1
|
Mazzali D, Rath G, Röntgen A, Roy Chowdhury V, Vendruscolo M, Resmini M. Sustainable and Surfactant-Free Synthesis of Negatively Charged Acrylamide Nanogels for Biomedical Applications. Macromolecules 2025; 58:1206-1213. [PMID: 39958486 PMCID: PMC11823596 DOI: 10.1021/acs.macromol.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/01/2024] [Accepted: 12/24/2024] [Indexed: 02/18/2025]
Abstract
Nanogels offer unique advantages, like high surface-to-volume ratio, scalable synthetic methods, and easily tailored formulations, that allow us to control size and introduce stimuli-responsive properties. Their potential for drug delivery is significant due to their biocompatibility, high drug loading capacity, and controlled and sustained drug release. The development of greener and sustainable processes is essential for large-scale applications. We report the synthesis in water of covalently cross-linked acrylamide-based nanogels, both neutral and negatively charged, with varying amounts of acryloyl-l-proline, using high-dilution radical polymerization, without the need for surfactants. The use of a water-based synthesis resulted in nanogels with high monomer conversions and chemical yields, as well as lower polydispersity and smaller particle sizes for the negatively charged nanogels, leading to a more efficient synthetic methodology, with reduced loss of starting materials, higher potential for scalability, and reduction in costs. The suitability of these nanogels for biomedical applications was supported by cytotoxicity studies showing no significant reduction in viability on a human neuroblastoma cell line.
Collapse
Affiliation(s)
- Davide Mazzali
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| | - Gabriela Rath
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| | - Alexander Röntgen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Vaidehi Roy Chowdhury
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marina Resmini
- Department
of Chemistry, SPCS, Queen Mary University
of London, London E1 4NS, U.K.
| |
Collapse
|
2
|
Alkattan N, Alasmael N, Ladelta V, Khashab NM, Hadjichristidis N. Poly(2-oxazoline)-based core cross-linked star polymers: synthesis and drug delivery applications. NANOSCALE ADVANCES 2023; 5:2794-2803. [PMID: 37205291 PMCID: PMC10187039 DOI: 10.1039/d3na00116d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Poly(2-oxazoline)s (POxs) are promising platforms for drug delivery applications due to their biocompatibility and stealth properties. In addition, the use of core cross-linked star (CCS) polymers based on POxs is expected to enhance drug encapsulation and release performances. In this study, we employed the "arm-first" strategy to synthesize a series of amphiphilic CCS [poly(2-methyl-2-oxazoline)]n-block-poly(2,2'-(1,4-phenylene)bis-2-oxazoline)-cross-link/copolymer-(2-n-butyl-2-oxazoline)s (PMeOx)n-b-P(PhBisOx-cl/co-ButOx)s by using microwave-assisted cationic ring-opening polymerization (CROP). First, PMeOx, as the hydrophilic arm, was synthesized by CROP of MeOx using methyl tosylate as the initiator. Subsequently, the living PMeOx was used as the macroinitiator to initiate the copolymerization/core-crosslinking reaction of ButOx and PhBisOx to form CCS POxs having a hydrophobic core. The molecular structures of the resulting CCS POxs were characterized by size exclusion chromatography and nuclear magnetic resonance spectroscopy. The CCS POxs were loaded with the anti-cancer drug doxorubicin (DOX), and the loading was detected by UV-vis spectrometry, dynamic light scattering, and transmission electron microscopy. In vitro studies showed that DOX release at pH 5.2 was faster than that at pH 7.1. The in vitro cytotoxicity study using HeLa cells revealed that the neat CCS POxs are compatible with the cells. In contrast, the DOX-loaded CCS POxs exhibited a cytotoxic effect in a concentration-dependent manner in HeLa cells, which strongly supports that the CSS POxs are potential candidates for drug delivery applications.
