1
|
Lomonosov V, Yang J, Fan Y, Hofmann S, Ringe E. Stability of Plasmonic Mg-MgO Core-Shell Nanoparticles in Gas-Phase Oxidative Environments. NANO LETTERS 2024; 24:7084-7090. [PMID: 38814251 PMCID: PMC11177309 DOI: 10.1021/acs.nanolett.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Magnesium is a recent addition to the plasmonic toolbox: nanomaterials that efficiently utilize photons' energy due to their ability to sustain localized surface plasmon resonances. Magnesium nanoparticles protected by a native oxide shell can efficiently absorb light across the solar spectrum, making them a promising photocatalytic material. However, their inherent reactivity toward oxidation may limit the number of reactions in which Mg-MgO can be used. Here, we investigate the stability of plasmonic Mg-MgO core-shell nanoplates under oxidative conditions. We demonstrate that the MgO shell stabilizes the metallic Mg core against oxidation in air at up to 400 °C. Furthermore, we show that the reactivity of Mg-MgO nanoplates with water vapor (3.5 vol % in N2) decreases with temperature, with no oxidation of the Mg core detected from 200 to 400 °C. This work unravels the potential of Mg-MgO nanoparticles for a broad range of catalytic transformations occurring in oxidative environments.
Collapse
Affiliation(s)
- Vladimir Lomonosov
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| | - Jinfeng Yang
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K.
| | - Ye Fan
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K.
| | - Stephan Hofmann
- Department
of Engineering, University of Cambridge, Cambridge CB3 0FA, U.K.
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
| |
Collapse
|
2
|
Boukouvala C, West CA, Ten A, Hopper E, Ramasse QM, Biggins JS, Ringe E. Far-field, near-field and photothermal response of plasmonic twinned magnesium nanostructures. NANOSCALE 2024; 16:7480-7492. [PMID: 38344779 PMCID: PMC11025716 DOI: 10.1039/d3nr05848d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Magnesium nanoparticles offer an alternative plasmonic platform capable of resonances across the ultraviolet, visible and near-infrared. Crystalline magnesium nanoparticles display twinning on the (101̄1), (101̄2), (101̄3), and (112̄1) planes leading to concave folded shapes named tents, chairs, tacos, and kites, respectively. We use the Wulff-based Crystal Creator tool to expand the range of Mg crystal shapes with twinning over the known Mg twin planes, i.e., (101̄x), x = 1, 2, 3 and (112̄y), y = 1, 2, 3, 4, and study the effects of relative facet expression on the resulting shapes. These shapes include both concave and convex structures, some of which have been experimentally observed. The resonant modes, far-field, and near-field optical responses of these unusual plasmonic shapes as well as their photothermal behaviour are reported, revealing the effects of folding angle and in-filling of the concave region. Significant differences exist between shapes, in particular regarding the maximum and average electric field enhancement. A maximum field enhancement (|E|/|E0|) of 184, comparable to that calculated for Au and Ag nanoparticles, was found at the tips of the (112̄4) kite. The presence of a 5 nm MgO shell is found to decrease the near-field enhancement by 67% to 90% depending on the shape, while it can increase the plasmon-induced temperature rise by up to 42%. Tip rounding on the otherwise sharp nanoparticle corners also significantly affects the maximum field enhancement. These results provide guidance for the design of enhancing and photothermal substrates for a variety of plasmonic applications across a wide spectral range.
Collapse
Affiliation(s)
- Christina Boukouvala
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Claire A West
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Andrey Ten
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| | - Elizabeth Hopper
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Quentin M Ramasse
- School of Chemical and Process Engineering, University of Leeds, 211 Clarendon Road, Leeds, LS2 9JT, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse, Leeds, LS2 9JS, UK
- SuperSTEM, SciTech Daresbury Science and Innovation Campus, Keckwick Lane, Warrington, WA4 4AD, UK
| | - John S Biggins
- Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, UK
| | - Emilie Ringe
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK.
