1
|
Varni AJ, Kawakami M, Kramer SN, Rice M, Geib SJ, Peteanu LA, Kowalewski T, Noonan KJT. Investigating the impact of regiochemistry in ester functionalized polyfurans. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Anthony J. Varni
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Manami Kawakami
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Stephanie N. Kramer
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Megan Rice
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Steven J. Geib
- Department of Chemistry University of Pittsburgh Pittsburgh Pennsylvania USA
| | - Linda A. Peteanu
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Tomasz Kowalewski
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| | - Kevin J. T. Noonan
- Department of Chemistry Carnegie Mellon University Pittsburgh Pennsylvania USA
| |
Collapse
|
2
|
Ye L, Thompson BC. Improving the efficiency and sustainability of catalysts for direct arylation polymerization (DArP). JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210524] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liwei Ye
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute University of Southern California Los Angeles California USA
| |
Collapse
|
3
|
Muller EW, Burney‐Allen AA, Shaw J, Wheeler DL, Duzhko V, Jeffries‐EL M. Synthesis of 1,6‐
didecylnaphtho
[1,2‐
b
:5,6‐
b
']
difuran‐based
copolymers by direct heteroarylation polymerization. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Evan W. Muller
- Department of Chemistry, Boston University Boston Massachusetts USA
| | | | - Jessica Shaw
- Department of Chemistry, Boston University Boston Massachusetts USA
| | - David L. Wheeler
- Department of Chemistry, Boston University Boston Massachusetts USA
| | - Volodimyr Duzhko
- Department of Polymer Science and EngineeringUniversity of Massachusetts Amherst Massachusetts USA
| | - Malika Jeffries‐EL
- Department of Chemistry, Boston University Boston Massachusetts USA
- Division of Materials Science and EngineeringBoston University Boston Massachusetts USA
| |
Collapse
|
4
|
Zhao C, Yang F, Xia D, Zhang Z, Zhang Y, Yan N, You S, Li W. Thieno[3,4-c]pyrrole-4,6-dione-based conjugated polymers for organic solar cells. Chem Commun (Camb) 2020; 56:10394-10408. [DOI: 10.1039/d0cc04150e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Thieno[3,4-c]pyrrole-4,6-dione (TPD) based conjugated polymers as an electron donor, acceptor and single-component for application in organic solar cells in the past ten years have been intensively reviewed in this Feature Article.
Collapse
Affiliation(s)
- Chaowei Zhao
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Fan Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Shandong Normal University
- Jinan 250014
| | - Dongdong Xia
- Beijing National Laboratory for Molecular Sciences
- CAS Key Laboratory of Organic Solids, Institute of Chemistry
- Chinese Academy of Sciences
- Beijing
- P. R. China
| | - Zhou Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- College of Chemistry and Environmental Science
| | - Yuefeng Zhang
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Nanfu Yan
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Shengyong You
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
| | - Weiwei Li
- Institute of Applied Chemistry
- Jiangxi Academy of Sciences
- Nanchang 330096
- P. R. China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic–Inorganic Composites
| |
Collapse
|
5
|
Yamashita A, Nishiyama H, Inagi S, Tomita I. Synthesis of π-conjugated poly(arylene)s by polycondensation of 1,4-bis(3-methylpyridin-2-yl)benzene and aryl dibromides through regiospecific C-H functionalization process. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.29265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Akira Yamashita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Hiroki Nishiyama
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| | - Ikuyoshi Tomita
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology; Tokyo Institute of Technology; Nagatsuta-cho 4259-G1-9, Midori-ku, Yokohama 226-8502 Japan
| |
Collapse
|
6
|
Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, Melkonyan FS, Facchetti A, Marks TJ. Suppressing Defect Formation Pathways in the Direct C–H Arylation Polymerization of Photovoltaic Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b02297] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | | | - Lin X. Chen
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | | | | | - Antonio Facchetti
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | |
Collapse
|
7
|
Blaskovits JT, Johnson PA, Leclerc M. Mechanistic Origin of β-Defect Formation in Thiophene-Based Polymers Prepared by Direct (Hetero)arylation. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Paul A. Johnson
- Department of Chemistry, Université Laval, Québec City, Québec G1V 0A6, Canada
| | - Mario Leclerc
- Department of Chemistry, Université Laval, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