Collapse
Affiliation(s)
- Nedah Alkattan
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
- Refining and Petrochemical Technologies Institute, King Abdulaziz City for Science and Technology P. O Box 6086 Riyadh 11442 Saudi Arabia
| | - Noura Alasmael
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966-(0)12-8080789
| | - Viko Ladelta
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
| | - Niveen M Khashab
- Smart Hybrid Materials (SHMs) Laboratory, Chemistry Program, Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia +966-(0)12-8080789
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST) Thuwal 23955 Saudi Arabia +966-(0)12-8080789
| |
Collapse
|
3
|
Ni J, Wan Y, Cai Y, Ding P, Cohen Stuart MA, Wang J. Synthesis of Anionic Nanogels for Selective and Efficient Enzyme Encapsulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3234-3243. [PMID: 35212549 DOI: 10.1021/acs.langmuir.1c03325] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolyte nanogels containing cross-linked ionic polymer networks feature both soft environment and intrinsic charges which are of great potential for enzyme encapsulation. In this work, well-defined poly(acrylic acid) (PAA) nanogels have been synthesized based on a facile strategy, namely, electrostatic assembly directed polymerization (EADP). Specifically, AA monomers are polymerized together with a cross-linker in the presence of a cationic-neutral diblock copolymer as the template. Effects of control factors including pH, salt concentration, and cross-linking degree have been investigated systematically, based on which the optimal preparation of PAA nanogels has been established. The obtained nanogel features not only compatible pocket for safely loading enzymes without disturbing their structures, but also abundant negative charges which enable selective and efficient encapsulation of cationic enzymes. The loading capacities of PAA nanogels for cytochrome (cyt c) and lysozyme are 100 and 125 μg/mg (enzyme/nanogel), respectively. More notably, the PAA network seems to modulate a favorable microenvironment for cyt c and induces 2-fold enhanced activity for the encapsulated enzymes, as indicated by the steady-state kinetic assay. Our study reveals the control factors of EADP for optimal synthesis of anionic nanogels and validates their distinctive advances with respect to efficient loading and activation of cationic enzymes.
Collapse
Affiliation(s)
- Jiaying Ni
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yuting Wan
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
4
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
5
|
Saracoglu P, Ozmen MM. Starch Based Nanogels: From Synthesis to Miscellaneous Applications. STARCH-STARKE 2021. [DOI: 10.1002/star.202100011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pelin Saracoglu
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| | - Mehmet Murat Ozmen
- Department of Bioengineering Yildiz Technical University Istanbul 34220 Turkey
| |
Collapse
|
6
|
Rapid preparation of nanogels by photopolymerization at 532 nm. Colloids Surf B Biointerfaces 2021; 206:111943. [PMID: 34243031 DOI: 10.1016/j.colsurfb.2021.111943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 01/27/2023]
Abstract
The strategy of laser beam expansion was used to rapidly prepare nanogels by photopolymerization at 532 nm under low monomer concentration. According to the unique micellar morphology formed by amphiphilic polyethylene glycol diacrylate (PEGDA) in water, the monomer concentration was largely decreased to increase the distance of micellar aggregates. In this case, the photo-crosslinking could prefer to occur inside the micelles instead of crosslinking between the micellar aggregates. The variations of double bond content with reaction time in different beam expansion experiments were investigated. Finally, nanogels with uniform size could be rapidly prepared by regulating the reaction parameters, including monomer concentration, reaction time and power density.
Collapse
|
7
|
Carboxymethyl chitosan-based nanogels via acid-labile ortho ester linkages mediated enhanced drug delivery. Int J Biol Macromol 2019; 129:477-487. [DOI: 10.1016/j.ijbiomac.2019.02.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/12/2019] [Accepted: 02/12/2019] [Indexed: 12/16/2022]
|
8
|
Marien YW, Van Steenberge PHM, Pich A, D'hooge DR. Coupled stochastic simulation of the chain length and particle size distribution in miniemulsion radical copolymerization of styrene and N-vinylcaprolactam. REACT CHEM ENG 2019. [DOI: 10.1039/c9re00218a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Kinetic Monte Carlo modeling is applied for the coupled simulation of the chain length and particle size distribution in isothermal batch miniemulsion copolymerization of styrene and N-vinylcaprolactam.
