1
|
Magnetofection In Vivo by Nanomagnetic Carriers Systemically Administered into the Bloodstream. Pharmaceutics 2021; 13:pharmaceutics13111927. [PMID: 34834342 PMCID: PMC8619128 DOI: 10.3390/pharmaceutics13111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle-based technologies are rapidly expanding into many areas of biomedicine and molecular science. The unique ability of magnetic nanoparticles to respond to the magnetic field makes them especially attractive for a number of in vivo applications including magnetofection. The magnetofection principle consists of the accumulation and retention of magnetic nanoparticles carrying nucleic acids in the area of magnetic field application. The method is highly promising as a clinically efficient tool for gene delivery in vivo. However, the data on in vivo magnetofection are often only descriptive or poorly studied, insufficiently systematized, and sometimes even contradictory. Therefore, the aim of the review was to systematize and analyze the data that influence the in vivo magnetofection processes after the systemic injection of magnetic nanostructures. The main emphasis is placed on the structure and coating of the nanomagnetic vectors. The present problems and future trends of the method development are also considered.
Collapse
|
2
|
Lien J, Bull T, Michelmore RW, Guo T. Fast Fluorescence Titration Quantification of Plasmid DNA with DNA Attractive Magnetic Nanoparticles. Anal Chem 2021; 93:12854-12861. [PMID: 34516097 DOI: 10.1021/acs.analchem.0c04892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fluorescence titration using magnetic nanoparticles (FTMN) was performed as a rapid, inexpensive, and simple method for quantifying the amount of fluorophore-intercalated plasmid DNA on these DNA attractive nanoparticles. Binding of the propidium iodide (PI)-intercalated DNA (PI/DNA) to polyethylenimine (PEI)-coated monodisperse iron oxide magnetic nanoparticles (PEI-MNs) was confirmed with transmission electron microscopy after the two species were mixed in water for less than a minute. The amount of DNA on PEI-MNs in aqueous solution, however, could not be easily determined using direct fluorescence measurements due to strong scattering by aggregated MNs, especially at high nanoparticle concentrations. Instead, fluorescence measurements were taken immediately after the solution of PI/DNA and PEI-MN mixtures was treated with a magnet to pull the PEI-MNs out of the solution. The detected fluorescence signal of the remaining free PI/DNA in the solution decreased as the concentration of PEI-MNs in the pre-treated solutions increased, resulting in a titration curve, which was used to determine the amount of DNA on MNs, the dissociation constant, and binding energy after the concentration of PEI-MNs was calibrated with microwave-plasma atomic emission spectroscopy. Quantitative polymerase chain reaction was used to understand the binding of DNA to MNs and to measure the amount of free PI/DNA in solution, and the results were similar to those obtained with the FTMN method.
Collapse
Affiliation(s)
- Jennifer Lien
- Department of Chemistry, University of California, Davis, California 95616, United States.,Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California 94704, United States
| | - Tawni Bull
- The Genome Center, Department of Plant Sciences, University of California, Davis, California 95616, United States
| | - Richard W Michelmore
- The Genome Center, Department of Plant Sciences, University of California, Davis, California 95616, United States.,Departments of Molecular and Cellular Biology, Medical Microbiology and Immunology, University of California, Davis, California 95616, United States.,Innovative Genomics Institute, 2151 Berkeley Way, Berkeley, California 94704, United States
| | - Ting Guo
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
3
|
Liu Y, Wu W, Wang Y, Han S, Yuan Y, Huang J, Shuai X, Peng Z. Recent development of gene therapy for pancreatic cancer using non-viral nanovectors. Biomater Sci 2021; 9:6673-6690. [PMID: 34378568 DOI: 10.1039/d1bm00748c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pancreatic cancer (PC), characterized by its dense desmoplastic stroma and hypovascularity, is one of the most lethal cancers with a poor prognosis in the world. Traditional treatments such as chemotherapy, radiotherapy, and targeted therapy show little benefit in the survival rate in patients with advanced PC due to the poor penetration and resistance of drugs, low radiosensitivity, or severe side effects. Gene therapy can modify the morbific and drug-resistant genes as well as insert the tumor-suppressing genes, which has been shown to have great potential in PC treatment. The development of safe non-viral vectors for the highly efficient delivery of nucleic acids is essential for effective gene therapy, and has been attracting much attention. In this review, we first summarized the PC-promoting genes and gene therapies using plasmid DNA, mRNA, miRNA/siRNA-based RNA interference technology, and genome editing technology. Second, the commonly used non-viral nanovector and theranostic gene delivery nanosystem, especially the tumor microenvironment-sensitive delivery nanosystem and the cell/tumor-penetrating delivery nanosystem, were introduced. Third, a combination of non-viral nanovector-based gene therapy and other therapies, such as immunotherapy, chemotherapy, photothermal therapy (PTT), and photodynamic therapy (PDT), for PDAC treatment was discussed. Finally, a number of clinical trials have demonstrated the proof-of-principle that gene therapy or the combination of gene therapy and chemotherapy using non-viral vectors can inhibit the progression of PC. Although most of the non-viral vector-based gene therapies and their combination therapy are still under preclinical research, the development of genetics, molecular biology, and novel vectors would promote the clinical transformation of gene therapy.