- Department of Earth Sciences, Downing Street, Cambridge, CB2 3EQ, UK
| |
Collapse
|
3
|
West C, Lomonosov V, Pehlivan ZS, Ringe E. Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters. NANO LETTERS 2023; 23:10964-10970. [PMID: 38011145 PMCID: PMC10722534 DOI: 10.1021/acs.nanolett.3c03219] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Understanding and guiding light at the nanoscale can significantly impact society, for instance, by facilitating the development of efficient, sustainable, and/or cost-effective technologies. One emergent branch of nanotechnology exploits the conversion of light into heat, where heat is subsequently harnessed for various applications including therapeutics, heat-driven chemistries, and solar heating. Gold nanoparticles are overwhelmingly the most common material for plasmon-assisted photothermal applications; yet magnesium nanoparticles present a compelling alternative due to their low cost and superior biocompatibility. Herein, we measured the heat generated and quantified the photothermal efficiency of the gold and magnesium nanoparticle suspensions. Photothermal transduction experiments and optical and thermal simulations of different sizes and shapes of gold and magnesium nanoparticles showed that magnesium is more efficient at converting light into heat compared to gold at near-infrared wavelengths, thus demonstrating that magnesium nanoparticles are a promising new class of inexpensive, biodegradable photothermal platforms.
Collapse
Affiliation(s)
- Claire
A. West
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Vladimir Lomonosov
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Zeki Semih Pehlivan
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Emilie Ringe
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United Kingdom
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
4
|
Hopper E, Wayman TMR, Asselin J, Pinho B, Boukouvala C, Torrente-Murciano L, Ringe E. Size Control in the Colloidal Synthesis of Plasmonic Magnesium Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:563-577. [PMID: 35059097 PMCID: PMC8762659 DOI: 10.1021/acs.jpcc.1c07544] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/06/2021] [Indexed: 05/12/2023]
Abstract
Nanoparticles of plasmonic materials can sustain oscillations of their free electron density, called localized surface plasmon resonances (LSPRs), giving them a broad range of potential applications. Mg is an earth-abundant plasmonic material attracting growing attention owing to its ability to sustain LSPRs across the ultraviolet, visible, and near-infrared wavelength range. Tuning the LSPR frequency of plasmonic nanoparticles requires precise control over their size and shape; for Mg, this control has previously been achieved using top-down fabrication or gas-phase methods, but these are slow and expensive. Here, we systematically probe the effects of reaction parameters on the nucleation and growth of Mg nanoparticles using a facile and inexpensive colloidal synthesis. Small NPs of 80 nm were synthesized using a low reaction time of 1 min and ∼100 nm NPs were synthesized by decreasing the overall reaction concentration, replacing the naphthalene electron carrier with biphenyl or using metal salt additives of FeCl3 or NiCl2 at longer reaction times of 17 h. Intermediate sizes up to 400 nm were further selected via the overall reaction concentration or using other metal salt additives with different reduction potentials. Significantly larger particles of over a micrometer were produced by reducing the reaction temperature and, thus, the nucleation rate. We showed that increasing the solvent coordination reduced Mg NP sizes, while scaling up the reaction reduced the mixing efficiency and produced larger NPs. Surprisingly, varying the relative amounts of Mg precursor and electron carrier had little impact on the final NP sizes. These results pave the way for the large-scale use of Mg as a low-cost and sustainable plasmonic material.
