1
|
Xia L, Du L, Hou X, Zhou R, Cheng N, Chen J. Protein-Controlled Split DNAzyme to Enhance Catalytic Activity: Design and Performance. Anal Chem 2024. [PMID: 39010288 DOI: 10.1021/acs.analchem.3c05909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, we utilized proteins to control the assembly of split DNAzyme to establish protein-controlled split DNAzymes (Pc SD), with the aim of enhancing its catalytic activity. To achieve this, simultaneous recognition of protein by affinity ligands at both ends of split DNAzyme fragments induced an increased local concentration of each split fragment, leading to reassembly of the split catalytic core with a rigid conformation and higher affinity to its cofactor. As a result, under protein control, Pc SD exhibits unexpected cleavage efficiency compared to free split DNAzyme. To further explore the catalytic features, we then systematically positioned split sites within the catalytic core of three popular DNAzyme-based Pc SDs, thus revealing the important nucleic acids that influence Pc SDs activity. Based on the excellent analytical performance of Pc SD for streptavidin (with a LOD of 0.1 pM in buffer),we equipped Pc SD with antibodies as rapid diagnostic tools for inpatient care (AFP as biomarker) with a minimized workflow (with a LOD of 2 pM in 5% human serum). The results of this study offer fundamental insights into external factors for boosting DNAzyme catalysis and will be promising for applications that utilize split DNAzymes.
Collapse
Affiliation(s)
- Lingying Xia
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Lijie Du
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Nansheng Cheng
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| |
Collapse
|
2
|
Cao Y, Zhang H, Le XC. Split Locations and Secondary Structures of a DNAzyme Critical to Binding-Assembled Multicomponent Nucleic Acid Enzymes for Protein Detection. Anal Chem 2021; 93:15712-15719. [PMID: 34788018 DOI: 10.1021/acs.analchem.1c03617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
RNA-cleaving DNAzymes and their multicomponent nucleic acid enzymes (MNAzymes) have been successfully used to detect nucleic acids and proteins. The appropriate split of the catalytic cores of DNAzymes is critical to the formation of MNAzymes with high catalytic activities. However, for protein detection, no systematic investigation has been made on the effects of the split locations and secondary structures of MNAzymes on the catalytic activities of the cleavage reaction. We systematically studied how split locations and secondary structures affect the activity of the MNAzymes that catalyze multiple cleavage steps. We engineered the MNAzymes on the basis of the RNA-cleaving DNAzyme 10-23 as a model system. We designed 28 pairs of MNAzymes, representing 14 different split locations and two secondary structures: the three-arm and the four-arm structures. By comparing the multiple turnover numbers (kobs.m) of the 28 MNAzymes, we showed that the split location between the seventh cytosine and the eighth thymine of the catalytic core region and the four-arm structure resulted in optimum catalytic activity. Binding-induced DNA assembly of the optimized MNAzymes enabled sensitive detection of two model protein targets, demonstrating promising potential of the binding-assembled MNAzymes for protein analysis. The strategy of binding-assembled MNAzymes and systematic studies measuring multiple turnover numbers (kobs.m) provide a new approach to studying other partial (split) DNAzymes and engineering better MNAzymes for the detection of specific proteins.
Collapse
Affiliation(s)
- Yiren Cao
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Hongquan Zhang
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - X Chris Le
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
3
|
Liu Y, Liu Z, Liu R, Wang K, Shi H, Huang J. A MnO 2 nanosheet-mediated photo-controlled DNAzyme for intracellular miRNA cleavage to suppress cell growth. Analyst 2021; 146:3391-3398. [PMID: 33876148 DOI: 10.1039/d1an00406a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Certain miRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed, thus, representing a potential new class of targets for therapeutic intervention. RNA-cleaving DNAzymes, mainly aimed at mRNA, have shown potential as therapeutic agents for various diseases. However, it's rarely reported that a DNAzyme was used for intracellular miRNA cleavage to suppress cell growth. Herein, we have developed a MnO2 nanosheet-mediated photo-controlled DNAzyme (NPD) for intracellular miRNA cleavage to suppress cell growth. MnO2 nanosheets adsorb photocaged DNAzymes, protect them from enzymatic digestion, and efficiently deliver them into cells. In the presence of intracellular glutathione (GSH), MnO2 nanosheets are reduced to Mn2+ ions, which serve as cofactors of the 8-17 DNAzyme for miRNA cleavage. Once the DNAzyme is activated by light, it can cyclically cleave endogenous miR-21 inside cells, which would suppress cancer cell migration and invasion, and finally induce cancer cell apoptosis.