Collapse
Affiliation(s)
- Yu Liu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Yiyao Wang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Shisong Han
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yuanyuan Yuan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jinsheng Huang
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Zhao Peng
- Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
4
|
Bi Q, Song X, Hu A, Luo T, Jin R, Ai H, Nie Y. Magnetofection: Magic magnetic nanoparticles for efficient gene delivery. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Hu A, Chen X, Bi Q, Xiang Y, Jin R, Ai H, Nie Y. A parallel and cascade control system: magnetofection of miR125b for synergistic tumor-association macrophage polarization regulation and tumor cell suppression in breast cancer treatment. NANOSCALE 2020; 12:22615-22627. [PMID: 33150908 DOI: 10.1039/d0nr06060g] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polarization regulation of tumor-association macrophages (TAMs) is a promising treatment method for tumors, but aiming at TAMs alone shows unsatisfactory therapeutic efficiency. Therefore, we designed a parallel and cascade control system for both macrophage polarization and tumor cell inhibition. The system is composed of cationic lipopeptides with an arginine-rich periphery (RLS) and anionic magnetic nanoparticles (MNPs) for fleet transfection of miR-125b. Based on the highly efficient magnetofection, miR-125b successfully shows a parallel effect on both M1, promoting polarization by targeting interferon regulatory factor 4 (IRF4) in macrophages, and tumor cell inhibition, by targeting ETS proto-oncogene 1 and cyclin- J. The cascading effect on M1-associated genes is upregulated by up to two orders of magnitude, while M2-associated genes are downregulated. Meanwhile, MNPs also have an effect on the TAM polarization and 4T1 tumor cell inhibition via inflammatory related gene expression and Fenton reaction. Further mimicking the co-culture of RAW264.7 and 4T1 cells in vitro confirmed the synergistic therapy effect. In the treatment of orthotopic breast cancer in mice, considerable M1 macrophage polarization was observed in the RM125b treated group, showing distinct tumor-suppressive effects, with a tumor weight reduction of 60% and tumor metastasis suppression of 50%.
Collapse
Affiliation(s)
- Ao Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
6
|
Dong W, Huang A, Huang J, Wu P, Guo S, Liu H, Qin M, Yang X, Zhang B, Wan M, Zong Y. Plasmid-loadable magnetic/ultrasound-responsive nanodroplets with a SPIO-NP dispersed perfluoropentane core and lipid shell for tumor-targeted intracellular plasmid delivery. Biomater Sci 2020; 8:5329-5345. [PMID: 32793943 DOI: 10.1039/d0bm00699h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Using ultrasound activating contrast agents to induce sonoporation is a potential strategy for effective lesion-targeted gene delivery. Previous reports have proven that submicron nanodroplets have a better advantage than microbubbles in that they can pass through tumor vasculature endothelial gaps by passive targeting; however, they cannot achieve an adequate dose in tumors to facilitate ultrasound-enhanced gene delivery. Additionally, a few studies focused on delivering macromolecular genetic materials (i.e. overexpression plasmid and CRISPR plasmid) have presented more unique advantages than small-molecular genetic materials (i.e. miRNA mimics, siRNA and shRNA etc.), such as enhancing the expression of target genes with long-term effectiveness. Thereby, we constructed novel plasmid-loadable magnetic/ultrasound-responsive nanodroplets, where superparamagnetic iron oxide nanoparticle dispersed perfluoropentane was encapsulated with lipids to which plasmids could be adhered, and branched polyethylenimine was used to protect the plasmids from enzymolysis. Furthermore, in vitro and in vivo studies were performed to verify the magnetic tumor-targeting ability of the plasmid-loadable magnetic/ultrasound-responsive nanodroplets and focused ultrasound enhanced intracellular plasmid delivery. The plasmid-loadable magnetic/ultrasound-responsive nanodroplets, carrying 16-19 plasmids per droplet, had desirable diameters less than 300 nm, and integrated the merits of excellent magnetic targeting capabilities and phase transition sensitivity to focused ultrasound. Under programmable focused ultrasound exposure, the plasmid-loadable magnetic/ultrasound-responsive nanodroplets underwent a phase-transition into echogenic microbubbles and the subsequent inertial cavitation of the microbubbles achieved an ∼40% in vitro plasmid delivery efficiency. Following intravenous administration, T2-weighted magnet resonance imaging, scanning electron microscopy and inductively coupled plasma optical emission spectrometry of the tumors showed significantly enhanced intratumoral accumulation of the plasmid-loadable magnetic/ultrasound-responsive nanodroplets under an external magnetic field. And a GFP ELISA assay and immunofluorescence staining indicated that focused ultrasound-induced inertial cavitation of the plasmid-loadable magnetic/ultrasound-responsive nanodroplets significantly enhanced the intracellular delivery of plasmids within the tumor after magnet-assisted accumulation, while only lower GFP levels were observed in the tumors on applying focused ultrasound or an external magnet alone. Taken together, utilizing the excellent plasmid-loadable magnetic/ultrasound-responsive nanodroplets combined with magnetism and ultrasound could efficiently deliver plasmids to cancer cells, which could be a potential strategy for macromolecular genetic material delivery in the clinic to treat cancer.