Collapse
Affiliation(s)
- Elizabeth
R. Hopper
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United
Kingdom
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Thomas M. R. Wayman
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United
Kingdom
| | - Jérémie Asselin
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United
Kingdom
| | - Bruno Pinho
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United
Kingdom
| | - Laura Torrente-Murciano
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, United
Kingdom
| |
Collapse
|
5
|
Long J, Zhang W, Chen Y, Teng B, Liu B, Li H, Yao Z, Wang D, Li L, Yu XF, Qin L, Lai Y. Multifunctional magnesium incorporated scaffolds by 3D-Printing for comprehensive postsurgical management of osteosarcoma. Biomaterials 2021; 275:120950. [PMID: 34119886 DOI: 10.1016/j.biomaterials.2021.120950] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
Clinical treatment of Osteosarcoma (OS) encounters great challenges of postsurgical tumor recurrence and extensive bone defect. To address these issues, innovative multifunctional PLGA/Mg porous scaffolds were designed for comprehensive postsurgical management of OS. The PLGA/Mg composite scaffolds exhibited several unique features: (1) The multiple functions of Mg particles were explored for the first time to fulfill the requirement for postsurgical management of OS. The intact Mg particles exhibits excellent photothermal effect for tumor eradication, and the released Mg ions could subsequently promote bone regeneration, thus endowing the PLGA/Mg scaffolds dual functions of suppressing OS recurrence and repairing bone defect in a sequential way; (2) A low temperature rapid prototyping (LT-RP) 3D-printing technology was used to fabricate the scaffolds with biomimetic hierarchical porous structures, which could structurally promote bone regeneration; (3) The PLGA/Mg scaffolds have excellent biodegradability and biocompatibility, exhibiting great promise for clinical translation. Finally, the PLGA/Mg scaffolds achieved complete suppression of tumor recurrence in the presence of near-infrared laser irradiation, as well as efficient bone defect repair in vivo. Activation of the AKT and β-catenin pathways of osteoblast cells by PLGA/Mg scaffolds was identified, which might be the modulators to accelerate the ossification. The innovative PLGA/Mg scaffolds demonstrated excellent capabilities in postsurgical OS recurrence suppression and bone regeneration, providing a promising clinical strategy for comprehensive postsurgical management of OS.
Collapse
Affiliation(s)
- Jing Long
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yingqi Chen
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bin Teng
- Research Center for Reproduction and Health Development, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ben Liu
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huilin Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhenyu Yao
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dou Wang
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xue-Feng Yu
- Materials and Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ling Qin
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, SAR, Hong Kong, China; CAS-HK Joint Lab of Biomaterials, Shenzhen, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research & Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Key Laboratory of Health Informatics, Chinese Academy of Sciences, Shenzhen, China; CAS-HK Joint Lab of Biomaterials, Shenzhen, China.
| |
Collapse
|
6
|
Ringe E. Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:15665-15679. [PMID: 32905178 PMCID: PMC7467285 DOI: 10.1021/acs.jpcc.0c03871] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/10/2020] [Indexed: 05/19/2023]
Abstract
Localized surface plasmon resonances have attracted much attention due to their ability to enhance light-matter interactions and manipulate light at the subwavelength level. Recently, alternatives to the rare and expensive noble metals Ag and Au have been sought for more sustainable and large-scale plasmonic utilization. Mg supports plasmon resonances, is one of the most abundant elements in earth's crust, and is fully biocompatible, making it an attractive framework for plasmonics. This feature article first reports the hexagonal, folded, and kite-like shapes expected theoretically from a modified Wulff construction for single crystal and twinned Mg structures and describes their excellent match with experimental results. Then, the optical response of Mg nanoparticles is overviewed, highlighting Mg's ability to sustain localized surface plasmon resonances across the ultraviolet, visible, and near-infrared electromagnetic ranges. The various resonant modes of hexagons, leading to the highly localized electric field characteristic of plasmonic behavior, are presented numerically and experimentally. The evolution of these modes and the associated field from hexagons to the lower symmetry folded structures is then probed, again by matching simulations, optical, and electron spectroscopy data. Lastly, results demonstrating the opportunities and challenges related to the high chemical reactivity of Mg are discussed, including surface oxide formation and galvanic replacement as a synthetic tool for bimetallics. This Feature Article concludes with a summary of the next steps, open questions, and future directions in the field of Mg nanoplasmonics.
