
| | - E.O Ezeani
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
| | - I.C Nwuzor
- Nnamdi Azikiwe University, Faculty of Engineering, Department of Polymer and Textile Engineering, Awka, Nigeria
| |
Collapse
|
5
|
Yang M, Sun LP, Chen B, Liao J, Yuan H, Guan BO. A universal strategy: Rational construction of noble metal nanoparticle-shell/conducting polymer nanofiber-core electrodes with enhanced electrochemical performances. NANOTECHNOLOGY 2020; 31:445602. [PMID: 32693391 DOI: 10.1088/1361-6528/aba7e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To address a challenge for decoration of noble metal nanoparticles (NMNPs)-shell on conducting polymer nanofiber (CPNF) electrodes (i.e. NMNP-shell/CPNF-core electrodes) for boosting electrochemical performances, a two-step strategy comprising chemical pre-deposition and electrochemical deposition is designed. The strategy shows a high universality in terms of the diversity of NMNP-shell elements (single-element: AgNP-shell, AuNP-shell, PtNP-shell, PdNP-shell; multi-element: Au/Pt/PdNP-shell) and the independence of conductive substrates of electrodes. The shells are composed of high-density NMNPs and have strong adhesion to CPNF-cores. It is demonstrated that in response to a specific applied electrical stimulus, the resulting low doping level of CPNFs facilitates the generation of high-density nucleation sites (small NMNPs) by chemical pre-deposition (as high capability of electron transfer and low resistance to electron transfer from CP chains to NM ions), which is indispensable for the formation of NMNP-shells on CPNF-cores by electrochemical deposition. The decoration of NMNP-shells can significantly enhance the electrochemical performances of CPNF electrodes. Moreover, the great practicality and reliability of NMNP-shell/CPNF-core electrodes in use as an electrocatalytic platform are confirmed. This universal strategy opens up a new avenue to construct high-dimension shell/core-nanostructured electrodes.
Collapse
Affiliation(s)
- Mingjin Yang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communication, Institute of Photonics Technology, Jinan University, Guangzhou 511443, People's Republic of China
| | | | | | | | | | | |
Collapse
|
6
|
Luong JHT, Narayan T, Solanki S, Malhotra BD. Recent Advances of Conducting Polymers and Their Composites for Electrochemical Biosensing Applications. J Funct Biomater 2020; 11:E71. [PMID: 32992861 PMCID: PMC7712382 DOI: 10.3390/jfb11040071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/17/2020] [Accepted: 09/20/2020] [Indexed: 02/01/2023] Open
Abstract
Conducting polymers (CPs) have been at the center of research owing to their metal-like electrochemical properties and polymer-like dispersion nature. CPs and their composites serve as ideal functional materials for diversified biomedical applications like drug delivery, tissue engineering, and diagnostics. There have also been numerous biosensing platforms based on polyaniline (PANI), polypyrrole (PPY), polythiophene (PTP), and their composites. Based on their unique properties and extensive use in biosensing matrices, updated information on novel CPs and their role is appealing. This review focuses on the properties and performance of biosensing matrices based on CPs reported in the last three years. The salient features of CPs like PANI, PPY, PTP, and their composites with nanoparticles, carbon materials, etc. are outlined along with respective examples. A description of mediator conjugated biosensor designs and enzymeless CPs based glucose sensing has also been included. The future research trends with required improvements to improve the analytical performance of CP-biosensing devices have also been addressed.
Collapse
Affiliation(s)
- John H. T. Luong
- School of Chemistry and the Analytical and Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
| | - Tarun Narayan
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| | - Shipra Solanki
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
- Applied Chemistry Department, Delhi Technological University, Delhi 110042, India
| | - Bansi D. Malhotra
- Department of Biotechnology, Delhi Technological University, Delhi 110042, India; (T.N.); (S.S.); (B.D.M.)
| |
Collapse
|
7
|
Conducting Polymer-Based Composite Materials for Therapeutic Implantations: From Advanced Drug Delivery System to Minimally Invasive Electronics. INT J POLYM SCI 2020. [DOI: 10.1155/2020/5659682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conducting polymer-based composites have recently becoming popular in both academic research and industrial practices due to their high conductivity, ease of process, and tunable electrical properties. The multifunctional conducting polymer-based composites demonstrated great application potential for in vivo therapeutics and implantable electronics, including drug delivery, neural interfacing, and minimally invasive electronics. In this review article, the state-of-the-art conducting polymer-based composites in the mentioned biological fields are discussed and summarized. The recent progress on the synthesis, structure, properties, and application of the conducting polymer-based composites is presented, aimed at revealing the structure-property relationship and the corresponding functional applications of the conducting polymer-based composites. Furthermore, key issues and challenges regarding the implantation performance of these composites are highlighted in this paper.