8
|
Blaskovits JT, Leclerc M. CH Activation as a Shortcut to Conjugated Polymer Synthesis. Macromol Rapid Commun 2018; 40:e1800512. [DOI: 10.1002/marc.201800512] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/08/2018] [Indexed: 11/11/2022]
|
9
|
Patra D, Lee J, Dey S, Lee J, Kalin AJ, Putta A, Fei Z, McCarthy-Ward T, Bazzi HS, Fang L, Heeney M, Yoon MH, Al-Hashimi M. Chalcogen Bridged Thieno- and Selenopheno[2,3-d:5,4-d′]bisthiazole and Their Diketopyrrolopyrrole Based Low-Bandgap Copolymers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00826] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dhananjaya Patra
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Jaehyuk Lee
- Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Somnath Dey
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Jongbok Lee
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77845-3255, United States
| | - Alexander J. Kalin
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77845-3255, United States
| | - Anjaneyulu Putta
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Zhuping Fei
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Thomas McCarthy-Ward
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Hassan S. Bazzi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77845-3255, United States
| | - Martin Heeney
- Department of Chemistry and Centre for Plastic Electronics, Imperial College London, Exhibition Road, London SW7 2AZ, U.K
| | - Myung-Han Yoon
- Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-Gwagiro, Buk-gu, Gwangju 61005, South Korea
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar
| |
Collapse
|
10
|
Wakioka M, Ozawa F. Highly Efficient Catalysts for Direct Arylation Polymerization (DArP). ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800227] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Masayuki Wakioka
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS); Institute for Chemical Research & IRCCS; Kyoto University; Uji Kyoto 611-0011 Japan
| |
Collapse
|
11
|
Ayhan O, Riensch NA, Glasmacher C, Helten H. Cyclolinear Oligo- and Poly(iminoborane)s: The Missing Link in Inorganic Main-Group Macromolecular Chemistry. Chemistry 2018; 24:5883-5894. [DOI: 10.1002/chem.201705913] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ozan Ayhan
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Nicolas A. Riensch
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Clemens Glasmacher
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| | - Holger Helten
- Institute of Inorganic Chemistry; RWTH Aachen University; Landoltweg 1 52056 Aachen Germany
| |
Collapse
|
12
|
Wang K, Huang J, Ko J, Leong WL, Wang M. Direct arylation polymerization toward ultra-low bandgap poly(thienoisoindigo-alt
-diketopyrrolepyrrole) conjugated polymers: The effect of β-protection on the polymerization and properties of the polymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kai Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Jing Huang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Jieun Ko
- School of Electrical and Electronic Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 639798 Singapore
| | - Wei Lin Leong
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
- School of Electrical and Electronic Engineering; Nanyang Technological University; 50 Nanyang Drive Singapore 639798 Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
13
|
Bura T, Beaupré S, Légaré MA, Quinn J, Rochette E, Blaskovits JT, Fontaine FG, Pron A, Li Y, Leclerc M. Direct heteroarylation polymerization: guidelines for defect-free conjugated polymers. Chem Sci 2017; 8:3913-3925. [PMID: 28966781 PMCID: PMC5578375 DOI: 10.1039/c7sc00589j] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/09/2017] [Indexed: 12/02/2022] Open
Abstract
Direct (hetero)arylation polymerization (DHAP) has emerged as a valuable and atom-economical alternative to traditional cross-coupling methods for the synthesis of low-cost and efficient conjugated polymers for organic electronics. However, when applied to the synthesis of certain (hetero)arene-based materials, a lack of C-H bond selectivity has been observed. To prevent such undesirable side-reactions, we report the design and synthesis of new, bulky, phosphine-based ligands that significantly enhance selectivity of the DHAP process for both halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. To better understand the selectivity issues, density functional theory (DFT) calculations have been performed on various halogenated and non-halogenated electron-rich and electron-deficient thiophene-based comonomers. Calculations showed that the presence of bromine atoms decreases the energy of activation (Ea) of the adjacent C-H bonds, allowing undesirable β-defects for some brominated aromatic units. Both calculations and the new ligands should lead to the rational design of monomers and methods for the preparation of defect-free conjugated polymers from DHAP.
