1
|
Sun X, Tang X, Gao YL, Zhao Y, Wu Q, Cao D, Shen H. An atomically precise Ag 18Cu 8 nanocluster with rich alkynyl-metal coordination structures and unique SbF 6- assembling modes. NANOSCALE 2023; 15:2316-2322. [PMID: 36636988 DOI: 10.1039/d2nr05814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Elucidating the coordination structures and assembling modes of atomically precise metal nanoclusters (NCs) remains a hot topic as it gives answers to the underlying mechanism of nanomaterials and bulk materials in terms of structure-property relationships. Here we report a novel silver-copper alloy NC featuring rich alkynyl-metal coordination modes and unique SbF6- assembling structures. The NC, with the composition of [Ag18Cu8(dppp)4(tBu-C6H4CC)22](SbF6)4 (dppp = 1,3-bis(diphenylphosphino)-propane), was prepared by a stepwise synthetic approach. Single-crystal X-ray diffraction analysis revealed that such a NC featured a staircase-like Ag18Cu8 kernel, which was protected by hybrid alkynyl and dppp ligands in diverse coordination structures and multiple environments. The structural analysis also revealed the unique function of SbF6- in inducing the assembly of cluster moieties, highlighting the importance of counterions in assembling nanomolecules. The diverse coordination structures of the protective ligands with metal ions and the indispensable roles of counterions in assembling the cluster moieties have also been supported by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) studies, making it a model system to showcase the uniqueness of atomically precise metal NCs in illustrating the coordination chemistry of nanomaterials and bulk materials at the molecular level.
Collapse
Affiliation(s)
- Xueli Sun
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Xiongkai Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan-Li Gao
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Yujuan Zhao
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| | - Qingyuan Wu
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Dongxu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hui Shen
- College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
2
|
Hoang KNL, McClain SM, Meyer SM, Jalomo CA, Forney NB, Murphy CJ. Site-selective modification of metallic nanoparticles. Chem Commun (Camb) 2022; 58:9728-9741. [PMID: 35975479 DOI: 10.1039/d2cc03603g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Surface patterning of inorganic nanoparticles through site-selective functionalization with mixed-ligand shells or additional inorganic material is an intriguing approach to developing tailored nanomaterials with potentially novel and/or multifunctional properties. The unique physicochemical properties of such nanoparticles are likely to impact their behavior and functionality in biological environments, catalytic systems, and electronics applications, making it vital to understand how we can achieve and characterize such regioselective surface functionalization. This Feature Article will review methods by which chemists have selectively modified the surface of colloidal nanoparticles to obtain both two-sided Janus particles and nanoparticles with patchy or stripey mixed-ligand shells, as well as to achieve directed growth of mesoporous oxide materials and metals onto existing nanoparticle templates in a spatially and compositionally controlled manner. The advantages and drawbacks of various techniques used to characterize the regiospecificity of anisotropic surface coatings are discussed, as well as areas for improvement, and future directions for this field.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Sophia M McClain
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Sean M Meyer
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Catherine A Jalomo
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Nathan B Forney
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, 61801, USA.
| |
Collapse
|
3
|
Engineering surface amphiphilicity of polymer nanostructures. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Jayawardena HSN, Liyanage SH, Rathnayake K, Patel U, Yan M. Analytical Methods for Characterization of Nanomaterial Surfaces. Anal Chem 2021; 93:1889-1911. [PMID: 33434434 PMCID: PMC7941215 DOI: 10.1021/acs.analchem.0c05208] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- H Surangi N Jayawardena
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| | - Kavini Rathnayake
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Unnati Patel
- Department of Chemistry, The University of Alabama in Huntsville, Huntsville, Alabama 35899, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, Massachusetts 01854, United States
| |
Collapse
|
5
|
Abstract
The last two decades have seen great advancements in fundamental understanding and applications of metallic nanoparticles stabilized by mixed-ligand monolayers. Identifying and controlling the organization of multiple ligands in the nanoparticle monolayer has been studied, and its effect on particle properties has been examined. Mixed-ligand protected particles have shown advantages over monoligand protected particles in fields such as catalysis, self-assembly, imaging, and drug delivery. In this Review, the use of mixed-ligand monolayer protected nanoparticles for sensing applications will be examined. This is the first time this subject is examined as a whole. Mixed-ligand nanoparticle-based sensors are revealed to be divided into four groups, each of which will be discussed. The first group consists of ligands that work cooperatively to improve the sensors' properties. In the second group, multiple ligands are utilized for sensing multiple analytes. The third group combines ligands used for analyte recognition and signal production. In the final group, a sensitive, but unstable, functional ligand is combined with a stabilizing ligand. The Review will conclude by discussing future challenges and potential research directions for this promising subject.