Collapse
Affiliation(s)
- Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- DWI – Leibniz Institute for Interactive Materials e.V
| | | | - Andrij Pich
- DWI – Leibniz Institute for Interactive Materials e.V
- 52074 Aachen
- Germany
- Institute of Technical and Macromolecular Chemistry
- RWTH Aachen University
| | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
9
|
Kumari L, Badwaik HR. Polysaccharide-based nanogels for drug and gene delivery. POLYSACCHARIDE CARRIERS FOR DRUG DELIVERY 2019:497-557. [DOI: 10.1016/b978-0-08-102553-6.00018-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Mauri E, Perale G, Rossi F. Nanogel Functionalization: A Versatile Approach To Meet the Challenges of Drug and Gene Delivery. ACS APPLIED NANO MATERIALS 2018; 1:6525-6541. [DOI: 10.1021/acsanm.8b01686] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- Department of Engineering, Tissue Engineering and Chemistry for Engineering Unit, Università Campus Bio-Medico di Roma, via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, University of Applied Sciences and Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
11
|
Duygu Sütekin S, Güven O. Application of radiation for the synthesis of poly(n-vinyl pyrrolidone) nanogels with controlled sizes from aqueous solutions. Appl Radiat Isot 2018; 145:161-169. [PMID: 30639632 DOI: 10.1016/j.apradiso.2018.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/18/2018] [Accepted: 12/20/2018] [Indexed: 02/05/2023]
Abstract
Controlling of sizes of nanogels is very important for any biomedical application. In the present study we report a facile and reproducible method of preparing biocompatible nanogels of poly(N-vinyl pyrrolidone) (PVP) which were synthesized by using either electron beam (e-beam) (NGEB) or gamma irradiation (NGG) of dilute aqueous solutions. Nanogels with different hydrodynamic sizes were obtained at the variance of the polymer molecular weight, concentration, type of radiation source hence dose rate and total absorbed dose. For the first time a comparative study of gamma and e-beam irradiation was made on the same polymer with the aim of controlling sizes of nanogels in the range of 30-250 nm. Moreover the stability of radiation-synthesized nanogels was followed up to 2 years in refrigerated solution and found to retain their original sizes and distributions enabling their long-term storage and use. The synthesized nanogels were characterized by using dynamic light scattering (DLS), gel permeation chromatography (GPC), scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. This work provides a clue to the fundamental question of how to control sizes of nanogels without using any additives which are indispensable with the other techniques. The technique is applicable to any water soluble polymer.
Collapse
Affiliation(s)
- S Duygu Sütekin
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey
| | - Olgun Güven
- Department of Chemistry, Hacettepe University, Beytepe, Ankara 06800, Turkey.
| |
Collapse
|
12
|
Wang S, Ha Y, Huang X, Chin B, Sim W, Chen R. A New Strategy for Intestinal Drug Delivery via pH-Responsive and Membrane-Active Nanogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36622-36627. [PMID: 30300550 DOI: 10.1021/acsami.8b15661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oral administration of hydrophobic and poorly intestinal epithelium-permeable drugs is a significant challenge. Herein, we report a new strategy to overcome this problem by using novel, pH-responsive, and membrane-active nanogels as drug carriers. Prepared by simple physical cross-linking of amphiphilic pseudopeptidic polymers with pH-controlled membrane-activity, the size and hydrophobicity-hydrophilicity balance of the nanogels could be well-tuned. Furthermore, the amphiphilic nanogels could release hydrophobic payloads and destabilize cell membranes at duodenum and jejunum pH 5.0-6.0, which suggests their great potential for intestinal drug delivery.