Collapse
Affiliation(s)
- Yehua Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, P. R. China.
| | | | | | | | | | | |
Collapse
|
4
|
Debiais M, Lelievre A, Vasseur J, Müller S, Smietana M. Boronic Acid-Mediated Activity Control of Split 10-23 DNAzymes. Chemistry 2021; 27:1138-1144. [PMID: 33058268 PMCID: PMC7839725 DOI: 10.1002/chem.202004227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/11/2022]
Abstract
The 10-23 DNAzyme is an artificially developed Mg2+ -dependent catalytic oligonucleotide that can cleave an RNA substrate in a sequence-specific fashion. In this study, new split 10-23 DNAzymes made of two nonfunctional fragments, one of which carries a boronic acid group at its 5' end, while the other has a ribonucleotide at its 3' end, were designed. Herein it is demonstrated that the addition of Mg2+ ions leads to assembly of the fragments, which in turn induces the formation of a new boronate internucleoside linkage that restores the DNAzyme activity. A systematic evaluation identified the best-performing system. The results highlight key features for efficient control of DNAzyme activity through the formation of boronate linkages.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Amandine Lelievre
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Jean‐Jacques Vasseur
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| | - Sabine Müller
- University GreifswaldInstitute for BiochemistryFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Michael Smietana
- Institut des Biomolécules Max MousseronUniversité de MontpellierCNRSENSCMPlace Eugène Bataillon34095MontpellierFrance
| |
Collapse
|
5
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
6
|
Ren W, Huang PJJ, He M, Lyu M, Wang C, Wang S, Liu J. Sensitivity of a classic DNAzyme for Pb2+ modulated by cations, anions and buffers. Analyst 2020; 145:1384-1388. [DOI: 10.1039/c9an02612f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Both cations and anions in salt strongly affect the activity of a classic Pb2+ specific DNAzyme, which in turn can affect the sensitivity of related biosensors.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | | | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology
- Ocean University of Jiangsu
- Lianyungang
- China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology
- College of Resources and Environmental Sciences
- Nanjing Agricultural University
- Nanjing
- China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology
- Ocean University of Jiangsu
- Lianyungang
- China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology
| | - Juewen Liu
- Department of Chemistry
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
7
|
Ren W, Huang PJJ, He M, Lyu M, Wang S, Wang C, Liu J. The Two Classic Pb 2+ -Selective DNAzymes Are Related: Rational Evolution for Understanding Metal Selectivity. Chembiochem 2019; 21:1293-1297. [PMID: 31755629 DOI: 10.1002/cbic.201900664] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 01/09/2023]
Abstract
In 1994, the first DNAzyme named GR5 was reported, which specifically requires Pb2+ for its RNA cleavage activity. Three years later, the 8-17 DNAzyme was isolated. The 8-17 DNAzyme and the related 17E DNAzyme are also most active with Pb2+ , although other divalent metals can work as well. GR5 and 17E have the same substrate sequence, and their catalytic loops in the enzyme strands also have a few similar and conserved nucleotides. Considering these, we hypothesized that 17E might be a special form of GR5. To test this hypothesis, we performed systematic rational evolution experiments to gradually mutate GR5 toward 17E. By using the activity ratio in the presence of Pb2+ and Mg2+ for defining these two DNAzymes, the critical nucleotide was identified to be T12 in 17E for metal specificity. In addition, G9 in GR5 is a position not found in most 17E or 8-17 DNAzymes, and G9 needs to be added to rescue GR5 activity if T12 becomes a cytosine. This study highlights the links between these two classic and widely used DNAzymes, and offers new insight into the sequence-activity relationship related to metal selectivity.
Collapse
Affiliation(s)
- Wei Ren
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China.,Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Meilin He
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China.,Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, Jiangsu, 222005, P. R. China
| | - Changhai Wang
- Jiangsu Provincial Key Laboratory of Marine Biology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
8
|
Du H, Yang P, Hou X, Zhou R, Hou X, Chen J. Expanding DNA nanomachine functionality through binding-induced DNA output for application in clinical diagnosis. Chem Commun (Camb) 2019; 55:3610-3613. [PMID: 30843913 DOI: 10.1039/c9cc01228a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Herein, we describe two homogeneous conversion systems that can convert protein recognition into the release of predesigned output DNA for the activation of DNA nanomachines.