Collapse
|
8
|
Poyraz S. One-step preparation and characterization of a nanostructured hybrid electrode material via a microwave energy-based approach. NEW J CHEM 2020. [DOI: 10.1039/d0nj00604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanostructured hybrid electrode materials are prepared in one-step via a MW energy-based approach with promising electrochemical energy storage application performance.
Collapse
Affiliation(s)
- Selcuk Poyraz
- Department of Textile Engineering
- Faculty of Engineering
- Adıyaman University
- Adıyaman 02040
- Turkey
| |
Collapse
|
9
|
Poyraz S, Flogel M, Liu Z, Zhang X. Microwave energy assisted carbonization of nanostructured conducting polymers for their potential use in energy storage applications. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2016-1109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThree well-established one-step approaches, namely, conducting polymer (CP) nanofiber (NF) synthesis by NF seeding, CP nanoclip (NC) synthesis by oxidative template, and microwave (MW) energy-assisted carbonization were systematically combined to prepare carbonaceous nanostructures from CPs, with great potential as the active material for energy storage purposes. Polypyrrole (PPy), as one of the most well-known and commonly studied members of the CP family was prepared in both NF and NC forms, as the sacrificial carbonization precursor, for different property comparison purposes. Due to conducting polymers’ high electron mobility and easily exciting nature under MW irradiation, both PPy NF and NC samples had vigorously interacted with MWs. The as-obtained carbonaceous samples from such interactions exhibited high thermal stabilities, competitive specific capacitance values and long-term stable electrochemical cyclic performances, which are crucial for the active materials used in energy storage applications. Thus, it is believed that, this well-established and well-studied process combination will dominate the large-scale manufacturing of the carbon-based, active energy storage materials from CPs.
Collapse
Affiliation(s)
- Selcuk Poyraz
- 1Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
- 2Department of Textile Engineering, Corlu Faculty of Engineering, Namik Kemal University, Corlu, Tekirdag 59860, Turkey
| | - Marissa Flogel
- 1Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Zhen Liu
- 1Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
- 3Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
- 4Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-4111, USA
| | - Xinyu Zhang
- 5Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA, Tel.: +1-334-844-5439, Fax: +1-334-844-4068
| |
Collapse
|
10
|
Ghosh S, Maiyalagan T, Basu RN. Nanostructured conducting polymers for energy applications: towards a sustainable platform. NANOSCALE 2016; 8:6921-47. [PMID: 26980404 DOI: 10.1039/c5nr08803h] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recently, there has been tremendous progress in the field of nanodimensional conducting polymers with the objective of tuning the intrinsic properties of the polymer and the potential to be efficient, biocompatible, inexpensive, and solution processable. Compared with bulk conducting polymers, conducting polymer nanostructures possess a high electrical conductivity, large surface area, short path length for ion transport and superior electrochemical activity which make them suitable for energy storage and conversion applications. The current status of polymer nanostructure fabrication and characterization is reviewed in detail. The present review includes syntheses, a deeper understanding of the principles underlying the electronic behavior of size and shape tunable polymer nanostructures, characterization tools and analysis of composites. Finally, a detailed discussion of their effectiveness and perspectives in energy storage and solar light harvesting is presented. In brief, a broad overview on the synthesis and possible applications of conducting polymer nanostructures in energy domains such as fuel cells, photocatalysis, supercapacitors and rechargeable batteries is described.
Collapse
Affiliation(s)
- Srabanti Ghosh
- CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata-700032, India.
| | | | - Rajendra N Basu
- CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata-700032, India.
| |
Collapse
|
11
|
Nguyen DN, Yoon H. Recent Advances in Nanostructured Conducting Polymers: from Synthesis to Practical Applications. Polymers (Basel) 2016; 8:E118. [PMID: 30979209 PMCID: PMC6432394 DOI: 10.3390/polym8040118] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/19/2016] [Accepted: 03/25/2016] [Indexed: 12/21/2022] Open
Abstract
Conducting polymers (CPs) have been widely studied to realize advanced technologies in various areas such as chemical and biosensors, catalysts, photovoltaic cells, batteries, supercapacitors, and others. In particular, hybridization of CPs with inorganic species has allowed the production of promising functional materials with improved performance in various applications. Consequently, many important studies on CPs have been carried out over the last decade, and numerous researchers remain attracted to CPs from a technological perspective. In this review, we provide a theoretical classification of fabrication techniques and a brief summary of the most recent developments in synthesis methods. We evaluate the efficacy and benefits of these methods for the preparation of pure CP nanomaterials and nanohybrids, presenting the newest trends from around the world with 205 references, most of which are from the last three years. Furthermore, we also evaluate the effects of various factors on the structures and properties of CP nanomaterials, citing a large variety of publications.
