1
|
Goumas G, Vlachothanasi EN, Fradelos EC, Mouliou DS. Biosensors, Artificial Intelligence Biosensors, False Results and Novel Future Perspectives. Diagnostics (Basel) 2025; 15:1037. [PMID: 40310427 PMCID: PMC12025796 DOI: 10.3390/diagnostics15081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Medical biosensors have set the basis of medical diagnostics, and Artificial Intelligence (AI) has boosted diagnostics to a great extent. However, false results are evident in every method, so it is crucial to identify the reasons behind a possible false result in order to control its occurrence. This is the first critical state-of-the-art review article to discuss all the commonly used biosensor types and the reasons that can give rise to potential false results. Furthermore, AI is discussed in parallel with biosensors and their misdiagnoses, and again some reasons for possible false results are discussed. Finally, an expert opinion with further future perspectives is presented based on general expert insights, in order for some false diagnostic results of biosensors and AI biosensors to be surpassed.
Collapse
Affiliation(s)
- Georgios Goumas
- School of Public Health, University of West Attica, 12243 Athens, Greece;
| | - Efthymia N. Vlachothanasi
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | - Evangelos C. Fradelos
- Laboratory of Clinical Nursing, Department of Nursing, University of Thessaly Larissa, 41334 Larissa, Greece; (E.N.V.); (E.C.F.)
| | | |
Collapse
|
2
|
Lv M, Ren J, Wang E. Topological effect of an intramolecular split G-quadruplex on thioflavin T binding and fluorescence light-up. Chem Sci 2024; 15:4519-4528. [PMID: 38516084 PMCID: PMC10952102 DOI: 10.1039/d3sc06862e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/04/2024] [Indexed: 03/23/2024] Open
Abstract
In this work, the topological effect on binding interaction between a G-quadruplex and thioflavin T (ThT) ligand was systematically investigated on a platform of an intramolecular split G-quadruplex (Intra-SG). Distinct fluorescence changes from ThT were presented in the presence of distinct split modes of Intra-SG structures and an intriguing phenomenon of target-induced fluorescence light-up occurred for split modes 2 : 10, 5 : 7 and 8 : 4. It was validated that hybridization between the Intra-SG spacer and target did not unfold the G-quadruplex, but facilitated the ThT binding. Moreover, the 3' guanine-rich fragment of Intra-SG was very susceptible to topology variation produced by the bound target strand. Additionally, a bioanalytical method was developed for ultrasensitive gene detection, confirming the utility of the ThT/Intra-SG complex as a universal signal transducer. It is believed that the results and disclosed rules will inspire researchers to develop many new DNA-based signal transducers in the future.
Collapse
Affiliation(s)
- Mengmeng Lv
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| | - Erkang Wang
- College of Chemistry, Jilin University Changchun Jilin 130012 China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun Jilin 130022 China
| |
Collapse
|
3
|
Hua Y, Hu F, Ren X, Xiong Y, Hu J, Su F, Tang X, Wen Y. A novel aptamer-G-quadruplex/hemin self-assembling color system: rapid visual diagnosis of invasive fungal infections. Ann Clin Microbiol Antimicrob 2023; 22:35. [PMID: 37170137 PMCID: PMC10176924 DOI: 10.1186/s12941-023-00570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/24/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The clinical symptoms of invasive fungal infections (IFI) are nonspecific, and early clinical diagnosis is challenging, resulting in high mortality rates. This study reports the development of a novel aptamer-G-quadruplex/hemin self-assembling color system (AGSCS) based on (1 → 3)-β-D-glucans' detection for rapid, specific and visual diagnosis of IFI. METHODS We screened high affinity and specificity ssDNA aptamers binding to (1 → 3)-β-D-glucans, the main components of cell wall from Candida albicans via Systematic Evolution of Ligands by EXponential enrichment. Next, a comparison of diagnostic efficiency of AGSCS and the (1 → 3)-β-D-glucans assay ("G test") with regard to predicting IFI in 198 clinical serum samples was done. RESULTS Water-soluble (1 → 3)-β-D-glucans were successfully isolated from C. albicans ATCC 10,231 strain, and these low degree of polymerization glucans (< 1.7 kD) were targeted for aptamer screening with the complementary sequences of G-quadruplex. Six high affinity single stranded DNA aptamers (A1, A2, A3, A4, A5 and A6) were found. The linear detection range for (1 → 3)-β-D-glucans stretched from 1.6 pg/mL to 400 pg/mL on a microplate reader, and the detection limit was 3.125 pg/mL using naked eye observation. Using a microplate reader, the sensitivity and specificity of AGSCS for the diagnosis of IFI were 92.68% and 89.65%, respectively, which was higher than that of the G test. CONCLUSION This newly developed visual diagnostic method for detecting IFI showed promising results and is expected to be developed as a point-of-care testing kit to enable quick and cost effective diagnosis of IFI in the future.