Collapse
Affiliation(s)
- Offer Zeiri
- Department of Analytical Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| |
Collapse
|
6
|
Jeffries CM, Pietras Z, Svergun DI. The basics of small-angle neutron scattering (SANS for new users of structural biology). EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023603001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Small-angle neutron scattering (SANS) provides a means to probe the time-preserved structural state(s) of bio-macromolecules in solution. As such, SANS affords the opportunity to assess the redistribution of mass, i.e., changes in conformation, which occur when macromolecules interact to form higher-order assemblies and to evaluate the structure and disposition of components within such systems. As a technique, SANS offers scope for ‘out of the box thinking’, from simply investigating the structures of macromolecules and their complexes through to where structural biology interfaces with soft-matter and nanotechnology. All of this simply rests on the way neutrons interact and scatter from atoms (largely hydrogens) and how this interaction differs from the scattering of neutrons from the nuclei of other ‘biological isotopes’. The following chapter describes the basics of neutron scattering for new users of structural biology in context of the neutron/hydrogen interaction and how this can be exploited to interrogate the structures of macromolecules, their complexes and nano-conjugates in solution.
Collapse
|
7
|
Merz SN, Hoover E, Egorov SA, DuBay KH, Green DL. Predicting the effect of chain-length mismatch on phase separation in noble metal nanoparticle monolayers with chemically mismatched ligands. SOFT MATTER 2019; 15:4498-4507. [PMID: 31094390 DOI: 10.1039/c9sm00264b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) protected with a ligand monolayer hold promise for a wide variety of applications, from photonics and catalysis to drug delivery and biosensing. Monolayers that include a mixture of ligand types can have multiple chemical functionalities and may also self-assemble into advantageous patterns. Previous work has shown that both chemical and length mismatches among these surface ligands influence phase separation. In this work, we examine the interplay between these driving forces, first by using our previously-developed configurationally-biased Monte Carlo (CBMC) algorithm to predict, then by using our matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) technique to experimentally probe, the surface morphologies of a series of two-ligand mixtures on the surfaces of ultrasmall silver NPs. Specifically, we examine three such mixtures, each of which has the same chemical mismatch (consisting of a hydrophobic alkanethiol and a hydrophilic mercapto-alcohol), but varying degrees of chain-length mismatch. This delicate balance between chemical and length mismatches provides a challenging test for our CBMC prediction algorithm. Even so, the simulations are able to quantitatively predict the MALDI-MS results for all three ligand mixtures, while also providing atomic-scale details from the equilibrated ligand structures, such as patch sizes and co-crystallization patterns. The resulting monolayer morphologies range from randomly-mixed to Janus-like, demonstrating that chain-length modifications are an effective way to tune monolayer morphology without needing to alter chemical functionalities.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia, Thornton Hall, P.O. Box 400259, Charlottesville, VA 22904, USA.
| | | | | | | | | |
Collapse
|
8
|
Merz SN, Farrell ZJ, Pearring J, Hoover E, Kester M, Egorov SA, Green DL, DuBay KH. Computational and Experimental Investigation of Janus-like Monolayers on Ultrasmall Noble Metal Nanoparticles. ACS NANO 2018; 12:11031-11040. [PMID: 30347139 DOI: 10.1021/acsnano.8b05188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Detection of monolayer morphology on nanoparticles smaller than 10 nm has proven difficult with traditional visualization techniques. Here matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) is used in conjunction with atomistic simulations to detect the formation of Janus-like monolayers on noble metal nanoparticles. Silver metal nanoparticles were synthesized with a monolayer consisting of dodecanethiol (DDT) and mercaptoethanol (ME) at varying ratios. The nanoparticles were then analyzed using MALDI-MS, which gives information on the local ordering of ligands on the surface. The MALDI-MS analysis showed large deviations from random ordering, suggesting phase separation of the DDT/ME monolayers. Atomistic Monte Carlo (MC) calculations were then used to simulate the nanoscale morphology of the DDT/ME monolayers. In order to quantitatively compare the computational and experimental results, we developed a method for determining an expected MALDI-MS spectrum from the atomistic simulation. Experiments and simulations show quantitative agreement, and both indicate that the DDT/ME ligands undergo phase separation, resulting in Janus-like nanoparticle monolayers with large, patchy domains.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Zachary J Farrell
