1
|
Deline AR, Frank BP, Smith CL, Sigmon LR, Wallace AN, Gallagher MJ, Goodwin DG, Durkin DP, Fairbrother DH. Influence of Oxygen-Containing Functional Groups on the Environmental Properties, Transformations, and Toxicity of Carbon Nanotubes. Chem Rev 2020; 120:11651-11697. [DOI: 10.1021/acs.chemrev.0c00351] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alyssa R. Deline
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Benjamin P. Frank
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Casey L. Smith
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Leslie R. Sigmon
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Alexa N. Wallace
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Miranda J. Gallagher
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - David G. Goodwin
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David P. Durkin
- Department of Chemistry, United States Naval Academy, 572M Holloway Road, Annapolis, Maryland 21402, United States
| | - D. Howard Fairbrother
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Patil R, Bahadur P, Tiwari S. Dispersed graphene materials of biomedical interest and their toxicological consequences. Adv Colloid Interface Sci 2020; 275:102051. [PMID: 31753296 DOI: 10.1016/j.cis.2019.102051] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Graphene is one-atom thick nanocarbon displaying a unique honeycomb structure and extensive conjugation. In addition to high surface area to mass ratio, it displays unique optical, thermal, electronic and mechanical properties. Atomic scale tunability of graphene has attracted immense research interest with a prospective utility in electronics, desalination, energy sectors, and beyond. Its intrinsic opto-thermal properties are appealing from the standpoint of multimodal drug delivery, imaging and biosensing applications. Hydrophobic basal plane of sheets can be efficiently loaded with aromatic molecules via non-specific forces. With intense biomedical interest, methods are evolving to produce defect-free and dispersion stable sheets. This review summarizes advancements in synthetic approaches and strategies of stabilizing graphene derivatives in aqueous medium. We have described the interaction of colloidal graphene with cellular and sub-cellular components, and subsequent physiological signaling. Finally, a systematic discussion is provided covering toxicological challenges and possible solutions on utilizing graphene formulations for high-end biomedical applications.
Collapse
|
3
|
Mukherjee SP, Gliga AR, Lazzaretto B, Brandner B, Fielden M, Vogt C, Newman L, Rodrigues AF, Shao W, Fournier PM, Toprak MS, Star A, Kostarelos K, Bhattacharya K, Fadeel B. Graphene oxide is degraded by neutrophils and the degradation products are non-genotoxic. NANOSCALE 2018; 10:1180-1188. [PMID: 29271441 DOI: 10.1039/c7nr03552g] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Neutrophils were previously shown to digest oxidized carbon nanotubes through a myeloperoxidase (MPO)-dependent mechanism, and graphene oxide (GO) was found to undergo degradation when incubated with purified MPO, but there are no studies to date showing degradation of GO by neutrophils. Here we produced endotoxin-free GO by a modified Hummers' method and asked whether primary human neutrophils stimulated to produce neutrophil extracellular traps or activated to undergo degranulation are capable of digesting GO. Biodegradation was assessed using a range of techniques including Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and mass spectrometry. GO sheets of differing lateral dimensions were effectively degraded by neutrophils. As the degradation products could have toxicological implications, we also evaluated the impact of degraded GO on the bronchial epithelial cell line BEAS-2B. MPO-degraded GO was found to be non-cytotoxic and did not elicit any DNA damage. Taken together, these studies have shown that neutrophils can digest GO and that the biodegraded GO is non-toxic for human lung cells.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety & Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Liu D, Chen Y, Sun P, Bai W, Gao A. STAT3 methylation in white blood cells as a novel sensitive biomarker for the toxic effect of low-dose benzene exposure. Toxicol Res (Camb) 2016; 5:800-807. [PMID: 30090390 PMCID: PMC6061912 DOI: 10.1039/c5tx00445d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/20/2016] [Indexed: 12/13/2022] Open
Abstract
Alterations in DNA methylation patterns play an essential role in disease process and are associated with cancer risk. To explore the toxic effect and early sensitive biomarker of the health effects of low-dose benzene exposure (LDBE), and investigate the correlation between DNA methylation and the toxic effect of LDBE, a cross-sectional study was conducted in a sample of 571 workers; 312 workers who were exposed to a 1.82 ± 1.16 mg m-3 air benzene concentration were assigned to the LDBE group, while 259 non-known benzene exposure (NBE) workers were assigned to the control group, with an air benzene concentration of 0.06 ± 0.01 mg m-3. Routine blood indexes, alanine transaminase (ALT), oxidative stress parameters and signal transducer and activator of transcription 3 (STAT3) methylation were detected. Compared with the NBE population, the STAT3 methylation level (P = 0.001), Platelets (PLTs) (P = 0.002) and 8-isoprostane-PGFs (8-iso-PGF2a) (P = 0.001) manifested a significant reduction, while ALT (P = 0.002) and 8-hydroxy-2 deoxyguanosine (8-OHdG) (P = 0.002) showed a significant rise in the LDBE population. In addition, a significant correlation was observed between STAT3 methylation and oxidative stress, namely 8-OhdG and 8-iso-PGF2a. Furthermore, a multivariate analysis showed that the STAT3 methylation (structure loadings = 0.909) was the most strongly correlated with the other set of variables, especially with white blood cells (WBCs) (structure loadings = 0.675). Taken together, STAT3 methylation may be the underlying mechanism involved in the early toxic effect of LDBE, therefore, STAT3 methylation can be a novel sensitive biomarker for the toxic effect of low-dose benzene exposure.