Collapse
Affiliation(s)
- Ying Hua
- School of Nursing, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Feng Hu
- Department of Blood Transfusion, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241000, Anhui, China
| | - Xia Ren
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Yueling Xiong
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China
| | - Jian Hu
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Fan Su
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China
| | - Xiaolei Tang
- Centre of Translational Medicine and Vascular Disease Research Center, The Second Affiliated Hospital of Wannan Medical College, Kangfu Road 10#, Jinghu District, Wuhu, 241000, Anhui, China.
| | - Yufeng Wen
- School of Public Health, Wannan Medical College, No.22, Wenchang Xi Road, Wuhu, 241002, Anhui, China.
| |
Collapse
|
4
|
Zheng BX, Yu J, Long W, Chan KH, Leung ASL, Wong WL. Structurally diverse G-quadruplexes as the noncanonical nucleic acid drug target for live cell imaging and antibacterial study. Chem Commun (Camb) 2023; 59:1415-1433. [PMID: 36636928 DOI: 10.1039/d2cc05945b] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The formation of G-quadruplex structures (G4s) in vitro from guanine (G)-rich nucleic acid sequences of DNA and RNA stabilized with monovalent cations, typically K+ and Na+, under physiological conditions, has been verified experimentally and some of them have high-resolution NMR or X-ray crystal structures; however, the biofunction of these special noncanonical secondary structures of nucleic acids has not been fully understood and their existence in vivo is still controversial at present. It is generally believed that the folding and unfolding of G4s in vivo is a transient process. Accumulating evidence has shown that G4s may play a role in the regulation of certain important cellular functions including telomere maintenance, replication, transcription and translation. Therefore, both DNA and RNA G4s of human cancer hallmark genes are recognized as the potential anticancer drug target for the investigation in cancer biology, chemical biology and drug discovery. The relationship between the sequence, structure and stability of G4s, the interaction of G4s with small molecules, and insights into the rational design of G4-selective binding ligands have been intensively studied over the decade. At present, some G4-ligands have achieved a new milestone and successfully entered the human clinical trials for anticancer therapy. Over the past few decades, numerous efforts have been devoted to anticancer therapy; however, G4s for molecular recognition and live cell imaging and for application as antibacterial agents and antibiofilms against antibiotic resistance have been obviously underexplored. The recent advances in G4-ligands in these areas are thus selected and discussed concentratedly in this article in order to shed light on the emerging role of G4s in chemical biology and therapeutic prospects against bacterial infections. In addition, the recently published molecular scaffolds for designing small ligands selectively targeting G4s in live cell imaging, bacterial biofilm imaging, and antibacterial studies are discussed. Furthermore, a number of underexplored G4-targets from the cytoplasmic membrane-associated DNA, the conserved promoter region of K. pneumoniae genomes, the RNA G4-sites in the transcriptome of E. coli and P. aeruginosa, and the mRNA G4-sites in the sequence for coding the vital bacterial FtsZ protein are highlighted to further explore in G4-drug development against human diseases.
Collapse
Affiliation(s)
- Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Jie Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wei Long
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| | - Ka Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China.