Collapse
Affiliation(s)
- Shiqi Wang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Youlim Ha
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Xiaozhen Huang
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Benjamin Chin
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Wen Sim
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| | - Rongjun Chen
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , United Kingdom
| |
Collapse
|
13
|
Wang X, Shen L, An Z. Dispersion polymerization in environmentally benign solvents via reversible deactivation radical polymerization. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2018.05.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Ramon-Marquez T, Medina-Castillo AL, Nagiah N, Fernandez-Gutierrez A, Fernandez-Sanchez JF. A multifunctional material based on co-electrospinning for developing biosensors with optical oxygen transduction. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Etchenausia L, Deniau E, Brûlet A, Forcada J, Save M. Cationic Thermoresponsive Poly(N-vinylcaprolactam) Microgels Synthesized by Emulsion Polymerization Using a Reactive Cationic Macro-RAFT Agent. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Laura Etchenausia
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, IPREM, UMR5254, CNRS, University Pau & Pays Adour, 64000 Pau, France
- Departamento de Química Aplicada, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Elise Deniau
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, IPREM, UMR5254, CNRS, University Pau & Pays Adour, 64000 Pau, France
| | - Annie Brûlet
- CEA CNRS CEA Saclay, UMR12, Laboratoire Léon Brillouin, F-91191 Gif Sur Yvette, France
| | - Jacqueline Forcada
- Departamento de Química Aplicada, Facultad de Ciencias Químicas, Universidad del País Vasco UPV/EHU, 20018 Donostia-San Sebastian, Spain
| | - Maud Save
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, IPREM, UMR5254, CNRS, University Pau & Pays Adour, 64000 Pau, France
| |
Collapse
|
16
|
Wang X, Zhou J, Lv X, Zhang B, An Z. Temperature-Induced Morphological Transitions of Poly(dimethylacrylamide)–Poly(diacetone acrylamide) Block Copolymer Lamellae Synthesized via Aqueous Polymerization-Induced Self-Assembly. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01644] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiao Wang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiamin Zhou
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoqing Lv
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Baohua Zhang
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zesheng An
- Institute of Nanochemistry and Nanobiology,
College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
17
|
pH-degradable PVA-based nanogels via photo-crosslinking of thermo-preinduced nanoaggregates for controlled drug delivery. J Control Release 2017; 259:160-167. [PMID: 27810557 DOI: 10.1016/j.jconrel.2016.10.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/19/2016] [Accepted: 10/29/2016] [Indexed: 12/22/2022]
|
18
|
Panja S, Dey G, Bharti R, Mandal P, Mandal M, Chattopadhyay S. Metal Ion Ornamented Ultrafast Light-Sensitive Nanogel for Potential in Vivo Cancer Therapy. CHEMISTRY OF MATERIALS 2016; 28:8598-8610. [DOI: 10.1021/acs.chemmater.6b03440] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Sudipta Panja
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Goutam Dey
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Rashmi Bharti
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Pijush Mandal
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Mahitosh Mandal
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| | - Santanu Chattopadhyay
- Rubber
Technology Centre and ‡School of Medical Science and Technology, Indian Institute of Technology, Kharagpur 721302, India
| |
Collapse
|
19
|
Wu HQ, Wang CC. Biodegradable Smart Nanogels: A New Platform for Targeting Drug Delivery and Biomedical Diagnostics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6211-25. [PMID: 27255455 DOI: 10.1021/acs.langmuir.6b00842] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanogels (or nanohydrogels) have been extensively investigated as one of the most promising nanoparticulate biomedical platforms owing to their advantageous properties that combine the characteristics of hydrogel systems with nanoparticles. Among them, smart nanogels that have the ability to respond to external stimuli, such as pH, redox, temperature, enzymes, light, magnetic field and so forth, are most attractive in the area of drug delivery. Besides, numerous multifunctionalized nanogels with high sensitivity and specificity were designed for diagnostic applications. In this feature article, we have reviewed and discussed the recent progress of biodegradable nanogels as smart nanocarriers of anticancer drugs and biomedical diagnostic agents for cancer.
Collapse
Affiliation(s)
- Hai-Qiu Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, China
| | - Chang-Chun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|
20
|
Molina M, Asadian-Birjand M, Balach J, Bergueiro J, Miceli E, Calderón M. Stimuli-responsive nanogel composites and their application in nanomedicine. Chem Soc Rev 2016; 44:6161-86. [PMID: 26505057 DOI: 10.1039/c5cs00199d] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nanogels are nanosized crosslinked polymer networks capable of absorbing large quantities of water. Specifically, smart nanogels are interesting because of their ability to respond to biomedically relevant changes like pH, temperature, etc. In the last few decades, hybrid nanogels or composites have been developed to overcome the ever increasing demand for new materials in this field. In this context, a hybrid refers to nanogels combined with different polymers and/or with nanoparticles such as plasmonic, magnetic, and carbonaceous nanoparticles, among others. Research activities are focused nowadays on using multifunctional hybrid nanogels in nanomedicine, not only as drug carriers but also as imaging and theranostic agents. In this review, we will describe nanogels, particularly in the form of composites or hybrids applied in nanomedicine.
