1
|
Effting L, Prete MC, Urbano A, Effting L, González MEC, Bail A, Tarley CRT. Preparation of magnetic nanoparticle-cholesterol imprinted polymer using semi-covalent imprinting approach for ultra-effective and highly selective cholesterol adsorption. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
2
|
Wang S, Wang X, Wang Z, Wang Z, Jiang L, Liu J, Wu J, Liu Y. Highly sensitive and selective detection of cytochrome P450 46A1 activity by a ultra-high-performance liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2021; 36:e5291. [PMID: 34854105 DOI: 10.1002/bmc.5291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/09/2022]
Abstract
Cytochrome P450 46A1 (CYP46A1) is a key enzyme responsible for metabolizing cholesterol to 24-hydroxycholesterol in the brain, and thus might serve as a therapeutic target for several neurodegenerative disorders including Parkinson's disease, Alzheimer's disease and Huntington's disease. However, an applicable, sensitive and reliable method for the precise measurement of CYP46A1 activities in complex biological samples remains limited. In this study, a novel ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for highly sensitive and selective determination of 24-hydroxycholesterol was developed to characterize CYP46A1 activity. The mass spectrometric detection was performed using multiple reaction monitoring for 24-hydroxcholesterol at m/z 385.2 → 367.2. The limit of quantification for 24-hydroxycholesterol using this UPLC-MS/MS method was as low as 10 nM, which is lower than those reported previously. The method also showed favorable accuracy and precision. Meanwhile, the short- and long-term stability of this method was fully validated. In addition, the method was successfully applied to investigate the kinetic properties of 24-hydroxycholesterol formation by CYP46A1.
Collapse
Affiliation(s)
- Shujuan Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Xiaoyu Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhe Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Zhen Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Lili Jiang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| | - Jing Liu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Jingjing Wu
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yong Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, China
| |
Collapse
|
3
|
Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115923] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Kartal F, Denizli A. Molecularly imprinted cryogel beads for cholesterol removal from milk samples. Colloids Surf B Biointerfaces 2020; 190:110860. [DOI: 10.1016/j.colsurfb.2020.110860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 01/06/2023]
|
6
|
Solid phase extraction technique as a general field of application of molecularly imprinted polymer materials. COMPREHENSIVE ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/bs.coac.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
8
|
Phungpanya C, Chaipuang A, Machan T, Watla-iad K, Thongpoon C, Suwantong O. Synthesis of prednisolone molecularly imprinted polymer nanoparticles by precipitation polymerization. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4428] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chalida Phungpanya
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Angkana Chaipuang
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Theeraphan Machan
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Kanchana Watla-iad
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| | - Chalermporn Thongpoon
- Program of Chemistry, Faculty of Science and Technology; Pibulsongkram Rajabhat University; Phitsanulok 65000 Thailand
| | - Orawan Suwantong
- School of Science; Mae Fah Luang University; Chiang Rai 57100 Thailand
- Center of Chemical Innovation for Sustainability; Mae Fah Luang University; Chiang Rai 57100 Thailand
| |
Collapse
|
9
|
Electrochemical sensing of methyl parathion on magnetic molecularly imprinted polymer. Biosens Bioelectron 2018; 118:181-187. [PMID: 30077132 DOI: 10.1016/j.bios.2018.06.052] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
The electrochemical detection of methyl parathion in fish was performed by preconcentrating the pesticide on magnetic molecularly imprinted polymer and further readout on magneto-actuated electrode by square wave voltammetry. The magnetic molecularly imprinted polymer was synthesized by a magnetic core-shell strategy, using methacrylic acid as a functional monomer, and selected by theoretical calculation using the density functional theory (DFT). The characterization of this material was performed by SEM, TEM and XRD. Moreover, the binding capacity and selectivity towards methyl parathion was studied and compared with the corresponding magnetic non-imprinted polymer. The magneto-actuated electrochemical sensor showed outstanding analytical performance for the detection of methyl parathion in fish, with a limit of detection of as low as 1.22 × 10-6 mg L-1 and recovery values ranging from 89.4% to 94.7%. The magnetic molecularly imprinted polymer successfully preconcentrated the analyte from the complex samples and paves the way to incorporate this material in other platforms for the detection of this pesticide in the field of environmental control and food safety.