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, P. R. China
| |
Collapse
|
5
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Mirzayi S, Ravan H, Soltanian S. Borderline Boolean states improve the biosensing applications of DNA circuits. Int J Biol Macromol 2022; 207:1005-1010. [PMID: 35378164 DOI: 10.1016/j.ijbiomac.2022.03.197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
Molecular circuits have been used in a wide range of diagnosis applications, from the detection of chemical molecules in solution to the complex processing of cell surface receptors. One of the most important challenges of these systems is the lack of distinguishability between different circuit states when each circuit state represents a specific disease. In this work, we designed a molecular amplification circuit with borderline Boolean states that each state can be distinguished with different color intensity. For this purpose, two DNA complexes and four DNA hairpin structures were designed to detect miR-218 and miR-215 biomarkers. One of the designed DNA complexes has two G-quadruplex structures and the other has only one G-quadruplex structure. In the absence of the inputs, all three G-quadruplex structures are active and produce a high-intensity signal, while in the other three states, including the presence of miR-218, the presence of miR-215, and the presence of both inputs, respectively, one, two, and zero G-quadruplex structures are active. Therefore, the designed system can identify two different biomarkers simultaneously with different signal ratios, which can easily distinguish the different states of the circuit. This strategy is very promising to identify diseases in which any combination of biomarkers leads to a particular disease.
Collapse
Affiliation(s)
- Sedighe Mirzayi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Sara Soltanian
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
7
|
Sheet SK, Rabha M, Sen B, Patra SK, Aguan K, Khatua S. Ruthenium(II) Complex-Based G-quadruplex DNA Selective Luminescent 'Light-up' Probe for RNase H Activity Detection. Chembiochem 2021; 22:2880-2887. [PMID: 34314094 DOI: 10.1002/cbic.202100229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/03/2021] [Indexed: 12/14/2022]
Abstract
A bis-heteroleptic ruthenium(II) complex, 1[PF6 ]2 of benzothiazole amide substituted 2,2'-bipyridine ligand (bmbbipy) has been synthesized for the selective detection of G-quadruplex (GQ) DNA and luminescence-assay-based RNase H activity monitoring. Compound 1[PF6 ]2 exhibited aggregation-caused quenching (ACQ) in water. Aggregate formation was supported by DLS, UV-vis, and 1 H NMR spectroscopy results, and the morphology of aggregated particles was witnessed by SEM and TEM. 1[PF6 ]2 acted as an efficient GQ DNA-selective luminescent light-up probe over single-stranded and double-stranded DNA. The competency of 1[PF6 ]2 for selective GQ structure detection was established by PL and CD spectroscopy. For 1[PF6 ]2 , the PL light-up is exclusively due to the rigidification of the benzothiazole amide side arm in the presence of GQ-DNA. The interaction between the probe and GQ-DNA was analyzed by molecular docking analysis. The GQ structure detection capability of 1[PF6 ]2 was further applied in the luminescent 'off-on' RNase H activity detection. The assay utilized an RNA:DNA hybrid, obtained from 22AG2-RNA and 22AG2-DNA sequences. RNase H solely hydrolyzed the RNA of the RNA:DNA duplex and released G-rich 22AG2-DNA, which was detected via the PL enhancement of 1[PF6 ]2 . The selectivity of RNase H activity detection over various other restriction enzymes was also demonstrated.
Collapse
Affiliation(s)
- Sanjoy Kumar Sheet
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Monosh Rabha
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Sumit Kumar Patra
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, 793022, Shillong, Meghalaya, India
| |
Collapse
|
8
|
Street STG, Peñalver P, O'Hagan MP, Hollingworth GJ, Morales JC, Galan MC. Imide Condensation as a Strategy for the Synthesis of Core-Diversified G-Quadruplex Ligands with Anticancer and Antiparasitic Activity*. Chemistry 2021; 27:7712-7721. [PMID: 33780044 PMCID: PMC8251916 DOI: 10.1002/chem.202100040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Indexed: 11/22/2022]
Abstract
A facile imide coupling strategy for the one-step preparation of G-quadruplex ligands with varied core chemistries is described. The G-quadruplex stabilization of a library of nine compounds was examined using FRET melting experiments, and CD, UV-Vis, fluorescence and NMR titrations, identifying several compounds that were capable of stabilizing G-quadruplex DNA with interesting selectivity profiles. The best G4 ligand was identified as compound 3, which was based on a perylene scaffold and exhibited 40-fold selectivity for a telomeric G-quadruplex over duplex DNA. Surprisingly, a tetra-substituted flexible core, compound 11, also exhibited selective stabilization of G4 DNA over duplex DNA. The anticancer and antiparasitic activity of the library was also examined, with the lead compound 3 exhibiting nanomolar inhibition of Trypanosoma brucei with 78-fold selectivity over MRC5 cells. The cellular localization of this compound was also studied via fluorescence microscopy. We found that uptake was time dependant, with localization outside the nucleus and kinetoplast that could be due to strong fluorescence quenching in the presence of small amounts of DNA.