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Joseph Pearring
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Elise Hoover
- Department of Biomedical Engineering , University of Virginia , Thornton Hall , P.O. Box 400259, Charlottesville , Virginia 22904 , United States
| | - Mark Kester
- School of Medicine , University of Virginia , 1215 Lee Street , Charlottesville , Virginia 22908 , United States
| | - Sergei A Egorov
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
- Leibniz Institute for Polymer Research Dresden , Hohe Strasse 6 , D-01069 Dresden , Germany
| | - David L Green
- Department of Chemical Engineering , University of Virginia , 102 Engineers Way , Charlottesville , Virginia 22904 , United States
| | - Kateri H DuBay
- Department of Chemistry , University of Virginia , McCormick Road , PO Box 400319, Charlottesville , Virginia 22904 , United States
| |
Collapse
|
9
|
Real-space imaging with pattern recognition of a ligand-protected Ag 374 nanocluster at sub-molecular resolution. Nat Commun 2018; 9:2948. [PMID: 30054489 PMCID: PMC6063937 DOI: 10.1038/s41467-018-05372-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 07/03/2018] [Indexed: 11/28/2022] Open
Abstract
High-resolution real-space imaging of nanoparticle surfaces is desirable for better understanding of surface composition and morphology, molecular interactions at the surface, and nanoparticle chemical functionality in its environment. However, achieving molecular or sub-molecular resolution has proven to be very challenging, due to highly curved nanoparticle surfaces and often insufficient knowledge of the monolayer composition. Here, we demonstrate sub-molecular resolution in scanning tunneling microscopy imaging of thiol monolayer of a 5 nm nanoparticle Ag374 protected by tert-butyl benzene thiol. The experimental data is confirmed by comparisons through a pattern recognition algorithm to simulated topography images from density functional theory using the known total structure of the Ag374 nanocluster. Our work demonstrates a working methodology for investigations of structure and composition of organic monolayers on curved nanoparticle surfaces, which helps designing functionalities for nanoparticle-based applications. Translating high-resolution imaging methods to the curved organic surface of a nanoparticle has been challenging. Here, the authors are able to spatially resolve the sub-molecular surface details of a silver nanocluster by comparing scanning tunneling microscopy images and simulated topography data through a pattern recognition algorithm.
Collapse
|
10
|
Luo Z, Marson D, Ong QK, Loiudice A, Kohlbrecher J, Radulescu A, Krause-Heuer A, Darwish T, Balog S, Buonsanti R, Svergun DI, Posocco P, Stellacci F. Quantitative 3D determination of self-assembled structures on nanoparticles using small angle neutron scattering. Nat Commun 2018; 9:1343. [PMID: 29632331 PMCID: PMC5890256 DOI: 10.1038/s41467-018-03699-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/02/2018] [Indexed: 11/16/2022] Open
Abstract
The ligand shell (LS) determines a number of nanoparticles’ properties. Nanoparticles’ cores can be accurately characterized; yet the structure of the LS, when composed of mixture of molecules, can be described only qualitatively (e.g., patchy, Janus, and random). Here we show that quantitative description of the LS’ morphology of monodisperse nanoparticles can be obtained using small-angle neutron scattering (SANS), measured at multiple contrasts, achieved by either ligand or solvent deuteration. Three-dimensional models of the nanoparticles’ core and LS are generated using an ab initio reconstruction method. Characteristic length scales extracted from the models are compared with simulations. We also characterize the evolution of the LS upon thermal annealing, and investigate the LS morphology of mixed-ligand copper and silver nanoparticles as well as gold nanoparticles coated with ternary mixtures. Our results suggest that SANS combined with multiphase modeling is a versatile approach for the characterization of nanoparticles’ LS. The ligand shell of a nanoparticle remains difficult to resolve, as the available characterization methods provide only qualitative information. Here, the authors introduce an approach based on small-angle neutron scattering that can quantitatively reveal the organization of ligands in mixed-monolayer nanoparticles.