Collapse
Affiliation(s)
- Emilie Ringe
- Department of Materials Science
and Metallurgy, Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom CB2 3EQ
| |
Collapse
|
7
|
Hu D, Mezghrani O, Zhang L, Chen Y, Ke X, Ci T. GE11 peptide modified and reduction-responsive hyaluronic acid-based nanoparticles induced higher efficacy of doxorubicin for breast carcinoma therapy. Int J Nanomedicine 2016; 11:5125-5147. [PMID: 27785019 PMCID: PMC5066865 DOI: 10.2147/ijn.s113469] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Novel breast carcinoma dual-targeted redox-responsive nanoparticles (NPs) based on cholesteryl-hyaluronic acid conjugates were designed for intracellular delivery of the antitumor drug doxorubicin (DOX). A series of reduction-responsive hyaluronic acid derivatives grafted with hydrophobic cholesteryl moiety (HA-ss-Chol) and GE11 peptide conjugated HA-ss-Chol (GE11-HA-ss-Chol) were synthesized. The obtained conjugates showed attractive self-assembly characteristics and high drug loading capacity. GE11-HA-ss-Chol NPs were highly stable under conditions mimicking normal physiological conditions, while showing a fast degradation of the vehicle's structure and accelerating the drug release dramatically in the presence of intracellular reductive environment. Furthermore, the cellular uptake assay confirmed GE11-HA-ss-Chol NPs were taken up by MDA-MB-231 cells through CD44- and epidermal growth factor receptor-mediated endocytosis. The internalization pathways of GE11-HA-ss-Chol NPs might involve clathrin-mediated endocytosis and macropinocytosis. The intracellular distribution of DOX in GE11-HA-ss-Chol NPs showed a faster release and more efficient nuclear delivery than the insensitive control. Enhanced in vitro cytotoxicity of GE11-HA-ss-Chol DOX-NPs further confirmed the superiority of their dual-targeting and redox-responsive capacity. Moreover, in vivo imaging investigation in MDA-MB-231 tumor-bearing mice confirmed that GE11-HA-ss-Chol NPs labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide, a near-infrared fluorescence dye, possessed a preferable tumor accumulation ability as compared to the single-targeting counterpart (HA-ss-Chol NPs). The antitumor efficacy showed an improved therapy efficacy and lower systemic side effect. These results suggest GE11-HA-ss-Chol NPs provide a good potential platform for antitumor drugs.
Collapse
Affiliation(s)
- Danrong Hu
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Omar Mezghrani
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Lei Zhang
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Yi Chen
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xue Ke
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Tianyuan Ci
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People’s Republic of China
| |
Collapse
|
8
|
Martin RC, Locatelli E, Li Y, Matteini P, Monaco I, Cui G, Li S, Banchelli M, Pini R, Comes Franchini M. One-pot synthesis of magnesium nanoparticles embedded in a chitosan microparticle matrix: a highly biocompatible tool for in vivo cancer treatment. J Mater Chem B 2016; 4:207-211. [DOI: 10.1039/c5tb02499d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A biocompatible nanosystem made up of a chitosan and filled with Mg NPs was synthesized and tested as tool for photothermal therapy. Proof of concept on hcc-bearing mice is presented.
Collapse
Affiliation(s)
- Robert. C. Martin
- Division of Surgical Oncology
- Department of Surgery
- University of Louisville
- Louisville
- USA
| | - Erica Locatelli
- Department of Industrial Chemistry “Toso MOntanari”
- University of Bologna
- Bologna
- Italy
| | - Yan Li
- Division of Surgical Oncology
- Department of Surgery
- University of Louisville
- Louisville
- USA
| | - Paolo Matteini
- Institute of Applied Physics “Nello Carrara”
- National Research Council of Italy
- I-50019 Sesto Fiorentino
- Italy
| | - Ilaria Monaco
- Department of Industrial Chemistry “Toso MOntanari”
- University of Bologna
- Bologna
- Italy
| | - Guozhen Cui
- Division of Surgical Oncology
- Department of Surgery
- University of Louisville
- Louisville
- USA
| | - Suping Li
- Division of Surgical Oncology
- Department of Surgery
- University of Louisville
- Louisville
- USA
| | - Martina Banchelli
- Institute of Applied Physics “Nello Carrara”
- National Research Council of Italy
- I-50019 Sesto Fiorentino
- Italy
| | - Roberto Pini
- Institute of Applied Physics “Nello Carrara”
- National Research Council of Italy
- I-50019 Sesto Fiorentino
- Italy
| | - Mauro Comes Franchini
- Department of Industrial Chemistry “Toso MOntanari”
- University of Bologna
- Bologna
- Italy
| |
Collapse
|
9
|
Polymeric nanocarriers incorporating near-infrared absorbing agents for potent photothermal therapy of cancer. Polym J 2015. [DOI: 10.1038/pj.2015.117] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|