Collapse
Affiliation(s)
- Duong Nguyen Nguyen
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
- School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| |
Collapse
|
12
|
Tak YJ, Jang W, Richter NA, Soon A. A rational computational study of surface defect-mediated stabilization of low-dimensional Pt nanostructures on TiN(100). Phys Chem Chem Phys 2015; 17:9680-6. [DOI: 10.1039/c4cp05930a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rational computational platform to design surface defect-mediated low-dimensional Pt/TiN nanocatalysts for next generation high-performance fuel cell technology via strong electronic metal–support interaction.
Collapse
Affiliation(s)
- Young Joo Tak
- Global E3 Institute and Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Woosun Jang
- Global E3 Institute and Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Norina A. Richter
- Global E3 Institute and Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| | - Aloysius Soon
- Global E3 Institute and Department of Materials Science and Engineering
- Yonsei University
- Seoul 120-749
- Korea
| |
Collapse
|
13
|
Uzun SD, Kayaci F, Uyar T, Timur S, Toppare L. Bioactive surface design based on functional composite electrospun nanofibers for biomolecule immobilization and biosensor applications. ACS APPLIED MATERIALS & INTERFACES 2014; 6:5235-43. [PMID: 24660809 DOI: 10.1021/am5005927] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The combination of nanomaterials and conducting polymers attracted remarkable attention for development of new immobilization matrices for enzymes. Hereby, an efficient surface design was investigated by modifying the graphite rod electrode surfaces with one-step electrospun nylon 6,6 nanofibers or 4% (w/w) multiwalled carbon nanotubes (MWCNTs) incorporating nylon 6,6 nanofibers (nylon 6,6/4MWCNT). High-resolution transmission electron microscopy study confirmed the successful incorporation of the MWCNTs into the nanofiber matrix for nylon 6,6/4MWCNT sample. Then, these nanofibrous surfaces were coated with a conducting polymer, (poly-4-(4,7-di(thiophen-2-yl)-1H-benzo[d]imidazol-2-yl)benzaldehyde) (PBIBA) to obtain a high electroactive surface area as new functional immobilization matrices. Due to the free aldehyde groups of the polymeric structures, a model enzyme, glucose oxidase was efficiently immobilized to the modified surfaces via covalent binding. Scanning electron microscope images confirmed that the nanofibrous structures were protected after the electrodeposition step of PBIBA and a high amount of protein attachment was successfully achieved by the help of high surface to volume ratio of electroactive nanofiber matrices. The biosensors were characterized in terms of their operational and storage stabilities and kinetic parameters (K(m)(app) and Imax). The resulting novel glucose biosensors revealed good stability and promising Imax values (10.03 and 16.67 μA for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively) and long shelf life (32 and 44 days for nylon 6,6/PBIBA and nylon 6,6/4MWCNT/PBIBA modified biosensors, respectively). Finally, the biosensor was tested on beverages for glucose detection.
Collapse
Affiliation(s)
- Sema Demirci Uzun
- Department of Polymer Science and Technology, Middle East Technical University , 06800, Ankara, Turkey
| | | | | | | | | |
Collapse
|
14
|
Urea assisted electrochemical synthesis of flower-like platinum arrays with high electrocatalytic activity. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.01.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
15
|
Park SJ, Kwon OS, Lee JE, Jang J, Yoon H. Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. SENSORS 2014; 14:3604-30. [PMID: 24561406 PMCID: PMC3958277 DOI: 10.3390/s140203604] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
Abstract
The development of novel sensing materials provides good opportunities to realize previously unachievable sensor performance. In this review, conducting polymer-based nanohybrids are highlighted as innovative transducers for high-performance chemical and biological sensing devices. Synthetic strategies of the nanohybrids are categorized into four groups: (1) impregnation, followed by reduction; (2) concurrent redox reactions; (3) electrochemical deposition; (4) seeding approach. Nanocale hybridization of conducting polymers with inorganic components can lead to improved sorption, catalytic reaction and/or transport behavior of the material systems. The nanohybrids have thus been used to detect nerve agents, toxic gases, volatile organic compounds, glucose, dopamine, and DNA. Given further advances in nanohybrids synthesis, it is expected that sensor technology will also evolve, especially in terms of sensitivity and selectivity.
Collapse
Affiliation(s)
- Seon Joo Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Oh Seok Kwon
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Ji Eun Lee
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 500-757, Korea.
| | - Jyongsik Jang
- School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea.
| | - Hyeonseok Yoon
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 500-757, Korea.
| |
Collapse
|
16
|
Fan Z, Liu B, Li Z, Ma L, Wang J, Yang S. One-pot hydrothermal synthesis of CuO with tunable morphologies on Ni foam as a hybrid electrode for sensing glucose. RSC Adv 2014. [DOI: 10.1039/c3ra47422d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Soylemez S, Kanik FE, Uzun SD, Hacioglu SO, Toppare L. Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: synthesis and its application to ethanol biosensors. J Mater Chem B 2014; 2:511-521. [DOI: 10.1039/c3tb21356k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|