Collapse
Affiliation(s)
- Thomas Bura
- Canada Research Chair on Electroactive and Photoactive Polymers , Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada .
| | - Serge Beaupré
- Canada Research Chair on Electroactive and Photoactive Polymers , Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada .
| | - Marc-André Légaré
- Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada
| | - Jesse Quinn
- Department of Chemical Engineering , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Etienne Rochette
- Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada
| | - J Terence Blaskovits
- Canada Research Chair on Electroactive and Photoactive Polymers , Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada .
| | | | - Agnieszka Pron
- Merck Chemicals Ltd , Chilworth Technical Centre , SO16 7QD , UK (A Subsidiary of Merck KGaA, Darmstadt, Germany)
| | - Yuning Li
- Department of Chemical Engineering , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Mario Leclerc
- Canada Research Chair on Electroactive and Photoactive Polymers , Department of Chemistry , Université Laval , Quebec City , Quebec G1V 0A6 , Canada .
| |
Collapse
|
14
|
Wakioka M, Ozawa F. Development of Palladium-Catalyzed Direct Arylation Polymerization (DArP). J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Fumiyuki Ozawa
- Internal Research Center for Elements Science, Institute for Chemical Research, Kyoto University
| |
Collapse
|
15
|
Lombeck F, Marx F, Strassel K, Kunz S, Lienert C, Komber H, Friend R, Sommer M. To branch or not to branch: C–H selectivity of thiophene-based donor–acceptor–donor monomers in direct arylation polycondensation exemplified by PCDTBT. Polym Chem 2017. [DOI: 10.1039/c7py00879a] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The possibility for unselective C–H activation of a thiophene-based, donor–acceptor–donor monomer during direct arylation polycondensation is investigated.
Collapse
Affiliation(s)
- Florian Lombeck
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Optoelectronics Group
| | - Franziska Marx
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Karen Strassel
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | - Susanna Kunz
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
| | | | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Richard Friend
- Optoelectronics Group
- Cavendish Laboratory
- J.J. Thomson Avenue
- University of Cambridge
- Cambridge CB3 0HE
| | - Michael Sommer
- Makromolekulare Chemie
- Universität Freiburg
- 79104 Freiburg
- Germany
- Freiburger Materialforschungszentrum
| |
Collapse
|
16
|
Dudnik AS, Aldrich TJ, Eastham ND, Chang RPH, Facchetti A, Marks TJ. Tin-Free Direct C-H Arylation Polymerization for High Photovoltaic Efficiency Conjugated Copolymers. J Am Chem Soc 2016; 138:15699-15709. [PMID: 27933999 DOI: 10.1021/jacs.6b10023] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A new and highly regioselective direct C-H arylation polymerization (DARP) methodology enables the reproducible and sustainable synthesis of high-performance π-conjugated photovoltaic copolymers. Unlike traditional Stille polycondensation methods for producing photovoltaic copolymers, this DARP protocol eliminates the need for environmentally harmful, toxic organotin compounds. This DARP protocol employs low loadings of commercially available catalyst components, Pd2(dba)3·CHCl3 (0.5 mol%) and P(2-MeOPh)3 (2 mol%), sterically tuned carboxylic acid additives, and an environmentally friendly solvent, 2-methyltetrahydrofuran. Using this DARP protocol, several representative copolymers are synthesized in excellent yields and high molecular masses. The DARP-derived copolymers are benchmarked versus Stille-derived counterparts by close comparison of optical, NMR spectroscopic, and electrochemical properties, all of which indicate great chemical similarity and no significant detectable structural defects in the DARP copolymers. The DARP- and Stille-derived copolymer and fullerene blend microstructural properties and morphologies are characterized with AFM, TEM, and XRD and are found to be virtually indistinguishable. Likewise, the charge generation, recombination, and transport characteristics of the fullerene blend films are found to be identical. For the first time, polymer solar cells fabricated using DARP-derived copolymers exhibit solar cell performances rivalling or exceeding those achieved with Stille-derived materials. For the DARP copolymer PBDTT-FTTE, the power conversion efficiency of 8.4% is a record for a DARP copolymer.