Collapse
Affiliation(s)
- Wei Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang T, Xu Q, Huang T, Ling D, Gao J. New Insights into Biocompatible Iron Oxide Nanoparticles: A Potential Booster of Gene Delivery to Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001588. [PMID: 32725792 DOI: 10.1002/smll.202001588] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Gene delivery to stem cells is a critical issue of stem cells-based therapies, still facing ongoing challenges regarding efficiency and safety. Recent advances in the controlled synthesis of biocompatible magnetic iron oxide nanoparticles (IONPs) have provided a powerful nanotool for assisting gene delivery to stem cells. However, this field is still at an early stage, with well-designed and scalable IONPs synthesis highly desired. Furthermore, the potential risks or bioeffects of IONPs on stem cells are not completely figured out. Therefore, in this review, the updated researches focused on the gene delivery to stem cells using various designed IONPs are highlighted. Additionally, the impacts of the physicochemical properties of IONPs, as well as the magnetofection systems on the gene delivery performance and biocompatibility are summarized. Finally, challenges attributed to the potential impacts of IONPs on the biologic behaviors of stem cells and the large-scale productions of uniform IONPs are emphasized. The principles and challenges summarized in this review provide a general guidance for the rational design of IONPs-assisted gene delivery to stem cells.
Collapse
Affiliation(s)
- Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Qianhao Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Daishun Ling
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Yang Q, Dong Y, Qiu Y, Yang X, Cao H, Wu Y. Design of Functional Magnetic Nanocomposites for Bioseparation. Colloids Surf B Biointerfaces 2020; 191:111014. [PMID: 32325362 DOI: 10.1016/j.colsurfb.2020.111014] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 12/31/2022]
Abstract
Magnetic materials have been widely used in bioseparation in recent years due to their good biocompatibility, magnetic properties, and high binding capacity. In this review, we provide a brief introduction on the preparation and bioseparation applications of magnetic materials including the synthesis and surface modification of magnetic nanoparticles as well as the preparation and applications of magnetic nanocomposites in the separation of proteins, peptides, cells, exosomes and blood. The current limitations and remaining challenges in the fabrication process of magnetic materials for bioseparation will be also detailed.
Collapse
Affiliation(s)
- Qi Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China; Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yi Dong
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yong Qiu
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Xinzhou Yang
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Han Cao
- Dehong Biomedical Engineering Research Center, Dehong Teachers' College, Dehong, Yunnan 678400, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
9
|
Luo T, Liang H, Jin R, Nie Y. Virus-inspired and mimetic designs in non-viral gene delivery. J Gene Med 2019; 21:e3090. [PMID: 30968996 DOI: 10.1002/jgm.3090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/04/2023] Open
Abstract
Virus-inspired mimics for nucleic acid transportation have attracted much attention in the past decade, especially the derivative microenvironment stimuli-responsive designs. In the present mini-review, the smart designs of gene carriers that overcome biological barriers and realize an efficient delivery are categorized with respect to the different "triggers" provided by tumor cells, including pH, redox potentials, ATP, enzymes and reactive oxygen species. Some dual/multi-responsive gene vectors have also been introduced that show a more precise and efficient delivery in the complicated environment of human body. In addition, inspired by the special recognition mechanisms and components of viruses, improvements in the design of carriers relating to targeting/penetration properties, as well as chemical component evolution, are also addressed.