Collapse
Affiliation(s)
- Steven T. G. Street
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of VictoriaDr. S. T. G. StreetVictoriaBC V8P 5C2Canada
| | - Pablo Peñalver
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | | | | | - Juan C. Morales
- Instituto de Parasitología y Biomedicina López NeyraCSIC, PTS GranadaAvenida del Conocimiento, 1718016Armilla, GranadaSpain
| | - M. Carmen Galan
- School of ChemistryUniversity of BristolCantocks CloseBristolBS8 1TSUK
| |
Collapse
|
9
|
Luo Y, Granzhan A, Verga D, Mergny JL. FRET-MC: A fluorescence melting competition assay for studying G4 structures in vitro. Biopolymers 2020; 112:e23415. [PMID: 33368198 DOI: 10.1002/bip.23415] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022]
Abstract
G-quadruplexes (G4) play crucial roles in biology, analytical chemistry and nanotechnology. The stability of G4 structures is impacted by the number of G-quartets, the length and positions of loops, flanking motifs, as well as additional structural elements such as bulges, capping base pairs, or triads. Algorithms such as G4Hunter or Quadparser may predict if a given sequence is G4-prone by calculating a quadruplex propensity score; however, experimental validation is still required. We previously demonstrated that this validation is not always straightforward, and that a combination of techniques is often required to unambiguously establish whether a sequence forms a G-quadruplex or not. In this article, we adapted the well-known FRET-melting assay to characterize G4 in batch, where the sequence to be tested is added, as an unlabeled competitor, to a system composed of a dual-labeled probe (F21T) and a specific quadruplex ligand. PhenDC3 was preferred over TMPyP4 because of its better selectivity for G-quadruplexes. In this so-called FRET-MC (melting competition) assay, G4-forming competitors lead to a marked decrease of the ligand-induced stabilization effect (∆Tm ), while non-specific competitors (e.g., single- or double-stranded sequences) have little effect. Sixty-five known sequences with different typical secondary structures were used to validate the assay, which was subsequently employed to assess eight novel sequences that were not previously characterized.
Collapse
Affiliation(s)
- Yu Luo
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France.,Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| | - Anton Granzhan
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France
| | - Daniela Verga
- Université Paris Saclay, CNRS UMR9187, INSERM U1196, Institut Curie, Orsay, France
| | - Jean-Louis Mergny
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
10
|
Dong Z, Xue X, Liang H, Guan J, Chang L. DNA Nanomachines for Identifying Cancer Biomarkers in Body Fluids and Cells. Anal Chem 2020; 93:1855-1865. [PMID: 33325676 DOI: 10.1021/acs.analchem.0c03518] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Identifying molecular biomarkers promises to significantly improve the accuracy in cancer diagnosis at its early stage. DNA nanomachines, which are designable and switchable nanostructures made of DNA, show broad potential to detect tumor biomarkers with noninvasive, inexpensive, highly sensitive, and highly specific advantages. This Feature summarizes the recent DNA nanomachine-based platforms for the early detection of cancer biomarkers, both from body fluids and in cells.
Collapse
Affiliation(s)
- Zaizai Dong
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xinying Xue
- Department of Respiratory and Critical Care, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.,Department of Respiratory and Critical Care, Chinese PLA General Hospital, Beijing 100853, China
| | - Hailun Liang
- School of Public Administration and Policy, Renmin University of China, Beijing 100872, China
| | - Jingjiao Guan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Lingqian Chang
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.,School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
11
|
Cao Y, Li W, Gao T, Ding P, Pei R. One Terminal Guanosine Flip of Intramolecular Parallel G-Quadruplex: Catalytic Enhancement of G-Quadruplex/Hemin DNAzymes. Chemistry 2020; 26:8631-8638. [PMID: 32428287 DOI: 10.1002/chem.202001462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/13/2020] [Indexed: 11/09/2022]
Abstract
Numerous studies have shown compelling evidence that incorporation of an inversion of polarity site (IPS) in G-rich sequences can affect the topological and structural characteristics of G-quadruplexes (G4s). Herein, the influence of IPS on the formation of a previously studied intramolecular parallel G4 of d(G3 TG3 TG3 TG3 ) (TTT) and its stacked higher-order structures is explored. Insertion of 3'-3' or 5'-5' IPS did not change the parallel folding pattern of TTT. However, both the species and position of the IPS in TTT have a significant impact on the G4 stability and end-stacking through the alteration of G4-G4 interfaces properties. The data demonstrate that one base flip in each terminal G-tetrad can stabilize parallel G4s and facilitate intermolecular packing of monomeric G4s. Such modifications can also enhance the fluorescence and enzymatic performances by promoting interactions between parallel G4s with N-methyl mesoporphyrin IX (NMM) and hemin, respectively.