Collapse
Affiliation(s)
- Alexander S Dudnik
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Thomas J Aldrich
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Nicholas D Eastham
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Robert P H Chang
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Antonio Facchetti
- Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Polyera Corporation , 8045 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering and Argonne Northwestern Solar Energy Research Center (ANSER), Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Pouliot JR, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. Chem Rev 2016; 116:14225-14274. [DOI: 10.1021/acs.chemrev.6b00498] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jean-Rémi Pouliot
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - François Grenier
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | | | - Serge Beaupré
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| | - Mario Leclerc
- Département de Chimie, Université Laval, Quebec City, Quebec G1V 0A6, Canada
| |
Collapse
|
18
|
Bura T, Blaskovits JT, Leclerc M. Direct (Hetero)arylation Polymerization: Trends and Perspectives. J Am Chem Soc 2016; 138:10056-71. [DOI: 10.1021/jacs.6b06237] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Bura
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| | | | - Mario Leclerc
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| |
Collapse
|
19
|
Iizuka E, Wakioka M, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Effective Prevention of Structural Defects Using Diamines. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00441] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Eisuke Iizuka
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masayuki Wakioka
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International
Research Center
for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
20
|
Wakioka M, Ishiki S, Ozawa F. Synthesis of Donor–Acceptor Polymers Containing Thiazolo[5,4-d]thiazole Units via Palladium-Catalyzed Direct Arylation Polymerization. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01822] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Masayuki Wakioka
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Satoru Ishiki
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ACT-C, Japan Science
and Technology Agency, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
21
|
Livi F, Gobalasingham NS, Bundgaard E, Thompson BC. Influence of functionality on direct arylation of model systems as a route toward fluorinated copolymers via direct arylation polymerization (DArP). ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27728] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Francesco Livi
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
- DTU Energy; Technical University of Denmark; Frederiksborgvej 399, 4000 Roskilde Denmark
| | - Nemal S. Gobalasingham
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
| | - Eva Bundgaard
- DTU Energy; Technical University of Denmark; Frederiksborgvej 399, 4000 Roskilde Denmark
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; Los Angeles California 90089-1661
| |
Collapse
|
22
|
Matsidik R, Komber H, Luzio A, Caironi M, Sommer M. Defect-free Naphthalene Diimide Bithiophene Copolymers with Controlled Molar Mass and High Performance via Direct Arylation Polycondensation. J Am Chem Soc 2015; 137:6705-11. [DOI: 10.1021/jacs.5b03355] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rukiya Matsidik
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Straße 21, Universität Freiburg, 79104 Freiburg, Germany
| | - Hartmut Komber
- Leibniz Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Alessandro Luzio
- Center
for Nanoscience and Technology @PoliMi, Instituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Mario Caironi
- Center
for Nanoscience and Technology @PoliMi, Instituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Italy
| | - Michael Sommer
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan-Meier-Straße 21, Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
23
|
Iizuka E, Wakioka M, Ozawa F. Mixed-Ligand Approach to Palladium-Catalyzed Direct Arylation Polymerization: Synthesis of Donor–Acceptor Polymers with Dithienosilole (DTS) and Thienopyrroledione (TPD) Units. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00526] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Eisuke Iizuka
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masayuki Wakioka
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International Research Center for Elements Science (IRCELS),
Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ACT-C, Japan Science and Technology Agency, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
24
|
Pouliot JR, Sun B, Leduc M, Najari A, Li Y, Leclerc M. A high mobility DPP-based polymer obtained via direct (hetero)arylation polymerization. Polym Chem 2015. [DOI: 10.1039/c4py01222d] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Many diketopyrrolopyrrole-based (DPP) polymers have shown remarkable transport properties and to fabricate cost efficient materials, the new direct (hetero)arylation polymerization (DHAP) could become a valuable tool.