Collapse
Affiliation(s)
- Huan Du
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Peng Yang
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| | - Xin Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
| | - Rongxing Zhou
- Biliary Surgical Department
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiandeng Hou
- College of Chemistry
- Sichuan University
- Chengdu
- China
- Analytical & Testing Centre
| | - Junbo Chen
- Analytical & Testing Centre
- Sichuan University
- Chengdu
- China
| |
Collapse
|
9
|
A protease-free and signal-on electrochemical biosensor for ultrasensitive detection of lead ion based on GR-5 DNAzyme and catalytic hairpin assembly. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Liu H, Chen Y, Song C, Tian G, Li S, Yang G, Lv C. Novel and label-free colorimetric detection of radon using AuNPs and lead(II)-induced GR5 DNAzyme-based amplification strategy. Anal Bioanal Chem 2018; 410:4227-4234. [PMID: 29687247 DOI: 10.1007/s00216-018-1077-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 04/04/2018] [Accepted: 04/10/2018] [Indexed: 01/29/2023]
Abstract
Radioactive radon decays into a stable daughter product, 210Pb, which was used as the detection target to determine the radon radiation dose in a new technique. Pb2+ triggers DNAzyme to cleave a molecular beacon (MB), resulting in the stem-loop structure opening and forming two single DNA strands (ssDNA). The ssDNA binds to unmodified gold nanoparticles and effectively prevents their aggregation in a salt solution. The detached enzyme strands continue to complement the remaining MB to amplify the response signal. The method proposed in this study exhibited a good linear relationship for Pb2+ and radon concentrations in the range of 6.22 × 102-1.02 × 105 Bq h/m3 with a detection limit of 186.48 Bq h/m3 using an ultraviolet-visible spectrometer. In practical applications, this sensitive method can avoid radioactive damage in field testing, and the detection limit meets the national standard in China. Importantly, this simple, highly sensitive strategy uses simple equipment and has a strong anti-interference ability. Graphical abstract.
Collapse
Affiliation(s)
- Hongwen Liu
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Yating Chen
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Chunli Song
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Gang Tian
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Shiya Li
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Guiying Yang
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China
| | - Changyin Lv
- College of Public Health, University of South China, No. 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
| |
Collapse
|
11
|
Zhou W, Ding J, Liu J. Splitting a DNAzyme enables a Na +-dependent FRET signal from the embedded aptamer. Org Biomol Chem 2018; 15:6959-6966. [PMID: 28792040 DOI: 10.1039/c7ob01709j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes have been reported, and a Na+ aptamer was identified from the NaA43 and Ce13d DNAzymes. These DNAzymes and the embedded aptamer have been used for Na+ detection. In this work, we studied the Na+-dependent folding of the Ce13d DNAzyme using fluorescence resonance energy transfer (FRET). When a FRET donor and an acceptor were respectively labeled at the ends of the DNAzyme, Na+ failed to induce an obvious end-to-end distance change, suggesting a rigid global structure. To relax this rigidity, the Ce13d DNAzyme was systematically split at various sites on both the enzyme and the substrate strands. The Na+ binding activity of the split structures was characterized by 2-aminopurine fluorescence, enzymatic activity, Tb3+-sensitized luminescence, and DMS footprinting. Among the various constructs, the only one that retained Na+ binding was the split at the cleavage site, and this construct was further labeled with two dyes near the split site. This FRET result showed Na+-dependent folding with a Kd of 26 mM Na+. This study provides important structural information related to Na+ binding to this new aptamer, which might also be useful for future work in biosensor design.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | | | | |
Collapse
|
12
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
13
|
Saran R, Liu J. A comparison of two classic Pb2+-dependent RNA-cleaving DNAzymes. Inorg Chem Front 2016. [DOI: 10.1039/c5qi00125k] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
14
|
Saran R, Chen Q, Liu J. Searching for a DNAzyme Version of the Leadzyme. J Mol Evol 2015; 81:235-44. [PMID: 26458991 DOI: 10.1007/s00239-015-9702-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022]
Abstract