Collapse
Affiliation(s)
- Zhi Luo
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Domenico Marson
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Quy K Ong
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Anna Loiudice
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul-Scherrer Institute, 5232, Villigen, Switzerland
| | - Aurel Radulescu
- Jülich Center for Neutron Science, JCNS at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, 85747, Garching, Germany
| | - Anwen Krause-Heuer
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Tamim Darwish
- The National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Kirrawee DC, NSW, 2232, Australia
| | - Sandor Balog
- Adolphe Merkle Institute, University of Fribourg, 1700, Fribourg, Switzerland
| | - Raffaella Buonsanti
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, EMBL c/o DESY, 22603, Hamburg, Germany
| | - Paola Posocco
- Department of Engineering and Architecture and INSTM Trieste Unit, University of Trieste, 34127, Trieste, Italy
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
11
|
Gold nanoparticles with patterned surface monolayers for nanomedicine: current perspectives. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 46:749-771. [PMID: 28865004 PMCID: PMC5693983 DOI: 10.1007/s00249-017-1250-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/20/2017] [Accepted: 08/22/2017] [Indexed: 10/27/2022]
Abstract
Molecular self-assembly is a topic attracting intense scientific interest. Various strategies have been developed for construction of molecular aggregates with rationally designed properties, geometries, and dimensions that promise to provide solutions to both theoretical and practical problems in areas such as drug delivery, medical diagnostics, and biosensors, to name but a few. In this respect, gold nanoparticles covered with self-assembled monolayers presenting nanoscale surface patterns-typically patched, striped or Janus-like domains-represent an emerging field. These systems are particularly intriguing for use in bio-nanotechnology applications, as presence of such monolayers with three-dimensional (3D) morphology provides nanoparticles with surface-dependent properties that, in turn, affect their biological behavior. Comprehensive understanding of the physicochemical interactions occurring at the interface between these versatile nanomaterials and biological systems is therefore crucial to fully exploit their potential. This review aims to explore the current state of development of such patterned, self-assembled monolayer-protected gold nanoparticles, through step-by-step analysis of their conceptual design, synthetic procedures, predicted and determined surface characteristics, interactions with and performance in biological environments, and experimental and computational methods currently employed for their investigation.
Collapse
|
12
|
Ong Q, Luo Z, Stellacci F. Characterization of Ligand Shell for Mixed-Ligand Coated Gold Nanoparticles. Acc Chem Res 2017; 50:1911-1919. [PMID: 28771322 DOI: 10.1021/acs.accounts.7b00165] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Gold nanoparticles owe a large number of their properties to their ligand shell. Indeed, many researchers routinely use mixtures of ligand molecules for their nanoparticles to impart complex property sets. It has been shown that the morphology of ligand shells (e.g., Janus, random, stripelike) leads to specific properties. Examples include wettability, solubility, protein nonspecific adsorption, cell penetration, catalysis, and cation-capturing abilities. Yet, it remains a great challenge to evaluate such morphologies in even the most fundamental terms such as dimension and shape. In this Account, we review recent progress in characterization techniques applicable to gold nanoparticles with ligand shells composed of mixed ligands. We divide the characterization into three major categories, namely, microscopy, spectroscopy, and simulation. In microscopy, we review progresses in scanning tunneling microscopy (STM), atomic force microscopy (AFM), and scanning/transmission electron microscopy. In spectroscopy, we mainly highlight recent achievements in nuclear magnetic resonance (NMR), mass spectrometry (MS), small angle neutron scattering (SANS), electron spin resonance (EPR), and adsorption based spectroscopies. In simulation, we point out the latest results in understanding thermodynamic stability of ligand shell morphology and emphasize the role of computer simulation for helping interpretation of experimental data. We conclude with a perspective of future development.
Collapse
Affiliation(s)
- Quy Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| | - Zhi Luo
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne-1015, Switzerland
| |
Collapse
|
13
|
Fudickar W, Pavashe P, Linker T. Thiocarbohydrates on Gold Nanoparticles: Strong Influence of Stereocenters on Binding Affinity and Interparticle Forces. Chemistry 2017; 23:8685-8693. [DOI: 10.1002/chem.201700846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Werner Fudickar
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Prashant Pavashe
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| | - Torsten Linker
- Department of Chemistry; University of Potsdam; Karl-Liebknecht-Str. 24-25 14476 Potsdam Germany
| |
Collapse
|
14
|
Goldmann C, Ribot F, Peiretti LF, Quaino P, Tielens F, Sanchez C, Chanéac C, Portehault D. Quantified Binding Scale of Competing Ligands at the Surface of Gold Nanoparticles: The Role of Entropy and Intermolecular Forces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604028. [PMID: 28371306 DOI: 10.1002/smll.201604028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/30/2017] [Indexed: 06/07/2023]
Abstract
A basic understanding of the driving forces for the formation of multiligand coronas or self-assembled monolayers over metal nanoparticles is mandatory to control and predict the properties of ligand-protected nanoparticles. Herein, 1 H nuclear magnetic resonance experiments and advanced density functional theory (DFT) modeling are combined to highlight the key parameters defining the efficiency of ligand exchange on dispersed gold nanoparticles. The compositions of the surface and of the liquid reaction medium are quantitatively correlated for bifunctional gold nanoparticles protected by a range of competing thiols, including an alkylthiol, arylthiols of varying chain length, thiols functionalized by ethyleneglycol units, and amide groups. These partitions are used to build scales that quantify the ability of a ligand to exchange dodecanethiol. Such scales can be used to target a specific surface composition by choosing the right exchange conditions (ligand ratio, concentrations, and particle size). In the specific case of arylthiols, the exchange ability scale is exploited with the help of DFT modeling to unveil the roles of intermolecular forces and entropic effects in driving ligand exchange. It is finally suggested that similar considerations may apply to other ligands and to direct biligand synthesis.