Collapse
|
10
|
Mohebali A, Abdouss M, Zahedi P. Isosorbide dinitrate template-based molecularly imprinted poly(methacrylic acid) nanoparticles: effect of initiator concentration on morphology and physicochemical properties. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0536-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Yu S, Liu Z, Wang W, Jin L, Xu W, Wu Y. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 2018; 178:498-506. [DOI: 10.1016/j.talanta.2017.09.054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022]
|
12
|
Matos Cordeiro Borges M, Leijoto de Oliveira H, Bastos Borges K. Molecularly imprinted solid-phase extraction coupled with LC-APCI-MS-MS for the selective determination of serum cholesterol. Electrophoresis 2017; 38:2150-2159. [DOI: 10.1002/elps.201600489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 05/04/2017] [Accepted: 05/12/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Marcella Matos Cordeiro Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| | - Hanna Leijoto de Oliveira
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| | - Keyller Bastos Borges
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei (UFSJ), Campus Dom Bosco; Fábricas; São João del-Rei minas Gerais Brazil
| |
Collapse
|
13
|
A New Core@Shell Silica-Coated Magnetic Molecular Imprinted Nanoparticles for Selective Detection of Sunset Yellow in Food Samples. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0803-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Analysis of ustiloxins in rice using polymer cation exchange cleanup followed by liquid chromatography–tandem mass spectrometry. J Chromatogr A 2016; 1476:46-52. [DOI: 10.1016/j.chroma.2016.11.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
|
15
|
Selective Extraction of Cholesterol from Dairy Samples Using a Polypyrrole Molecularly Imprinted Polymer and Determination by Gas Chromatography. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0686-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
de Oliveira FM, Segatelli MG, Tarley CRT. Evaluation of a new water-compatible hybrid molecularly imprinted polymer combined with restricted access for the selective recognition of folic acid in binding assays. J Appl Polym Sci 2016. [DOI: 10.1002/app.43463] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Fernanda Midori de Oliveira
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
| | - Mariana Gava Segatelli
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
| | - César Ricardo Teixeira Tarley
- Departamento De Química; Universidade Estadual De Londrina; Rod. Celso Garcia Cid, PR 445 Km 380, Campus Universitário Londrina PR CEP 86051-990 Brazil
- Departamento De Química Analítica; Instituto Nacional De Ciência E Tecnologia (INCT) De Bioanalítica, Universidade Estadual De Campinas (UNICAMP), Instituto De Química; Cidade Universitária Zeferino Vaz S/N Campinas SP CEP 13083-970 Brazil
| |
Collapse
|
17
|
Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:643-651. [DOI: 10.1016/j.msec.2015.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/26/2015] [Accepted: 10/20/2015] [Indexed: 11/19/2022]
|
18
|
Uzuriaga-Sánchez RJ, Khan S, Wong A, Picasso G, Pividori MI, Sotomayor MDPT. Magnetically separable polymer (Mag-MIP) for selective analysis of biotin in food samples. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Li Z, Zhao Y, Lin W, Ye M, Ling X. Rapid screening and identification of active ingredients in licorice extract interacting with V3 loop region of HIV-1 gp120 using ACE and CE-MS. J Pharm Biomed Anal 2015; 111:28-35. [PMID: 25854854 DOI: 10.1016/j.jpba.2015.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/16/2022]
Abstract
The binding of envelope protein gp120 to glycosphingolipids is very important during the human immunodeficiency virus entering into the host cell. This step occurs in the V3 loop region in particularly. The conserved core sequence of V3 loop in gp120 was named R15K. Anti-HIV drug targeting to R15K would avoid the drug-resistance caused by HIV-1 genetic diversity. Here, for the first time, affinity capillary electrophoresis (ACE) and capillary electrophoresis-mass spectrometry (CE-MS) were used for establishing a simple, rapid and effective method of screening the licorice extract for biological activity (anti-HIV), which avoided the complicated isolation and purification process. R15K, 3'-sialyllactose (the positive control), and d-galactose (the negative control) were used for the development and validation of ACE method. After the interaction between licorice extract and R15K was confirmed by ACE, the relative active ingredients were isolated by SPE and their structures were determined by CE-ESI-MS online. In this research, two mixtures from licorice extract were found to be active. Furthermore, glycyrrhizin and licorice saponin G2 were verified as the main ingredients that significantly interacted with R15K via CE-MS and LC-MS. The results of quantitative assays showed that the active mixture contained glycyrrhizin of 74.23% and licorice saponin G2 of 9.52%. Calculated by Scatchard analysis method, glycyrrhizin/R15K complex had the highest binding constant (1.69 ± 0.08) × 10(7)L/mol among 27 compounds isolated from licorice extract. The anti-HIV activity of glycyrrhizin was further confirmed by bioactive experiment of cellular level. This strategy might provide a high throughput screening and identifying platform for seeking HIV-1 inhibitors in natural products.
Collapse
Affiliation(s)
- Zhongjie Li
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Yiran Zhao
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Weiwei Lin
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China
| | - Min Ye
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| | - Xiaomei Ling
- Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China.
| |
Collapse
|