Collapse
Affiliation(s)
| | - Bin Sun
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Mikaël Leduc
- Département de Chimie
- Université Laval
- Quebec City
- Canada G1V 0A6
| | - Ahmed Najari
- Département de Chimie
- Université Laval
- Quebec City
- Canada G1V 0A6
| | - Yuning Li
- Department of Chemical Engineering
- University of Waterloo
- Waterloo
- Canada N2L 3G1
| | - Mario Leclerc
- Département de Chimie
- Université Laval
- Quebec City
- Canada G1V 0A6
| |
Collapse
|
25
|
Wakioka M, Nakamura Y, Montgomery M, Ozawa F. Remarkable Ligand Effect of P(2-MeOC6H4)3 on Palladium-Catalyzed Direct Arylation. Organometallics 2014. [DOI: 10.1021/om501052g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Masayuki Wakioka
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yuki Nakamura
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Michelle Montgomery
- JSPS
Student Fellow from School of Chemistry, University of Bristol, Bristol BS8 1TH, U.K
| | - Fumiyuki Ozawa
- International
Research Center for Elements Science (IRCELS), Institute for Chemical
Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- JST ACT-C, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
26
|
Ananikov VP, Khemchyan LL, Ivanova YV, Bukhtiyarov VI, Sorokin AM, Prosvirin IP, Vatsadze SZ, Medved'ko AV, Nuriev VN, Dilman AD, Levin VV, Koptyug IV, Kovtunov KV, Zhivonitko VV, Likholobov VA, Romanenko AV, Simonov PA, Nenajdenko VG, Shmatova OI, Muzalevskiy VM, Nechaev MS, Asachenko AF, Morozov OS, Dzhevakov PB, Osipov SN, Vorobyeva DV, Topchiy MA, Zotova MA, Ponomarenko SA, Borshchev OV, Luponosov YN, Rempel AA, Valeeva AA, Stakheev AY, Turova OV, Mashkovsky IS, Sysolyatin SV, Malykhin VV, Bukhtiyarova GA, Terent'ev AO, Krylov IB. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. RUSSIAN CHEMICAL REVIEWS 2014. [DOI: 10.1070/rc2014v83n10abeh004471] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Cha H, Kim HN, An TK, Kang MS, Kwon SK, Kim YH, Park CE. Effects of cyano-substituents on the molecular packing structures of conjugated polymers for bulk-heterojunction solar cells. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15774-15782. [PMID: 25153511 DOI: 10.1021/am502795y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The molecular packing structures of two conjugated polymers based on alkoxy naphthalene, one with cyano-substituents and one without, have been investigated to determine the effects of electron-withdrawing cyano-groups on the performance of bulk-heterojunction solar cells. The substituted cyano-groups facilitate the self-assembly of the polymer chains, and the cyano-substituted polymer:PC71BM blend exhibits enhanced exciton dissociation to PC71BM. Moreover, the electron-withdrawing cyano-groups lower the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels of the conjugated polymer, which leads to a higher open circuit voltage (V(OC)) and a lower energy loss during electron transfer from the donor to the acceptor. A bulk-heterojunction device fabricated with the cyano-substituted polymer:PC71BM blend has a higher V(OC) (0.89 V), a higher fill factor (FF) (51.4%), and a lower short circuit current (J(SC)) (7.4 mA/cm(2)) than that of the noncyano-substituted polymer:PC71BM blend under AM 1.5G illumination with an intensity of 100 mW cm(-2). Thus, the cyano-substitution of conjugated polymers may be an effective strategy for optimizing the domain size and crystallinity of the polymer:PC71BM blend, and for increasing V(OC) by tuning the HOMO and LUMO energy levels of the conjugated polymer.
Collapse
Affiliation(s)
- Hyojung Cha
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, 790-784, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Lombeck F, Komber H, Gorelsky SI, Sommer M. Identifying Homocouplings as Critical Side Reactions in Direct Arylation Polycondensation. ACS Macro Lett 2014; 3:819-823. [PMID: 35590707 DOI: 10.1021/mz5004147] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Homocouplings are identified as major side reactions in direct arylation polycondensation (DAP) of 4,7-bis(4-hexyl-2-thienyl)-2,1,3-benzothiadiazole (TBT) and 2,7-dibromo-9-(1-octylnonyl)-9H-carbazole (CbzBr2). Using size exclusion chromatography (SEC) and NMR spectroscopy, we demonstrate that both TBT and Cbz homocouplings occur at a considerable extent. TBT homocoupling preferentially occurs under phosphine-free conditions but can be suppressed in the presence of a phosphine ligand. Cbz homocoupling is temperature-dependent and more prevalent at higher temperatures. By contrast, evidence for chain branching as a result of unselective C-H arylation is not found for this monomer combination. These results emphasize that particular attention has to be paid to homocouplings in direct arylation polycondensations as a major source of main-chain defects, especially under phosphine-free conditions.