Collapse
Affiliation(s)
- Tianying Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Hong Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yu Nie
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Cen C, Wu J, Zhang Y, Luo C, Xie L, Zhang X, Yang X, Li M, Bi Y, Li T, He T. Improving Magnetofection of Magnetic Polyethylenimine Nanoparticles into MG-63 Osteoblasts Using a Novel Uniform Magnetic Field. NANOSCALE RESEARCH LETTERS 2019; 14:90. [PMID: 30874913 PMCID: PMC6419855 DOI: 10.1186/s11671-019-2882-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 01/27/2019] [Indexed: 05/10/2023]
Abstract
This study aimed to improve the magnetofection of MG-63 osteoblasts by integrating the use of a novel uniform magnetic field with low molecular weight polyethylenimine modified superparamagnetic iron oxide nanoparticles (PEI-SPIO-NPs). The excellent characteristics of PEI-SPIO-NPs such as size, zeta potential, the pDNA binding and protective ability were determined to be suitable for gene delivery. The novel uniform magnetic field enabled polyethylenimine-modified superparamagnetic iron oxide nanoparticles/pDNA complexes (PEI-SPIO-NPs/pDNA complexes) to rapidly and uniformly distribute on the surface of MG-63 cells, averting local transfection and decreasing disruption of the membrane caused by the centralization of positively charged PEI-SPIO-NPs, thereby increasing the effective coverage of magnetic gene carriers during transfection, and improving magnetofection efficiency. This innovative uniform magnetic field can be used to determine the optimal amount between PEI-SPIO-NPs and pDNA, as well as screen for the optimal formulation design of magnetic gene carrier under the homogenous conditions. Most importantly, the novel uniform magnetic field facilitates the transfection of PEI-SPIO-NPs/pDNA into osteoblasts, thereby providing a novel approach for the targeted delivery of therapeutic genes to osteosarcoma tissues as well as a reference for the treatment of other tumors.
Collapse
Affiliation(s)
- Chaode Cen
- Department of Orthopedics, Guizhou Provincial Orthopedics Hospital, Guiyang, 550000 People’s Republic of China
| | - Jun Wu
- Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Yong Zhang
- Department of Gynaecology, The First People’s Hospital of Guiyang, Guiyang, 550000 People’s Republic of China
| | - Cong Luo
- Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Lina Xie
- Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Xin Zhang
- Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Xiaolan Yang
- Ministry of Education Key Laboratory of Clinical Diagnostics, Department of Chemistry, Chongqing Medical University, Chongqing, 40016 People’s Republic of China
| | - Ming Li
- Department of Orthopedics, Laboratory of Orthopedic Biomaterials, Children’s Hospital of Chongqing Medical University, Chongqing, 400014 People’s Republic of China
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Yang Bi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Tingyu Li
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Engineering Research Center of Stem Cell Therapy, China International Science and Technology Cooperation base of Child Development and Critical Disorders, Chongqing, 400014 People’s Republic of China
| | - Tongchuan He
- Laboratory of Molecular Oncology, Department of Surgery/Orthopedics Center, The University of Chicago Medical Center, Chicago, IL 60637 USA
| |
Collapse
|
11
|
Shen L, Li B, Qiao Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E324. [PMID: 29473914 PMCID: PMC5849021 DOI: 10.3390/ma11020324] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/21/2018] [Indexed: 01/04/2023]
Abstract
Fe₃O₄ nanoparticles (NPs), the most traditional magnetic nanoparticles, have received a great deal of attention in the biomedical field, especially for targeted drug/gene delivery systems, due to their outstanding magnetism, biocompatibility, lower toxicity, biodegradability, and other features. Naked Fe₃O₄ NPs are easy to aggregate and oxidize, and thus are often made with various coatings to realize superior properties for targeted drug/gene delivery. In this review, we first list the three commonly utilized synthesis methods of Fe₃O₄ NPs, and their advantages and disadvantages. In the second part, we describe coating materials that exhibit noticeable features that allow functionalization of Fe₃O₄ NPs and summarize their methods of drug targeting/gene delivery. Then our efforts will be devoted to the research status and progress of several different functionalized Fe₃O₄ NP delivery systems loaded with chemotherapeutic agents, and we present targeted gene transitive carriers in detail. In the following section, we illuminate the most effective treatment systems of the combined drug and gene therapy. Finally, we propose opportunities and challenges of the clinical transformation of Fe₃O₄ NPs targeting drug/gene delivery systems.