Collapse
Affiliation(s)
- Yanwei Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Pi Ding
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionic, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
12
|
Effects of Molecular Crowding on G-Quadruplex-hemin Mediated Peroxidase Activity. Chem Res Chin Univ 2020. [DOI: 10.1007/s40242-020-0018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zhang D, Cai L, Bian F, Kong T, Zhao Y. Label-Free Quantifications of Multiplexed Mycotoxins by G-Quadruplex Based on Photonic Barcodes. Anal Chem 2020; 92:2891-2895. [PMID: 32013396 DOI: 10.1021/acs.analchem.9b05213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiplexed quantification of mycotoxins is of great significance in food safety. Here, novel photonic crystal (PhC) barcodes with G-quadruplex aptamer encapsulated for label-free multiplex mycotoxins quantification are developed. The probes are immobilized on PhC barcodes to form a molecular beacon (MB), which contains the sequences of mycotoxin aptamers and a G-quadruplex. In the presence of the target, the hairpin structure of MB would open and the region of the G-quadruplex is exposed, which subsequently combines with Thioflavin T (ThT) to produce fluorescence. The relative fluorescence intensity increased as the mycotoxins concentration increased in a linear range from 1.0 pg/mL to 100 ng/mL. Moreover, the multiplexed mycotoxins quantification could be achieved by tuning the structural color of the PhC barcodes. We demonstrate that this method with high accuracy and specificity for multiplexed detection of mycotoxins, with the sensitivity of the detection as low as 0.70 pg/mL. Our results show that G-quadruplex-encapsulated PhC barcodes offer a novel simple and label-free pathway toward the multiplex screen assay of mycotoxins for food safety.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
14
|
Connelly RP, Verduzco C, Farnell S, Yishay T, Gerasimova YV. Toward a Rational Approach to Design Split G-Quadruplex Probes. ACS Chem Biol 2019; 14:2701-2712. [PMID: 31599573 DOI: 10.1021/acschembio.9b00634] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hybridization probes have become an indispensable tool for nucleic acid analysis. Systematic efforts in probe optimization resulted in their improved binding affinity, turn-on ratios, and ability to discriminate single nucleotide substitutions (SNSs). The use of split (or multicomponent) probes is a promising strategy to improve probe selectivity and enable an analysis of folded analytes. Here, we developed criteria for the rational design of a split G-quadruplex (G4) peroxidase-like deoxyribozyme (sPDz) probe that provides a visual output signal. The sPDz probe consists of two DNA strands that hybridize to the abutting positions of a DNA/RNA target and form a G4 structure catalyzing, in the presence of a hemin cofactor, H2O2-mediated oxidation of organic compounds into their colored oxidation products. We have demonstrated that probe design becomes complicated in the case of target sequences containing clusters (two or more) of cytosine residues and developed strategies to overcome the challenges to achieving high signal-to-noise and excellent SNS discrimination. Specifically, to improve selectivity, a conformational constraint that stabilizes the probe's dissociated state is beneficial. If the signal intensity is compromised, introduction of flexible non-nucleotide linkers between the G4-forming and target-recognizing elements of the probe helps to decrease the steric hindrance for G4 PDz formation observed as a signal increase. Varying the modes of G4 core splitting is another instrument for the optimal sPDz design. The suggested algorithm was successfully utilized for the design of the sPDz probe interrogating a fragment of the Influenza A virus genome (subtype H1N1), which can be of practical use for flu diagnostics and surveillance.