Collapse
Affiliation(s)
- Claire Goldmann
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| | - François Ribot
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| | - Leonardo F Peiretti
- Preline, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Paola Quaino
- Preline, Facultad de Ingeniería Química, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Frederik Tielens
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| | - Clément Sanchez
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| | - Corinne Chanéac
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| | - David Portehault
- Laboratoire de Chimie de la Matière Condensée de Paris (CMCP), Sorbonne, Universités-UPMC Univ Paris 06, CNRS, Collège de France, 4 Place Jussieu, 75005, Paris, France
| |
Collapse
|
15
|
Merz SN, Farrell ZJ, Dunn CJ, Swanson RJ, Egorov SA, Green DL. Theoretical and Experimental Investigation of Microphase Separation in Mixed Thiol Monolayers on Silver Nanoparticles. ACS NANO 2016; 10:9871-9878. [PMID: 27744676 DOI: 10.1021/acsnano.6b02091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Silver nanoparticles with mixed ligand self-assembled monolayers were synthesized from dodecanethiol and another ligand from a homologous series of alkanethiols (butanethiol, pentanethiol, heptanethiol, octanethiol, nonanethiol, decanethiol, undecanethiol, or dodecanethiol[D25]). These were hypothesized to exhibit ligand phase separation that increases with degree of physical mismatch between the ligands based on the difference in the number of carbons in the two ligands. Dodecanethiol/dodecanethiol[D25] was expected to exhibit minimal phase separation as the ligands have only isotopic differences, while dodecanethiol/butanethiol was hypothesized to exhibit the most phase separation due to the difference in chain length. Phase separation of all other ligand mixtures was expected to fall between these two extremes. Matrix-assisted laser desorption ionization (MALDI) mass spectroscopy provided a value for ligand phase separation by comparison with a binomial (random) model and subsequent calculation of the sum-of-squares error (SSR). These nanoparticle systems were also modeled using the Scheutjens and Fleer self-consistent mean-field theory (SCFT), which determined the most thermodynamically favorable arrangement of ligands on the surface. From MALDI, it was found that dodecanethiol/dodecanethiol[D25] formed a well-mixed monolayer with SSR = 0.002, and dodecanethiol/butanethiol formed a microphase separated monolayer with SSR = 0.164; in intermediate dodecanethiol/alkanethiol mixtures, SSR increased with increasing ligand length difference as expected. For comparison with experiment, an effective SSR value was calculated from SCFT simulations. The SSR values obtained by experiment and theory show good agreement and provide strong support for the validity of SCFT predictions of monolayer structure. These approaches represent robust methods of characterization for ligand phase separation on silver nanoparticles.
Collapse
Affiliation(s)
- Steven N Merz
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Zachary J Farrell
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Caroline J Dunn
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Richard J Swanson
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - Sergei A Egorov
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| | - David L Green
- Department of Chemical Engineering, University of Virginia , 102 Engineers Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
16
|
Giner-Casares JJ, Reguera J. Directed self-assembly of inorganic nanoparticles at air/liquid interfaces. NANOSCALE 2016; 8:16589-16595. [PMID: 27722594 DOI: 10.1039/c6nr05054a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Inorganic nanoparticles (NPs) appear as the forefront functional structure in nanotechnology. The preparation of functional materials based on inorganic NPs requires their assembly onto well-defined structures. Within this context, self-assembly at air-liquid interfaces is probably the best candidate for a universal procedure for active materials composed of assembled NPs. The detailed in situ mechanism of the lateral self-assembly and vertical organization of NPs at air-liquid interfaces is still unknown despite its extended use. The most common and promising methods for addressing this open issue are reviewed herein. The self-assembled films can be used in situ or further be transferred to solid substrates as the main constituents of novel functional materials. Plasmonic NPs at interfaces are highly interesting, given the broad range of applications of the plasmonic field, and will be discussed more in detail.