Collapse
Affiliation(s)
- Lazhen Shen
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Bei Li
- School of Chemistry and Environmental Engineering, Institute of Applied Chemistry, Shanxi Datong University, Datong 037009, China.
| | - Yongsheng Qiao
- Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China.
| |
Collapse
|
12
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
13
|
Design of magnetic gene complexes as effective and serum resistant gene delivery systems for mesenchymal stem cells. Int J Pharm 2017; 520:1-13. [DOI: 10.1016/j.ijpharm.2017.01.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/12/2017] [Accepted: 01/20/2017] [Indexed: 01/04/2023]
|
14
|
Miceli E, Kar M, Calderón M. Interactions of organic nanoparticles with proteins in physiological conditions. J Mater Chem B 2017; 5:4393-4405. [DOI: 10.1039/c7tb00146k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The efficacy of nanoparticles in biomedical applications is strongly influenced by their ability to bind proteins onto their surface. The analysis of organic nanoparticles interacting with proteins in physiological conditions may help in the successful design of next generation nanoparticles with improved biodistributions and therapeutic performances.
Collapse
Affiliation(s)
- Enrico Miceli
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| | - Mrityunjoy Kar
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Marcelo Calderón
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Helmholtz Virtuelles Institut – Multifunctional Biomaterials for Medicine
| |
Collapse
|
15
|
Vaidyanathan S, Orr BG, Banaszak Holl MM. Role of Cell Membrane-Vector Interactions in Successful Gene Delivery. Acc Chem Res 2016; 49:1486-93. [PMID: 27459207 DOI: 10.1021/acs.accounts.6b00200] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic polymers have been investigated as nonviral vectors for gene delivery due to their favorable safety profile when compared to viral vectors. However, nonviral vectors are limited by poor efficacy in inducing gene expression. The physicochemical properties of cationic polymers enabling successful gene expression have been investigated in order to improve expression efficiency and safety. Studies over the past several years have focused on five possible rate-limiting processes to explain the differences in gene expression: (1) endosomal release, (2) transport within specific intracellular pathways, (3) protection of DNA from nucleases, (4) transport into the nucleus, and (5) DNA release from vectors. However, determining the relative importance of these processes and the vector properties necessary for optimization remain a challenge to the field. In this Account, we describe over a decade of studies focused on understanding the interaction of cationic polymer and cationic polymer/oligonucleotide (polyplex) interactions with model lipid membranes, cell membranes, and cells in culture. In particular, we have been interested in how the interaction between cationic polymers and the membrane influences the intracellular transport of intact DNA to the nucleus. Recent advances in microfluidic patch clamp techniques enabled us to quantify polyplex cell membrane interactions at the cellular level with precise control over material concentrations and exposure times. In attempting to relate these findings to subsequent intracellular transport of DNA and expression of protein, we needed to develop an approach that could distinguish DNA that was intact and potentially functional for gene expression from the much larger pool of degraded, nonfunctional DNA within the cell. We addressed this need by developing a FRET oligonucleotide molecular beacon (OMB) to monitor intact DNA transport. The research highlighted in this Account builds to the conclusion that polyplex transported DNA is released from endosomes by free cationic polymer intercalated into the endosomal membrane. This cationic polymer initially interacts with the cell plasma membrane and appears to reach the endosome by lipid cycling mechanisms. The fraction of cells displaying release of intact DNA from endosomes quantitatively predicts the fraction of cells displaying gene expression for both linear poly(ethylenimine) (L-PEI; an effective vector) and generation five poly(amidoamine) dendrimer (G5 PAMAM; an ineffective vector). Moreover, intact OMB delivered with G5 PAMAM, which normally is confined to endosomes, was released by the subsequent addition of L-PEI with a corresponding 10-fold increase in transgene expression. These observations are consistent with experiments demonstrating that cationic polymer/membrane partition coefficients, not polyplex/membrane partition coefficients, predict successful gene expression. Interestingly, a similar partitioning of cationic polymers into the mitochondrial membranes has been proposed to explain the cytotoxicity of these materials. Thus, the proposed model indicates the same physicochemical property (partitioning into lipid bilayers) is linked to release from endosomes, giving protein expression, and to cytotoxicity.