Collapse
Affiliation(s)
- Ryan P. Connelly
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Charles Verduzco
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Serena Farnell
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Tamar Yishay
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| | - Yulia V. Gerasimova
- Department of Chemistry, University of Central Florida, 4111 Libra Drive, Orlando, Florida 32816, United States
| |
Collapse
|
15
|
Lv M, Guo Y, Ren J, Wang E. Exploration of intramolecular split G-quadruplex and its analytical applications. Nucleic Acids Res 2019; 47:9502-9510. [PMID: 31504779 PMCID: PMC6765144 DOI: 10.1093/nar/gkz749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Distinct from intermolecular split G-quadruplex (Inter-SG), intramolecular split G-quadruplex (Intra-SG) which could be generated in a DNA spacer-inserted G-quadruplex strand has not been systematically explored. Not only is it essential for the purpose of simplicity of DNA-based bioanalytical applications, but also it will give us hints how to design split G-quadruplex-based system. Herein, comprehensive information is provided about influences of spacer length and split mode on the formation of Intra-SG, how to adjust its thermodynamic stability, and selection of optimal Intra-SG for bioanalysis. For instances, non-classical Intra-SG (e.g. 2:10, 4:8 and 5:7) displays lower stability than classical split strands (3:9, 6:6 and 9:3), which is closely related to integrity of consecutive guanine tract; as compared to regular Intra-SG structures, single-thymine capped ones have reduced melting temperature, providing an effective approach to adjustment of stability. It is believed that the disclosed rules in this study will contribute to the effective application of split G-quadruplex in the field of DNA technology in the future.
Collapse
Affiliation(s)
- Mengmeng Lv
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchun Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Jiangtao Ren
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
16
|
Zhang W, Li J, Salena B, Li Y. A DNA Switch for Detecting Single Nucleotide Polymorphism within a Long DNA Sequence Under Denaturing Conditions. Chemistry 2019; 26:592-596. [PMID: 31475757 DOI: 10.1002/chem.201903536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/28/2019] [Indexed: 01/24/2023]
Abstract
DNA detection is usually conducted under nondenaturing conditions to favor the formation of Watson-Crick base-paring interactions. However, although such a setting is excellent for distinguishing a single-nucleotide polymorphism (SNP) within short DNA sequences (15-25 nucleotides), it does not offer a good solution to SNP detection within much longer sequences. Here we report on a new detection method capable of detecting SNP in a DNA sequence containing 35-90 nucleotides. This is achieved through incorporating into the recognition DNA sequence a previously discovered DNA molecule that forms a stable G-quadruplex in the presence of 7 molar urea, a known condition for denaturing DNA structures. The systems are configured to produce both colorimetric and fluorescent signals upon target binding.
Collapse
Affiliation(s)
- Wenqing Zhang
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Jiuxing Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Bruno Salena
- Department of Medicine, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
17
|
Sun C, Ou X, Cheng Y, Zhai T, Liu B, Lou X, Xia F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans 2019; 48:5879-5891. [PMID: 30681098 DOI: 10.1039/c8dt04733b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Chunli Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
18
|
Zhang LM, Cui YX, Zhu LN, Chu JQ, Kong DM. Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes. Nucleic Acids Res 2019; 47:2727-2738. [PMID: 30715502 PMCID: PMC6451126 DOI: 10.1093/nar/gkz064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/14/2019] [Accepted: 01/26/2019] [Indexed: 12/04/2022] Open
Abstract
Specific G-quadruplex-probing is crucial for both biological sciences and biosensing applications. Most reported probes are focused on fluorescent or colorimetric recognition of G-quadruplexes. Herein, for the first time, we reported a new specific G-quadruplex-probing technique-resonance light scattering (RLS)-based ratiometric recognition. To achieve the RLS probing of G-quadruplexes in the important physiological pH range of 7.4-6.0, four water soluble cationic porphyrin derivatives, including an unreported octa-cationic porphyrin, with large side arm substituents were synthesized and developed as RLS probes. These RLS probes were demonstrated to work well for ratiometric recognition of G-quadruplexes with high specificity against single- and double-stranded DNAs, including long double-stranded ones. The working mechanism was speculated to be based on the RLS signal changes caused by porphyrin protonation that was promoted by the end-stacking of porphyrins on G-quadruplexes. This work adds an important member in G-quadruplex probe family, thus providing a useful tool for studies on G-quadruplex-related events concerning G-quadruplex formation, destruction and changes in size, shape and aggregation. As a proof-of-concept example of applications, the RLS probes were demonstrated to work well for label-free and sequence-specific sensing of microRNA. This work also provides a simple and useful way for the preparation of cationic porphyrins with high charges.