Collapse
Affiliation(s)
- Juan J Giner-Casares
- Institute of Fine Chemistry and Nanochemistry, Department of Physical Chemistry and Applied Thermodynamics, University of Córdoba, Campus Universitario de Rabanales, 14014, Córdoba, Spain.
| | - Javier Reguera
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia-San Sebastián, Spain. and Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain and Biomedical Research Networking Center in Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), 50018 Aragon, Spain
| |
Collapse
|
17
|
Abstract
X-ray scattering is a structural characterization tool that has impacted diverse fields of study. It is unique in its ability to examine materials in real time and under realistic sample environments, enabling researchers to understand morphology at nanometer and angstrom length scales using complementary small and wide angle X-ray scattering (SAXS, WAXS), respectively. Herein, we focus on the use of SAXS to examine nanoscale particulate systems. We provide a theoretical foundation for X-ray scattering, considering both form factor and structure factor, as well as the use of correlation functions, which may be used to determine a particle's size, size distribution, shape, and organization into hierarchical structures. The theory is expanded upon with contemporary use cases. Both transmission and reflection (grazing incidence) geometries are addressed, as well as the combination of SAXS with other X-ray and non-X-ray characterization tools. We conclude with an examination of several key areas of research where X-ray scattering has played a pivotal role, including in situ nanoparticle synthesis, nanoparticle assembly, and operando studies of catalysts and energy storage materials. Throughout this review we highlight the unique capabilities of X-ray scattering for structural characterization of materials in their native environment.
Collapse
Affiliation(s)
- Tao Li
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Andrew J Senesi
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory , 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Ong QK, Stellacci F. Response to "Critical Assessment of the Evidence for Striped Nanoparticles". PLoS One 2015; 10:e0135594. [PMID: 26555337 PMCID: PMC4640849 DOI: 10.1371/journal.pone.0135594] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/05/2015] [Indexed: 11/18/2022] Open
Abstract
Stirling et al., (10.1371/journal.pone.0108482) presented an analysis on some of our publications on the formation of stripe-like domains on mixed-ligand coated gold nanoparticles. The authors shed doubts on some of our results however no valid argument is provided against what we have shown since our first publication: scanning tunneling microscopy (STM) images of striped nanoparticles show stripe-like domains that are independent of imaging parameters and in particular of imaging speed. We have consistently ruled out the presence of artifacts by comparing sets of images acquired at different tip speeds, finding invariance of the stipe-like domains. Stirling and co-workers incorrectly analyzed this key control, using a different microscope and imaging conditions that do not compare to ours. We show here data proving that our approach is rigorous. Furthermore, we never solely relied on image analysis to draw our conclusions; we have always used the chemical nature of the particles to assess the veracity of our images. Stirling et al. do not provide any justification for the spacing of the features that we find on nanoparticles: ~1 nm for mixed ligand particles and ~ 0.5 nm for homoligand particles. Hence our two central arguments remain unmodified: independence from imaging parameters and dependence on ligand shell chemical composition. The paper report observations on our STM images; none is a sufficient condition to prove that our images are artifacts. We thoroughly addressed issues related to STM artifacts throughout our microscopy work. Stirling et al. provide guidelines for what they consider good STM images of nanoparticles, such images are indeed present in our literature. They conclude that the evidences we provided to date are insufficient, this is a departure from one of the authors' previous article which concluded that our images were composed of artifacts. Given that four independent laboratories have reproduced our measurements and that no scientifically rigorous argument is presented to invalidate our STM images, and also given that Stirling et al. do not contest the quality of our recent STM images, we re-affirm that specific binary mixture of ligands spontaneously form features in their ligand shell that we describe as stripe-like domains ~1 nm in width.