Collapse
Affiliation(s)
- Di Liu
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing 100069 , China . ; ; Tel: +86-10-83911509
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Yujiao Chen
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing 100069 , China . ; ; Tel: +86-10-83911509
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Pengling Sun
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing 100069 , China . ; ; Tel: +86-10-83911509
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Wenlin Bai
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing 100069 , China . ; ; Tel: +86-10-83911509
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| | - Ai Gao
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing 100069 , China . ; ; Tel: +86-10-83911509
- Beijing Key Laboratory of Environmental Toxicology , Capital Medical University , Beijing 100069 , China
| |
Collapse
|
5
|
Bhattacharya K, Mukherjee SP, Gallud A, Burkert SC, Bistarelli S, Bellucci S, Bottini M, Star A, Fadeel B. Biological interactions of carbon-based nanomaterials: From coronation to degradation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:333-51. [PMID: 26707820 DOI: 10.1016/j.nano.2015.11.011] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/06/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022]
Abstract
UNLABELLED Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. FROM THE CLINICAL EDITOR Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials.
Collapse
Affiliation(s)
- Kunal Bhattacharya
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sourav P Mukherjee
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Audrey Gallud
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Silvia Bistarelli
- National Institute of Nuclear Physics-INFN, Frascati, Province of Rome, Italy
| | - Stefano Bellucci
- National Institute of Nuclear Physics-INFN, Frascati, Province of Rome, Italy
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
6
|
Farrera C, Bhattacharya K, Lazzaretto B, Andón FT, Hultenby K, Kotchey GP, Star A, Fadeel B. Extracellular entrapment and degradation of single-walled carbon nanotubes. NANOSCALE 2014; 6:6974-6983. [PMID: 24835568 DOI: 10.1039/c3nr06047k] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Neutrophils extrude neutrophil extracellular traps (NETs) consisting of a network of chromatin decorated with antimicrobial proteins to enable non-phagocytic killing of microorganisms. Here, utilizing a model of ex vivo activated human neutrophils, we present evidence of entrapment and degradation of carboxylated single-walled carbon nanotubes (SWCNTs) in NETs. The degradation of SWCNTs was catalyzed by myeloperoxidase (MPO) present in purified NETs and the reaction was facilitated by the addition of H2O2 and NaBr. These results show that SWCNTs can undergo acellular, MPO-mediated biodegradation and imply that the immune system may deploy similar strategies to rid the body of offending microorganisms and engineered nanomaterials.
Collapse
Affiliation(s)
- Consol Farrera
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Yin J, Kang C, Li Y, Li Q, Zhang X, Li W. Aerosol inhalation exposure study of respiratory toxicity induced by 20 nm anatase titanium dioxide nanoparticles. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00040d] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Bai H, Jiang W, Kotchey G, Saidi WA, Bythell BJ, Jarvis JM, Marshall AG, Robinson RS, Star A. Insight into the Mechanism of Graphene Oxide Degradation via the Photo-Fenton Reaction. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2014; 118:10519-10529. [PMID: 24860637 PMCID: PMC4025574 DOI: 10.1021/jp503413s] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/14/2014] [Indexed: 05/13/2023]
Abstract
Graphene represents an attractive two-dimensional carbon-based nanomaterial that holds great promise for applications such as electronics, batteries, sensors, and composite materials. Recent work has demonstrated that carbon-based nanomaterials are degradable/biodegradable, but little work has been expended to identify products formed during the degradation process. As these products may have toxicological implications that could leach into the environment or the human body, insight into the mechanism and structural elucidation remain important as carbon-based nanomaterials become commercialized. We provide insight into a potential mechanism of graphene oxide degradation via the photo-Fenton reaction. We have determined that after 1 day of treatment intermediate oxidation products (with MW 150-1000 Da) were generated. Upon longer reaction times (i.e., days 2 and 3), these products were no longer present in high abundance, and the system was dominated by graphene quantum dots (GQDs). On the basis of FTIR, MS, and NMR data, potential structures for these oxidation products, which consist of oxidized polycyclic aromatic hydrocarbons, are proposed.
Collapse
Affiliation(s)
- Hao Bai
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wentao Jiang
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gregg
P. Kotchey
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Wissam A. Saidi
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Benjamin J. Bythell
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Jacqueline M. Jarvis
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
| | - Alan G. Marshall
- National
High Magnetic Field Laboratory, Florida
State University, 1800
E. Paul Dirac Drive, Tallahassee, Florida 32310, United
States
- Department
of Chemistry and Biochemistry, Florida State
University, 95 Chieftain
Way, Tallahassee, Florida 32306, United States
| | - Renã
A. S. Robinson
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry and Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|