Collapse
Affiliation(s)
- Li-Ming Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yun-Xi Cui
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Na Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Jun-Qing Chu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - De-Ming Kong
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Graphitic C 3N 4 nanosheet and hemin/G-quadruplex DNAzyme-based label-free chemiluminescence aptasensing for biomarkers. Talanta 2018; 192:400-406. [PMID: 30348410 DOI: 10.1016/j.talanta.2018.09.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
Here we first reported that graphitic carbon nitride nanosheet (g-C3N4 NS) could effectively quench the chemiluminescence (CL) of luminol-hydrogen peroxide (H2O2) system. According to the new discovery, a label-free and homogeneous CL aptasensing platform was designed for sensitive detecting of biomarkers. In the absence of target, DNA probe containing hemin/G-quadruplex DNAzyme structure was adsorbed on the surface of g-C3N4 NS, causing the CL quenching of luminol through an electron transfer process. However, in the presence of the target, a DNA-DNA duplex was formed due to DNA hybridization reaction and target recognition effect, which could not be adsorbed onto the g-C3N4 NS surface because of its weak affinity. Thus, the electron transfer was blocked and the CL emission of luminol could be enhanced. The proposed CL aptasensor could detect carcinoembryonic antigen (CEA) with a detection limit of 63.0 pg/mL and it can also be used as a general detecting strategy for adenosinetriphosphate (ATP) detection. This aptasensing platform exhibited high sensitivity toward biomarkers and the probe need not be labeled, showing great promise for disease diagnosis.
Collapse
|
20
|
Gribas AV, Sakharov IY. Homogeneous Chemiluminescent Determination of Mercury(II) Using a Peroxidase-Mimicking DNAzyme Assay. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1378229] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Ivan Yu. Sakharov
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Fapyane D, Kékedy-Nagy L, Sakharov IY, Ferapontova EE. Electrochemistry and electrocatalysis of covalent hemin-G4 complexes on gold. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2017.11.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Krishna VD, Wu K, Su D, Cheeran MCJ, Wang JP, Perez A. Nanotechnology: Review of concepts and potential application of sensing platforms in food safety. Food Microbiol 2018; 75:47-54. [PMID: 30056962 DOI: 10.1016/j.fm.2018.01.025] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
In recent years a number of new nanotechnology based platforms have been developed for detection of wide variety of targets including infectious agents, protein biomarkers, nucleic acids, drugs, and cancer cells. Nanomaterials such as magnetic nanoparticles, quantum dots, carbon nanotubes, nanowires, and nanosensors like giant magnetoresistance (GMR) sensors are used to quantitatively detect biomolecules with, experimentally, relatively good accuracy. There has been a growing interest in the use of magnetic fields in biosensing applications. Because biological samples have no ferromagnetic property and therefore there is no interference with complex sample matrix, detection of infectious agents from minimally processed samples is possible. Here, we provide a brief overview of the recent emergence of nanotechnology-based techniques for the detection and monitoring of foodborne diseases. In addition, the potential applications and future perspectives of nanotechnology on food safety are discussed. Ultimately, the review is expected to stimulate and provide directions to the development and application of nanotechnology-based tests for the early detection, and eventual control of foodborne diseases.