Collapse
Affiliation(s)
- Quy Khac Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
|
20
|
Konarev PV, Svergun DI. A posteriori determination of the useful data range for small-angle scattering experiments on dilute monodisperse systems. IUCRJ 2015; 2:352-360. [PMID: 25995844 PMCID: PMC4420545 DOI: 10.1107/s2052252515005163] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 03/13/2015] [Indexed: 05/29/2023]
Abstract
Small-angle X-ray and neutron scattering (SAXS and SANS) experiments on solutions provide rapidly decaying scattering curves, often with a poor signal-to-noise ratio, especially at higher angles. On modern instruments, the noise is partially compensated for by oversampling, thanks to the fact that the angular increment in the data is small compared with that needed to describe adequately the local behaviour and features of the scattering curve. Given a (noisy) experimental data set, an important question arises as to which part of the data still contains useful information and should be taken into account for the interpretation and model building. Here, it is demonstrated that, for monodisperse systems, the useful experimental data range is defined by the number of meaningful Shannon channels that can be determined from the data set. An algorithm to determine this number and thus the data range is developed, and it is tested on a number of simulated data sets with various noise levels and with different degrees of oversampling, corresponding to typical SAXS/SANS experiments. The method is implemented in a computer program and examples of its application to analyse the experimental data recorded under various conditions are presented. The program can be employed to discard experimental data containing no useful information in automated pipelines, in modelling procedures, and for data deposition or publication. The software is freely accessible to academic users.
Collapse
Affiliation(s)
- Petr V. Konarev
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg 22607, Germany
- Laboratory of Reflectometry and Small-angle Scattering, Institute of Crystallography of the Russian Academy of Sciences, Leninsky prospekt 59, Moscow 119333, Russian Federation
| | - Dmitri I. Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
21
|
Farrell Z, Merz S, Seager J, Dunn C, Egorov S, Green DL. Development of Experiment and Theory to Detect and Predict Ligand Phase Separation on Silver Nanoparticles. Angew Chem Int Ed Engl 2015; 54:6479-82. [DOI: 10.1002/anie.201500906] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 02/22/2015] [Indexed: 11/06/2022]
|
22
|
Farrell Z, Merz S, Seager J, Dunn C, Egorov S, Green DL. Development of Experiment and Theory to Detect and Predict Ligand Phase Separation on Silver Nanoparticles. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201500906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Wang Y, Su H, Xu C, Li G, Gell L, Lin S, Tang Z, Häkkinen H, Zheng N. An Intermetallic Au24Ag20 Superatom Nanocluster Stabilized by Labile Ligands. J Am Chem Soc 2015; 137:4324-7. [DOI: 10.1021/jacs.5b01232] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yu Wang
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haifeng Su
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaofa Xu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gang Li
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State
Key Laboratory of Fine Chemicals, Institute of Coal Chemical Engineering,
School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China
| | - Lars Gell
- Departments
of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Shuichao Lin
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zichao Tang
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hannu Häkkinen
- Departments
of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Nanfeng Zheng
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative
Innovation Center of Chemistry for Energy Materials, and National
Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
24
|
Reguera J, Ponomarev E, Geue T, Stellacci F, Bresme F, Moglianetti M. Contact angle and adsorption energies of nanoparticles at the air-liquid interface determined by neutron reflectivity and molecular dynamics. NANOSCALE 2015; 7:5665-73. [PMID: 25744221 DOI: 10.1039/c5nr00620a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Understanding how nanomaterials interact with interfaces is essential to control their self-assembly as well as their optical, electronic, and catalytic properties. We present here an experimental approach based on neutron reflectivity (NR) that allows the in situ measurement of the contact angles of nanoparticles adsorbed at fluid interfaces. Because our method provides a route to quantify the adsorption and interfacial energies of the nanoparticles in situ, it circumvents problems associated with existing indirect methods, which rely on the transport of the monolayers to substrates for further analysis. We illustrate the method by measuring the contact angle of hydrophilic and hydrophobic gold nanoparticles, coated with perdeuterated octanethiol (d-OT) and with a mixture of d-OT and mercaptohexanol (MHol), respectively. The contact angles were also calculated via atomistic molecular dynamics (MD) computations, showing excellent agreement with the experimental data. Our method opens the route to quantify the adsorption of complex nanoparticle structures adsorbed at fluid interfaces featuring different chemical compositions.