Collapse
|
21
|
Chen J, Dai H, Lin H, Tu K, Wang H, Wang LQ. A new strategy based on electrospray technique to prepare dual-responsive poly(ether urethane) nanogels. Colloids Surf B Biointerfaces 2016; 141:278-283. [PMID: 26859119 DOI: 10.1016/j.colsurfb.2016.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/05/2016] [Accepted: 01/27/2016] [Indexed: 12/27/2022]
|
22
|
Yahia-Ammar A, Sierra D, Mérola F, Hildebrandt N, Le Guével X. Self-Assembled Gold Nanoclusters for Bright Fluorescence Imaging and Enhanced Drug Delivery. ACS NANO 2016; 10:2591-9. [PMID: 26845515 DOI: 10.1021/acsnano.5b07596] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles combining enhanced cellular drug delivery with efficient fluorescence detection are important tools for the development of theranostic agents. Here, we demonstrate this concept by a simple, fast, and robust protocol of cationic polymer-mediated gold nanocluster (Au NCs) self-assembly into nanoparticles (NPs) of ca. 120 nm diameter. An extensive characterization of the monodisperse and positively charged NPs revealed pH-dependent swelling properties, strong fluorescence enhancement, and excellent colloidal and photostability in water, buffer, and culture medium. The versatility of the preparation is demonstrated by using different Au NC surface ligands and cationic polymers. Steady-state and time-resolved fluorescence measurements give insight into the aggregation-induced emission phenomenon (AIE) by tuning the Au NC interactions in the self-assembled nanoparticles using the pH-dependent swelling. In vitro studies in human monocytic cells indicate strongly enhanced uptake of the NPs compared to free Au NCs in endocytic compartments. The NPs keep their assembly structure with quite low cytotoxicity up to 500 μg Au/mL. Enhanced drug delivery is demonstrated by loading peptides or antibodies in the NPs using a one-pot synthesis. Fluorescence microscopy and flow cytometry confirmed intracellular colocalization of the biomolecules and the NP carriers with a respective 1.7-fold and 6.5-fold enhanced cellular uptake of peptides and antibodies compared to the free biomolecules.
Collapse
Affiliation(s)
- Akram Yahia-Ammar
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Daniel Sierra
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| | - Fabienne Mérola
- Laboratoire de Chimie Physique, Université Paris-Saclay and Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Niko Hildebrandt
- NanoBioPhotonics, Institut d'Electronique Fondamentale, Université Paris-Saclay, Université Paris-Sud , CNRS, 91400 Orsay, France
| | - Xavier Le Guével
- Therapeutic Nanosystems, The Andalusian Centre for Nanomedicine and Biotechnology, BIONAND , 29590 Málaga, Spain
| |
Collapse
|
23
|
Matai I, Gopinath P. Chemically Cross-Linked Hybrid Nanogels of Alginate and PAMAM Dendrimers as Efficient Anticancer Drug Delivery Vehicles. ACS Biomater Sci Eng 2016; 2:213-223. [DOI: 10.1021/acsbiomaterials.5b00392] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ishita Matai
- Nanobiotechnology Laboratory, Centre
for Nanotechnology, and ‡Department of
Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - P. Gopinath
- Nanobiotechnology Laboratory, Centre
for Nanotechnology, and ‡Department of
Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
24
|
Zeng Z, She Y, Peng Z, Wei J, He X. Enzyme-mediated in situ formation of pH-sensitive nanogels for proteins delivery. RSC Adv 2016. [DOI: 10.1039/c5ra25133h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
pH-Sensitive (PEG-b-P(LGA-g-Tyr)) nanogels were fabricated through the enzyme-mediated crosslinking reaction and used to load FITC-BSA for intracellular protein delivery.