Collapse
Affiliation(s)
- Florian Lombeck
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Optoelectronics
Group, Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Hartmut Komber
- Leibniz Institut
für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Serge I. Gorelsky
- Centre
for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Michael Sommer
- Makromolekulare
Chemie, Universität Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany
- Freiburger
Materialforschungszentrum, Stefan Meier-Straße
21, 79100 Freiburg, Germany
| |
Collapse
|
29
|
Rudenko AE, Thompson BC. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27279] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Andrey E. Rudenko
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; 837 Bloom Walk Los Angeles California 90089-1661
| | - Barry C. Thompson
- Department of Chemistry and Loker Hydrocarbon Research Institute; University of Southern California; 837 Bloom Walk Los Angeles California 90089-1661
| |
Collapse
|
30
|
Rudenko AE, Khlyabich PP, Thompson BC. Random Poly(3-hexylthiophene- co-3-cyanothiophene) Copolymers via Direct Arylation Polymerization (DArP) for Organic Solar Cells with High Open-Circuit Voltage. ACS Macro Lett 2014; 3:387-392. [PMID: 35590751 DOI: 10.1021/mz5001652] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A family of four poly(3-hexylthiophene) (P3HT) based copolymers containing 5, 10, 15, and 20% of 3-cyanothiophene (CNT) incorporated in a random fashion with a regioregular linkage pattern (P3HT-CNT) were successfully synthesized via direct arylation polymerization (DArP). Unique reaction conditions, previously reported for P3HT, were used, which employ very low loadings of Pd(OAc)2 as a catalyst and an inexpensive bulky carboxylic acid (neodecanoic acid) as an essential part of the palladium catalytic center. The chemical structures and optoelectronic properties of DArP P3HT-CNT polymers were found to be similar to those of previously investigated P3HT-CNT polymers synthesized via Stille polycondensation. All polymers are semicrystalline with high hole mobilities and UV-vis absorption profiles that resemble P3HT, while the polymer highest occupied molecular orbital (HOMO) level decreases with increasing content of cyanothiophene in both DArP and Stille P3HT-CNT polymers. In photovoltaic devices with a PC61BM acceptor, DArP P3HT-CNT copolymers showed slightly lower open-circuit voltages (Voc) than their Stille P3HT-CNT analogues but similar fill factors (FF) and significantly enhanced short-circuit current densities (Jsc), leading to overall power conversion efficiencies for the DArP polymers that rivaled or exceeded those of the Stille polymers. This work further emphasizes the generality and relevance of DArP for the synthesis of conjugated polymers for use in organic solar cells and the attractive simplicity and ease of synthesis of random conjugated polymers.
Collapse
Affiliation(s)
- Andrey E. Rudenko
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Petr P. Khlyabich
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| | - Barry C. Thompson
- Department of Chemistry and
Loker Hydrocarbon Research Institute, University of Southern California, Los Angeles, California 90089-1661, United States
| |
Collapse
|
31
|
Kanbara T, Kuwabara J, Lu W. Ru-catalyzed site-selective direct arylation polycondensation via ortho-metalation of pyrrole derivative. ACTA ACUST UNITED AC 2014. [DOI: 10.1088/1757-899x/54/1/012012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Wakioka M, Ichihara N, Kitano Y, Ozawa F. A Highly Efficient Catalyst for the Synthesis of Alternating Copolymers with Thieno[3,4-c]pyrrole-4,6-dione Units via Direct Arylation Polymerization. Macromolecules 2014. [DOI: 10.1021/ma4023668] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Masayuki Wakioka
- International
Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuko Ichihara
- International
Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yutaro Kitano
- International
Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Fumiyuki Ozawa
- International
Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- ACT-C, Japan Science and Technology Agency, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
33
|
Kuwabara J, Kanbara T. Development of Synthetic Method for ^|^pi;-Conjugated Polymers via Direct Arylation Polycondensation. J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.1271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Chang SY, Lin PH, Liu CY. Pd-catalyzed direct C–H arylation of thieno[3,4-c]pyrrole-4,6-dione (TPD): a step-economical synthetic alternative to access TPD-centred symmetrical small molecules. RSC Adv 2014. [DOI: 10.1039/c4ra05380j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A viable synthetic alternative for the facile construction of various thieno[3,4-c]pyrrole-4,6-dione (TPD)-based π-functional small molecules through direct C–H arylations has been demonstrated.