Collapse
Affiliation(s)
- Javier Reguera
- Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
25
|
Stirling J, Lekkas I, Sweetman A, Djuranovic P, Guo Q, Pauw B, Granwehr J, Lévy R, Moriarty P. Critical assessment of the evidence for striped nanoparticles. PLoS One 2014; 9:e108482. [PMID: 25402426 PMCID: PMC4234314 DOI: 10.1371/journal.pone.0108482] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
There is now a significant body of literature which reports that stripes form in the ligand shell of suitably functionalised Au nanoparticles. This stripe morphology has been proposed to strongly affect the physicochemical and biochemical properties of the particles. We critique the published evidence for striped nanoparticles in detail, with a particular focus on the interpretation of scanning tunnelling microscopy (STM) data (as this is the only technique which ostensibly provides direct evidence for the presence of stripes). Through a combination of an exhaustive re-analysis of the original data, in addition to new experimental measurements of a simple control sample comprising entirely unfunctionalised particles, we show that all of the STM evidence for striped nanoparticles published to date can instead be explained by a combination of well-known instrumental artefacts, or by issues with data acquisition/analysis protocols. We also critically re-examine the evidence for the presence of ligand stripes which has been claimed to have been found from transmission electron microscopy, nuclear magnetic resonance spectroscopy, small angle neutron scattering experiments, and computer simulations. Although these data can indeed be interpreted in terms of stripe formation, we show that the reported results can alternatively be explained as arising from a combination of instrumental artefacts and inadequate data analysis techniques.
Collapse
Affiliation(s)
- Julian Stirling
- School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| | - Ioannis Lekkas
- School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
| | - Adam Sweetman
- School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
| | - Predrag Djuranovic
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Quanmin Guo
- School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
| | - Brian Pauw
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Josef Granwehr
- Sir Peter Mansfield Magnetic Resonance Centre, School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
| | - Raphaël Lévy
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Philip Moriarty
- School of Physics and Astronomy, The University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
26
|
Ong QK, Zhao S, Reguera J, Biscarini F, Stellacci F. Comparative STM studies of mixed ligand monolayers on gold nanoparticles in air and in 1-phenyloctane. Chem Commun (Camb) 2014; 50:10456-9. [PMID: 25068154 DOI: 10.1039/c4cc04114c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Scanning tunnelling microscopy (STM) studies have found stripe-like domains on gold nanoparticles (NPs) coated with certain binary mixtures of ligand molecules. The majority of these NPs' properties have been investigated for particles in solvents. Yet, most STM studies are for NPs in a dry state. Images of the same particles in air and liquid have not been obtained yet. In this work, a judicious choice of ligand molecules led to NPs with close-to-ideal STM imaging conditions in air and in 1-phenyloctane (PO). Large datasets under both conditions were acquired and rapidly evaluated through power spectral density (PSD) analysis. The result is a quantitative comparison of stripe-like domains in air and PO on the same NPs. PSD analysis determines a characteristic length-scale for these domains of ~1.0 nm in air and in PO showing persistence of striped domains in these two media. A length scale of ~0.7 nm for homoligand NPs was found.
Collapse
Affiliation(s)
- Quy Khac Ong
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH 1015, Switzerland.
| | | | | | | | | |
Collapse
|
27
|
Biscarini F, Ong QK, Albonetti C, Liscio F, Longobardi M, Mali KS, Ciesielski A, Reguera J, Renner C, De Feyter S, Samorì P, Stellacci F. Quantitative analysis of scanning tunneling microscopy images of mixed-ligand-functionalized nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:13723-13734. [PMID: 24083627 DOI: 10.1021/la403546c] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ligand-protected gold nanoparticles exhibit large local curvatures, features rapidly varying over small scales, and chemical heterogeneity. Their imaging by scanning tunneling microscopy (STM) can, in principle, provide direct information on the architecture of their ligand shell, yet STM images require laborious analysis and are challenging to interpret. Here, we report a straightforward, robust, and rigorous method for the quantitative analysis of the multiscale features contained in STM images of samples consisting of functionalized Au nanoparticles deposited onto Au/mica. The method relies on the analysis of the topographical power spectral density (PSD) and allows us to extract the characteristic length scales of the features exhibited by nanoparticles in STM images. For the mixed-ligand-protected Au nanoparticles analyzed here, the characteristic length scale is 1.2 ± 0.1 nm, whereas for the homoligand Au NPs this scale is 0.75 ± 0.05 nm. These length scales represent spatial correlations independent of scanning parameters, and hence the features in the PSD can be ascribed to a fingerprint of the STM contrast of ligand-protected nanoparticles. PSD spectra from images recorded at different laboratories using different microscopes and operators can be overlapped across most of the frequency range, proving that the features in the STM images of nanoparticles can be compared and reproduced.
Collapse
Affiliation(s)
- Fabio Biscarini
- Dip. Scienze della Vita, Università di Modena e Reggio Emilia , Via Campi 183, 41125 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|