The leadzyme refers to a small ribozyme that cleaves a RNA substrate in the presence of Pb(2+). In an optimized form, the enzyme strand contains only two unpaired nucleotides. Most RNA-cleaving DNAzymes are much longer. Two classical Pb(2+)-dependent DNAzymes, 8-17 and GR5, both contain around 15 nucleotides in the enzyme loop. This is also the size of most RNA-cleaving DNAzymes that use other metal ions for their activity. Such large enzyme loops make spectroscopic characterization difficult and so far no high-resolution structural information is available for active DNAzymes. The goal of this work is to search for DNAzymes with smaller enzyme loops. A simple replacement of the ribonucleotides in the leadzyme by deoxyribonucleotides failed to produce an active enzyme. A Pb(2+)-dependent in vitro selection combined with deep sequencing was then performed. After sequence alignment and DNA folding, a new DNAzyme named PbE22 was identified, which contains only 5 nucleotides in the enzyme catalytic loop. The biochemical characteristics of PbE22 were compared with those of the leadzyme and the two classical Pb(2+)-dependent DNAzymes. The rate of PbE22 rises with increase in Pb(2+) concentration, being 1.7 h(-1) in the presence of 100 μM Pb(2+) and reaching 3.5 h(-1) at 500 µM Pb(2+). The log of PbE22 rate rises linearly in a pH-dependent fashion (20 µM Pb(2+)) with a slope of 0.74. In addition, many other abundant sequences in the final library were studied. These sequences are quite varied in length and nucleotide composition, but some contain a few conserved nucleotides consistent with the GR5 structure. Interestingly, some sequences are active with Pb(2+) but none of them were active with even 50 mM Mg(2+), which is reminiscent of the difference between the GR5 and 8-17 DNAzymes.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Qingyun Chen
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
15
|
Zhou Z, Xiao L, Xiang Y, Zhou J, Tong A. A general approach for rational design of fluorescent DNA aptazyme sensors based on target-induced unfolding of DNA hairpins. Anal Chim Acta 2015; 889:179-86. [PMID: 26343441 DOI: 10.1016/j.aca.2015.06.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 01/03/2023]
Abstract
DNA aptazymes are allosteric DNAzymes activated by the targets of DNA aptamers. They take the advantages of both aptamers and DNAzymes, which can recognize specific targets with high selectivity and catalyze multiple-turnover reactions for signal amplification, respectively, and have shown their great promise in many analytical applications. So far, however, the available examples of DNA aptazyme sensors are still limited in utilizing only several DNAzymes and DNA aptamers, most likely due to the lack of a general and simple approach for rational design. Herein, we have developed such a general approach for designing fluorescent DNA aptazyme sensors. In this approach, aptamers and DNAzymes are connected at the ends to avoid any change in their original sequences, therefore enabling the general use of different aptamers and DNAzymes in the design. Upon activation of the aptazymes by the targets of interest, the rate of fluorescence enhancement via the cleavage of a dually labeled substrate by the active aptazymes is then monitored for target quantification. Two DNAzymes and two aptamers are used as examples for the design of three fluorescent aptazyme sensors, and they all show high selectivity and sensitivity for the detection of their targets. More DNA aptazyme sensors for a broader range of targets could be developed by this general approach as long as suitable DNAzymes and aptamers are used.
Collapse
Affiliation(s)
- Zhaojuan Zhou
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China; Beijing Third Class Tobacco Supervision Station, Beijing, 101121, China
| | - Lu Xiao
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Yu Xiang
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Jun Zhou
- Beijing Third Class Tobacco Supervision Station, Beijing, 101121, China.
| | - Aijun Tong
- Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Huang PJJ, Liu J. Sensing parts-per-trillion Cd(2+), Hg(2+), and Pb(2+) collectively and individually using phosphorothioate DNAzymes. Anal Chem 2014; 86:5999-6005. [PMID: 24851672 DOI: 10.1021/ac501070a] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cadmium, mercury, and lead are collectively banned by many countries and regions in electronic devices due to their extremely high toxicity. To date, no sensing method can detect them as a group and also individually with sufficient sensitivity and selectivity. An RNA-cleaving DNAzyme (Ce13d) was recently reported to be active with trivalent lanthanides, which are hard Lewis acids. In this work, phosphorothioate (PS) modifications were systematically made on Ce13d. A single PS modification at the substrate cleavage site shifts the activity from being dependent on lanthanides to soft thiophilic metals. By incorporating the PS modification to another DNAzyme, a sensor array was prepared to detect each metal. Individual sensors have excellent sensitivity (limit of detection = 4.8 nM Cd(2+), 2.0 nM Hg(2+), and 0.1 nM Pb(2+)). This study provides a new route to obtain metal-specific DNAzymes by atomic replacement and also offers important mechanistic insights into metal binding and DNAzyme catalysis.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario Canada , N2L 3G1
| | | |
Collapse
|
17
|
Nadarajan SP, Ravikumar Y, Deepankumar K, Lee CS, Yun H. Engineering lead-sensing GFP through rational designing. Chem Commun (Camb) 2014; 50:15979-82. [DOI: 10.1039/c4cc07163h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A lead biosensor (PbGFP) was developed by engineering lead binding site near the chromophore of green fluorescent protein. The specific binding of lead to chromophore of PbGFP resulted in turn-off mechanism.
Collapse
Affiliation(s)
| | | | | | - Chong-Soon Lee
- School of Biotechnology
- Yeungnam University
- Gyeongsan, South Korea
| | - Hyungdon Yun
- Department of Bioscience & Biotechnology
- Konkuk University
- Seoul 143-701, Korea
| |
Collapse
|