Collapse
Affiliation(s)
- Zhipeng Zeng
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Yingqi She
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Zhiping Peng
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| | - Junchao Wei
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | - Xiaohui He
- School of Materials Science and Engineering
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
25
|
Khor SY, Hu J, McLeod VM, Quinn JF, Porter CJ, Whittaker MR, Kaminskas LM, Davis TP. The Pharmacokinetics and Biodistribution of a 64 kDa PolyPEG Star Polymer After Subcutaneous and Pulmonary Administration to Rats. J Pharm Sci 2016; 105:293-300. [DOI: 10.1016/j.xphs.2015.11.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/30/2022]
|
26
|
Kurochkin SA, Grachev VP. Reversible deactivation radical polymerization of polyfunctional monomers. POLYMER SCIENCE SERIES C 2015. [DOI: 10.1134/s1811238215010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Chen W, Achazi K, Schade B, Haag R. Charge-conversional and reduction-sensitive poly(vinyl alcohol) nanogels for enhanced cell uptake and efficient intracellular doxorubicin release. J Control Release 2015; 205:15-24. [DOI: 10.1016/j.jconrel.2014.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/05/2014] [Accepted: 11/16/2014] [Indexed: 12/13/2022]
|
28
|
Ma K, Xu Y, An Z. Templateless synthesis of polyacrylamide-based Nanogels via RAFT dispersion polymerization. Macromol Rapid Commun 2015; 36:566-70. [PMID: 25684634 DOI: 10.1002/marc.201400730] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/22/2015] [Indexed: 11/08/2022]
Abstract
This paper reports on the synthesis of well-defined polyacrylamide-based nanogels via reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization, highlighting a templateless route for the efficient synthesis of nanogels based on water-soluble polymers. RAFT dispersion polymerization of acrylamide in co-nonsolvents of water-tert-butanol mixtures by chain extension from poly(dimethylacrylamide) shows well-controlled polymerization process, uniform nanogel size, and excellent colloidal stability. The versatility of this approach is further demonstrated by introducing a hydrophobic co-monomer (butyl acrylate) without disturbing the dispersion polymerization process.
Collapse
Affiliation(s)
- Kai Ma
- Institute of Nanochemistry and Nanobiology, College of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; Department of Chemistry, Shanghai University, Shanghai, 200444, China
| | | | | |
Collapse
|
29
|
Parisi OI, Morelli C, Scrivano L, Sinicropi MS, Cesario MG, Candamano S, Puoci F, Sisci D. Controlled release of sunitinib in targeted cancer therapy: smart magnetically responsive hydrogels as restricted access materials. RSC Adv 2015. [DOI: 10.1039/c5ra12229e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A magnetic hydrogel prepared by precipitation polymerization, with restricted access material (RAM) characteristics through the introduction of glycidyl methacrylate, for sunitinib malate release.
Collapse
Affiliation(s)
- Ortensia Ilaria Parisi
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Catia Morelli
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Luca Scrivano
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Maria Grazia Cesario
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Sebastiano Candamano
- Department of Environmental and Chemical Engineering
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Francesco Puoci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| | - Diego Sisci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- 87036 Rende (CS)
- Italy
| |
Collapse
|
30
|
Shibata Y, Santa T, Kato M. Surfactant-free aqueous preparation from a star polymer of size-controlled nanoparticles with encapsulated functional molecules. RSC Adv 2015. [DOI: 10.1039/c5ra12205h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A simple preparation method for size-controlled nanoparticles with encapsulated functional molecules in a surfactant-free aqueous condition.