Collapse
Affiliation(s)
- Sriram Vaidyanathan
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradford G. Orr
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Mark M. Banaszak Holl
- Departments of Biomedical Engineering, ‡Chemistry, and §Physics, ∥Program in Applied Physics and ⊥Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
16
|
Jiang Q, Yue D, Nie Y, Xu X, He Y, Zhang S, Wagner E, Gu Z. Specially-Made Lipid-Based Assemblies for Improving Transmembrane Gene Delivery: Comparison of Basic Amino Acid Residue Rich Periphery. Mol Pharm 2016; 13:1809-21. [DOI: 10.1021/acs.molpharmaceut.5b00967] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Qian Jiang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Dong Yue
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yu Nie
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Xianghui Xu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Yiyan He
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Shiyong Zhang
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| | - Ernst Wagner
- Center
for Drug Research, Department of Pharmacy, Pharmaceutical Biology-Biotechnology,
and Center for NanoScience (CeNS), Ludwig-Maximilians-Universitat, Butenandtstrasse 5-13, D-81377, Munich, Germany
| | - Zhongwei Gu
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, P. R. China
| |
Collapse
|
17
|
Ma S, Zhou J, Wali ARM, He Y, Xu X, Tang JZ, Gu Z. Self-assembly of pH-sensitive fluorinated peptide dendron functionalized dextran nanoparticles for on-demand intracellular drug delivery. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:219. [PMID: 26238777 DOI: 10.1007/s10856-015-5550-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/27/2015] [Indexed: 06/04/2023]
Abstract
In this study, the amphiphilic fluorinated peptide dendrons functionalized dextran (FPD-HZN-Dex) via an acid-sensitive hydrazone linkage was successfully designed and prepared for the first time. We demonstrated a spontaneous self-assembly of amphiphilic FPD-HZN-Dex into the well-defined nanoparticles with the core-shell architecture in aqueous media, which is attributed to the efficient amphiphilic functionalization of dextran by the hydrophobic fluorinated peptide dendrons. The spherical morphology, uniform particle size and good storage stability of the prepared FPD-HZN-Dex nanoparticles were characterized by dynamic light scattering and transmission electron microscopy, respectively. In vitro drug release studies showed a controlled and pH dependent hydrophobic drug release profile. The cell viability assays show excellent biocompatibility of the FPD-HZN-Dex nanoparticles for both normal cells and tumor cells. Moreover, the FPD-HZN-Dex self-assembled systems based on pH-sensitive hydrazone linkage also can serve as stimulus bioresponsive carriers for on-demand intracellular drug delivery. These self-assembled nanoparticles exhibit a stimulus-induced response to endo/lysosome pH (pH 5.0) that causes their disassembly over time, enabling controlled release of encapsulated DOX. This work has unveiled a unique non-covalent interaction useful for engineering amphiphilic dendrons or dendrimers self-assembled systems.
Collapse
Affiliation(s)
- Shengnan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, Sichuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
18
|
Cerda MB, Batalla M, Anton M, Cafferata E, Podhajcer O, Plank C, Mykhaylyk O, Policastro L. Enhancement of nucleic acid delivery to hard-to-transfect human colorectal cancer cells by magnetofection at laminin coated substrates and promotion of the endosomal/lysosomal escape. RSC Adv 2015. [DOI: 10.1039/c5ra06562c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Optimization of nucleic acid delivery in hard-to-transfect colorectal cancer cells by magnetofection at coated laminin substrates and by the endosomal escape enhancement of magnetic complexes using INF-7 peptide.
Collapse
Affiliation(s)
- María Belén Cerda
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
| | - Milena Batalla
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Institute of Nanoscience and Nanotechnology
| | - Martina Anton
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Eduardo Cafferata
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
- Argentina
- Laboratory of Molecular and Cellular Therapy
- Leloir Institute Foundation
- Ciudad Autónoma de Buenos Aires
| | - Osvaldo Podhajcer
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
- Argentina
- Laboratory of Molecular and Cellular Therapy
- Leloir Institute Foundation
- Ciudad Autónoma de Buenos Aires
| | - Christian Plank
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Olga Mykhaylyk
- Institute of Experimental Oncology and Therapy Research
- Technische Universität München
- Munich
- Germany
| | - Lucia Policastro
- Laboratory of Nanomedicine
- National Atomic Energy Commission
- Buenos Aires
- Argentina
- Consejo Nacional Investigación Científicas y Técnicas (CONICET)
| |
Collapse
|