Collapse
Affiliation(s)
- Venkatramana D Krishna
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Kai Wu
- The Center for Micromagnetics and Information Technologies (MINT) & Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Diqing Su
- The Center for Micromagnetics and Information Technologies (MINT) & Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA; Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maxim C J Cheeran
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Jian-Ping Wang
- The Center for Micromagnetics and Information Technologies (MINT) & Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andres Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
23
|
Wu T, Ye M, Mao T, Lin F, Hu Y, Gan N, Shao Y. Human telomeric hybrid-2-over-hybrid-1 G-quadruplex targeting and a selective hypersaline-tolerant sensor using abasic site-engineered monomorphism. Anal Chim Acta 2017; 964:161-169. [DOI: 10.1016/j.aca.2017.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 02/02/2023]
|
24
|
Affiliation(s)
- Yan Du
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, Jilin China
| |
Collapse
|
25
|
Zhu Q, Gao Y, Li Y. Split G-Quadruplex-Based Label-Free and Enzyme-Free System for the Construction of Multiple-Input Logic Gates. ChemistrySelect 2016. [DOI: 10.1002/slct.201600918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qi Zhu
- Department of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Ying Gao
- Department of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| | - Yunhui Li
- Department of Chemistry and Environmental Engineering; Changchun University of Science and Technology; Changchun 130022 P. R. China
| |
Collapse
|
26
|
Gribas AV, Zatsepin TS, Korolev SP, Gottikh MB, Sakharov IY. Suicide inactivation of covalent peroxidase-mimicking DNAzyme with hydrogen peroxide and its protection by a reductant substrate. Talanta 2016; 155:212-5. [DOI: 10.1016/j.talanta.2016.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/12/2016] [Accepted: 04/16/2016] [Indexed: 12/29/2022]
|
27
|
Chen J, Park B. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection. J Food Prot 2016; 79:1055-69. [PMID: 27296612 DOI: 10.4315/0362-028x.jfp-15-516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Bacterial pathogens are one of the leading causes of food safety incidents and product recalls worldwide. Timely detection and identification of microbial contamination in agricultural and food products is crucial for disease prevention and outbreak investigation. In efforts to improve and/or replace time-consuming and laborious "gold standards" for pathogen detection, numerous alternative rapid methods have been proposed in the past 15 years, with a trend toward incorporating nanotechnology and nanomaterials in food pathogen detection. This article is a review of the use of nanotechnology in various detection and sample preparation techniques and advancements in nanotechnology applications in food matrices. Some practical considerations in nanobioassay design are discussed, and the gaps between research status quo and market demands are identified.
Collapse
Affiliation(s)
- Jing Chen
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA
| | - Bosoon Park
- U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, 950 College Station Road, Athens, Georgia 30605, USA.
| |
Collapse
|
28
|
Ma DL, Wang W, Mao Z, Yang C, Chen XP, Lu JJ, Han QB, Leung CH. A tutorial review for employing enzymes for the construction of G-quadruplex-based sensing platforms. Anal Chim Acta 2016; 913:41-54. [DOI: 10.1016/j.aca.2016.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023]
|
29
|
Du YC, Jiang HX, Huo YF, Han GM, Kong DM. Optimization of strand displacement amplification-sensitized G-quadruplex DNAzyme-based sensing system and its application in activity detection of uracil-DNA glycosylase. Biosens Bioelectron 2016; 77:971-7. [DOI: 10.1016/j.bios.2015.10.080] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/24/2023]
|
30
|
Cheng H, Qiu X, Zhao X, Meng W, Huo D, Wei H. Functional Nucleic Acid Probe for Parallel Monitoring K+ and Protoporphyrin IX in Living Organisms. Anal Chem 2016; 88:2937-43. [DOI: 10.1021/acs.analchem.5b04936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hanjun Cheng
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing National Laboratory of Microstructures, Nanjing, Jiangsu 210093, China
- State
Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210093, China
| | - Xuefeng Qiu
- Department
of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Xiaozhi Zhao
- Department
of Urology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Wei Meng
- School
of Physics, Collaborative Innovation Center of Advanced Microstructures,
Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Da Huo
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing National Laboratory of Microstructures, Nanjing, Jiangsu 210093, China
| | - Hui Wei
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences,
Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing National Laboratory of Microstructures, Nanjing, Jiangsu 210093, China
| |
Collapse
|
31
|
Guo Y, Xu L, Hong S, Sun Q, Yao W, Pei R. Label-free DNA-based biosensors using structure-selective light-up dyes. Analyst 2016; 141:6481-6489. [DOI: 10.1039/c6an01958g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Label-free biosensors (LFBs) have demonstrated great potential in cost-effective applications. This review collected the latest reported works which employed structure-selective nucleic acid dyes for the development of DNA-based LFBs.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Lijun Xu
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Shanni Hong
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| | - Qingqing Sun
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface
- Division of Nanobiomedicine
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
| |
Collapse
|
32
|
Recent Developments in G-Quadruplex Probes. ACTA ACUST UNITED AC 2015; 22:812-28. [DOI: 10.1016/j.chembiol.2015.06.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022]
|