Collapse
Affiliation(s)
- Shan-Yun Chang
- Department of Chemical and Materials Engineering
- National Central University
- Jhongli City, R.O.C
| | - Po-Han Lin
- Department of Chemical and Materials Engineering
- National Central University
- Jhongli City, R.O.C
| | - Ching-Yuan Liu
- Department of Chemical and Materials Engineering
- National Central University
- Jhongli City, R.O.C
| |
Collapse
|
35
|
Wang X, Wang M. Synthesis of donor–acceptor conjugated polymers based on benzo[1,2-b:4,5-b′]dithiophene and 2,1,3-benzothiadiazole via direct arylation polycondensation: towards efficient C–H activation in nonpolar solvents. Polym Chem 2014. [DOI: 10.1039/c4py00565a] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,2-Dimethylbenzene, as a nonpolar high boiling point solvent, has been discovered to be a superior medium to perform direct-arylation polymerization.
Collapse
Affiliation(s)
- Xiaochen Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459, Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459, Singapore
| |
Collapse
|
36
|
Zhang Q, Wan X, Lu Y, Li Y, Li Y, Li C, Wu H, Chen Y. The synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers using a Pd-catalyzed oxidative C–H/C–H homopolymerization reaction. Chem Commun (Camb) 2014; 50:12497-9. [DOI: 10.1039/c4cc06284a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple, mild, atom economical homopolymerization method through Pd-catalyzed oxidative C–H/C–H coupling was developed for the preparation of a series of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based conjugated polymers.
Collapse
Affiliation(s)
- Qiang Zhang
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Xiangjian Wan
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Yan Lu
- School of Materials Science & Engineering
- Tianjin University of Technology
- Tianjin, China
| | - Yandong Li
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Yuefeng Li
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Chenxi Li
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Hao Wu
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| | - Yongsheng Chen
- Key Laboratory of Functional Polymer Materials
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Center for Nanoscale Science and Technology
- Institute of Polymer Chemistry
- College of Chemistry
| |
Collapse
|
37
|
Mercier LG, Leclerc M. Direct (hetero)arylation: a new tool for polymer chemists. Acc Chem Res 2013; 46:1597-605. [PMID: 23544354 DOI: 10.1021/ar3003305] [Citation(s) in RCA: 322] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The coupling of aryl halides with catalytically activated aryl C-H bonds provides a desirable and atom-economical alternative to standard cross-coupling reactions for the construction of new C-C bonds. The reaction, termed direct (hetero)arylation, is believed to follow a base-assisted, concerted metalation-deprotonation (CMD) pathway. During this process, carboxylate or carbonate anions coordinate to the metal center, typically palladium, in situ and assist in the deprotonation transition state. Researchers have employed this methodology with numerous arenes and heteroarenes, including substituted benzenes, perfluorinated benzenes, and thiophenes. Thiophene substrates have demonstrated high reactivity toward C-H bond activation when appropriately substituted with electron-rich and/or electron-deficient groups. Because of the pervasive use of thiophenes in materials for organic electronics, researchers have used this chemistry to modularly prepare conjugated small molecules and, more recently, conjugated polymers. Although optimization of reaction conditions such as solvent system, phosphine ligand, carboxylate additives, temperature, and time is necessary for efficient C-H bond reactivity of each monomer, direct (hetero)arylation polymerization (DHAP) can afford high yielding polymeric materials with elevated molecular weights. The properties of these materials often rival those of polymers prepared by traditional methods. Moreover, DHAP provides a facile means for the synthesis of polymers that were previously inaccessible or difficult to prepare due to the instability of organometallic monomers. The major downfall of direct (hetero)arylation, however, is the lack of C-H bond selectivity, particularly for thiophene substrates, which can result in cross-linked material during polymerization reactions. Further fine-tuning of reaction conditions such as temperature and reaction time may suppress these unwanted side reactions. Alternatively, new monomers can be designed where other reactive bonds are blocked, either sterically or by substitution with unreactive alkyl or halogen groups. In this Account, we illustrate these methods and present examples of DHAP reactions that involve the preparation of common homopolymers used in organic electronics (P3HT, PEDOT, PProDOT), copolymers formed by activation of electron-rich (bithiophene, fused bithiophenes) and electron-deficient monomers (TPD, 1,2,4,5-tetrafluorobenzene, 2,2'-bithiazole). Our group is optimizing these reactions and developing ways to make DHAP a common atom-economical synthetic tool for polymer chemists.
Collapse
Affiliation(s)
- Lauren G. Mercier
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| | - Mario Leclerc
- Department of Chemistry, Université Laval, Quebec City, QC, Canada G1V 0A6
| |
Collapse
|