1
|
Quang Tran H, Bhave M, Yu A. Current Advances of Hollow Capsules as Controlled Drug Delivery Systems. ChemistrySelect 2020. [DOI: 10.1002/slct.201904598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Huy Quang Tran
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Mrinal Bhave
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| | - Aimin Yu
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology Swinburne University of Technology Hawthorn, Victoria 3122 Australia
| |
Collapse
|
2
|
Ahmadi Y, De Llano E, Barišić I. (Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. NANOSCALE 2018; 10:7494-7504. [PMID: 29637957 DOI: 10.1039/c7nr09461b] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
DNA nanostructures hold immense potential to be used for biological and medical applications. However, they are extremely vulnerable towards salt depletion and nucleases, which are common under physiological conditions. In this contribution, we used chitosan and linear polyethyleneimine for coating and long-term stabilization of several three-dimensional DNA origami nanostructures. The impact of the degree of polymerization and the charge density of the polymer together with the N/P charge ratio (ratio of the amines in polycations to the phosphates in DNA) on the stability of encapsulated DNA origami nanostructures in the presence of nucleases and in low-salt media was examined. The polycation shells were compatible with enzyme- and aptamer-based functionalization of the DNA nanostructures. Additionally, we showed that despite being highly vulnerable to salt depletion and nucleolytic digestion, self-assembled DNA nanostructures are stable in cell culture media up to a week. This was contrary to unassembled DNA scaffolds that degraded in one hour, showing that placing DNA strands into a spatially designed configuration crucially affect the structural integrity. The stability of naked DNA nanostructures in cell culture was shown to be mediated by growth media. DNA origami nanostructures kept in growth media were significantly more resistant towards low-salt denaturation, DNase I and serum-mediated digestion than when in a conventional buffer. Moreover, we confirmed that DNA origami nanostructures remain not only structurally intact but also fully functional after exposure to cell media. Agarose gel electrophoresis and negative stain transmission electron microscopy analysis revealed the hybridization of DNA origami nanostructures to their targets in the presence of serum proteins and nucleases. The structural integrity and functionality of DNA nanostructures in physiological fluids validate their use particularly for short-time biological applications in which the shape and structural details of DNA nanodevices are functionally critical.
Collapse
Affiliation(s)
- Yasaman Ahmadi
- Molecular Diagnostics, Centre for Health and Bioresources, AIT Austrian Institute of Technology GmbH, 1190 Vienna, Austria.
| | | | | |
Collapse
|
3
|
Haladjova E, Kyulavska M, Doumanov J, Topouzova-Hristova T, Petrov P. Polymeric vehicles for transport and delivery of DNA via cationic micelle template method. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4193-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
4
|
Mees M, Haladjova E, Momekova D, Momekov G, Shestakova PS, Tsvetanov CB, Hoogenboom R, Rangelov S. Partially Hydrolyzed Poly(n-propyl-2-oxazoline): Synthesis, Aqueous Solution Properties, and Preparation of Gene Delivery Systems. Biomacromolecules 2016; 17:3580-3590. [DOI: 10.1021/acs.biomac.6b01088] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Maarten Mees
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | | - Denitsa Momekova
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | - Georgi Momekov
- Faculty
of Pharmacy, Medical University of Sofia, 2 Dunav str., Sofia 1000, Bulgaria
| | | | | | - Richard Hoogenboom
- Supramolecular
Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
5
|
Karimi M, Zangabad PS, Ghasemi A, Amiri M, Bahrami M, Malekzad H, Asl HG, Mahdieh Z, Bozorgomid M, Ghasemi A, Boyuk MRRT, Hamblin MR. Temperature-Responsive Smart Nanocarriers for Delivery Of Therapeutic Agents: Applications and Recent Advances. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21107-33. [PMID: 27349465 PMCID: PMC5003094 DOI: 10.1021/acsami.6b00371] [Citation(s) in RCA: 260] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external stimulus when heat is applied from the outside, or can be internal when pathological lesions have a naturally elevated termperature. A low critical solution temperature (LCST) is a special feature of some polymeric materials, and most of the temperature-responsive nanocarriers have been designed based on this feature. In this review, we attempt to summarize recent efforts to prepare innovative temperature-responsive nanocarriers and discuss their novel applications.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Parham Sahandi Zangabad
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science (TUOMS), Tabriz, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Mohammad Amiri
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Mohsen Bahrami
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Hedieh Malekzad
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
- Department of Chemistry, Kharazmi University of Tehran, Tehran, Iran
| | - Hadi Ghahramanzadeh Asl
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
| | - Zahra Mahdieh
- Department of Biomedical and Pharmaceutical Sciences, Material Science and Engineering, University of Montana, Missoula, Montana 59812, United States
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Azadi Avenue, 14588 Tehran, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, Iran
| | | | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Szweda R, Trzebicka B, Dworak A, Otulakowski L, Kosowski D, Hertlein J, Haladjova E, Rangelov S, Szweda D. Smart Polymeric Nanocarriers of Met-enkephalin. Biomacromolecules 2016; 17:2691-700. [DOI: 10.1021/acs.biomac.6b00725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roza Szweda
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Andrzej Dworak
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Lukasz Otulakowski
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Dominik Kosowski
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Justyna Hertlein
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| | - Emi Haladjova
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 103-A, Sofia, 1113, Bulgaria
| | - Stanislav Rangelov
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 103-A, Sofia, 1113, Bulgaria
| | - Dawid Szweda
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, 41-819, Poland
| |
Collapse
|
7
|
Haladjova E, Mountrichas G, Pispas S, Rangelov S. Poly(vinyl benzyl trimethylammonium chloride) Homo and Block Copolymers Complexation with DNA. J Phys Chem B 2016; 120:2586-95. [DOI: 10.1021/acs.jpcb.5b12477] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Emi Haladjova
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.103A, Sofia 1113, Bulgaria
| | - Grigoris Mountrichas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 116 35 Athens, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Ave., 116 35 Athens, Greece
| | - Stanislav Rangelov
- Institute
of Polymers, Bulgarian Academy of Sciences, Acad. G. Bonchev St. bl.103A, Sofia 1113, Bulgaria
| |
Collapse
|
8
|
Haladjova E, Toncheva-Moncheva N, Apostolova MD, Trzebicka B, Dworak A, Petrov P, Dimitrov I, Rangelov S, Tsvetanov CB. Polymeric Nanoparticle Engineering: From Temperature-Responsive Polymer Mesoglobules to Gene Delivery Systems. Biomacromolecules 2014; 15:4377-95. [DOI: 10.1021/bm501194g] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Emi Haladjova
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| | - Natalia Toncheva-Moncheva
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| | - Margarita D. Apostolova
- Institute
of Molecular Biology “Roumen Tsanev”, Bulgarian Academy of Sciences, “Akad. G. Bonchev” St. 21, 1113 Sofia, Bulgaria
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Andrzej Dworak
- Centre
of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Petar Petrov
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| | - Ivaylo Dimitrov
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| | - Stanislav Rangelov
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| | - Christo B. Tsvetanov
- Institute
of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev”
St. 103A, 1113 Sofia, Bulgaria
| |
Collapse
|
9
|
Haladjova E, Rangelov S, Tsvetanov C, Simon P. Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Fluorescent labelled dual-stimuli (pH/thermo) responsive self-assembled side-chain amino acid based polymers. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.12.054] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Kowalczuk A, Trzcinska R, Trzebicka B, Müller AH, Dworak A, Tsvetanov CB. Loading of polymer nanocarriers: Factors, mechanisms and applications. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.10.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|