Collapse
Affiliation(s)
- Yuka Shibata
- Graduate School of Pharmaceutical Sciences and GPLLI Program
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Tomofumi Santa
- Graduate School of Pharmaceutical Sciences and GPLLI Program
- The University of Tokyo
- Tokyo 113-0033
- Japan
| | - Masaru Kato
- Graduate School of Pharmaceutical Sciences and GPLLI Program
- The University of Tokyo
- Tokyo 113-0033
- Japan
| |
Collapse
|
31
|
Hartlieb M, Pretzel D, Wagner M, Hoeppener S, Bellstedt P, Görlach M, Englert C, Kempe K, Schubert US. Core cross-linked nanogels based on the self-assembly of double hydrophilic poly(2-oxazoline) block copolymers. J Mater Chem B 2015; 3:1748-1759. [DOI: 10.1039/c4tb02069c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of poly(2-oxazoline)-based block copolymers consisting of a cationic and a hydrophilic segment is described.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Michael Wagner
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Peter Bellstedt
- Biomolecular NMR Spectroscopy
- Leibniz Institute for Age Research – Fritz Lipmann Institute
- 07745 Jena
- Germany
| | - Matthias Görlach
- Biomolecular NMR Spectroscopy
- Leibniz Institute for Age Research – Fritz Lipmann Institute
- 07745 Jena
- Germany
| | - Christoph Englert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
32
|
Legros C, Wirotius AL, De Pauw-Gillet MC, Tam KC, Taton D, Lecommandoux S. Poly(2-oxazoline)-based nanogels as biocompatible pseudopolypeptide nanoparticles. Biomacromolecules 2014; 16:183-91. [PMID: 25409266 DOI: 10.1021/bm501393q] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in dilute aqueous media in the presence of 1,6-hexanediol diglycidyl ether as a cross-linker. Nanogel formation was monitored by DLS and HSQC NMR spectroscopy, and the final nano-objects were characterized by DLS, TEM, AFM, and NanoSight analyses. Nanogels with a hydrodynamic radius of 78 nm exhibiting a slight positive surface charge were obtained. MTS assays (cell metabolic activity test) evidenced that nanogels were nontoxic in the investigated concentration range (i.e., 0.1 to 400 μg/mL) and that no specific interaction with bovine serum albumin was observed.
Collapse
Affiliation(s)
- Camille Legros
- Université de Bordeaux , UMR5629, ENSCPB, 16 Avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | | | | | | | |
Collapse
|
33
|
Gomariz M, Blaya S, Acebal P, Carretero L. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering. PLoS One 2014; 9:e110518. [PMID: 25329473 PMCID: PMC4201536 DOI: 10.1371/journal.pone.0110518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/17/2014] [Indexed: 11/19/2022] Open
Abstract
We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.
Collapse
Affiliation(s)
- María Gomariz
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, Elx (Alicante), Spain
| | - Salvador Blaya
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, Elx (Alicante), Spain
| | - Pablo Acebal
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, Elx (Alicante), Spain
| | - Luis Carretero
- Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, Elx (Alicante), Spain
| |
Collapse
|
34
|
Johnson NR, Wang Y. Coacervate delivery systems for proteins and small molecule drugs. Expert Opin Drug Deliv 2014; 11:1829-32. [PMID: 25138695 DOI: 10.1517/17425247.2014.941355] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coacervates represent an exciting new class of drug delivery vehicles, developed in the past decade as carriers of small molecule drugs and proteins. This review summarizes several well-described coacervate systems, including: i) elastin-like peptides for delivery of anticancer therapeutics; ii) heparin-based coacervates with synthetic polycations for controlled growth factor delivery; iii) carboxymethyl chitosan aggregates for oral drug delivery; iv) Mussel adhesive protein and hyaluronic acid coacervates. Coacervates present advantages in their simple assembly and easy incorporation into tissue engineering scaffolds or as adjuncts to cell therapies. They are also amenable to functionalization such as for targeting or for enhancing the bioactivity of their cargo. These new drug carriers are anticipated to have broad applications and noteworthy impact in the near future.
Collapse
Affiliation(s)
- Noah R Johnson
- University of Pittsburgh, Department of Bioengineering , Pittsburgh, PA 15219 , USA
| | | |
Collapse
|
35
|
Xu Y, Li Y, Cao X, Chen Q, An Z. Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermoresponsive nanogels with controlled composition, functionality and architecture. Polym Chem 2014; 5:6244-6255. [DOI: 10.1039/c4py00867g] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|