Ruan B, Guo HP, Hou Y, Liu Q, Deng Y, Chen G, Chou SL, Liu HK, Wang JZ. Carbon-Encapsulated Sn@N-Doped Carbon Nanotubes as Anode Materials for Application in SIBs.
ACS APPLIED MATERIALS & INTERFACES 2017;
9:37682-37693. [PMID:
28990388 DOI:
10.1021/acsami.7b10085]
[Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Carbon-encapsulated Sn@N-doped carbon tubes with submicron diameters were obtained via the simple reduction of C@SnO2@N-doped carbon composites that were fabricated by a hydrothermal approach. Sn nanoparticles encapsulated in carbon layers were distributed uniformly on the surfaces of the N-doped carbon nanotubes. The electrochemical performances of the composites were systematically investigated as anode materials in sodium-ion batteries (SIBs). The composite electrode could attain a good reversible capacity of 398.4 mAh g-1 when discharging at 100 mA g-1, with capacity retention of 67.3% and very high Coulombic efficiency of 99.7% over 150 cycles. This good cycling performance, when compared to only 17.5 mAh g-1 delivered by bare Sn particles prepared via the same method without the presence of N-doped carbon, could be mainly ascribed to the uniform distribution of the precursor SnO2 on the substrate of N-doped carbon tubes with three-dimensional structure, which provides more reaction sites to reduce the diffusion distance of Na+, further facilitating Na+-ion diffusion and relieves the huge volume expansion during charging/discharging. These outcomes imply that such a Sn/C composite would provide more options as an anode candidate for SIBs.
Collapse