1
|
Melvin SJ, Yao Y, Huang X, Bell RC, Kemmerling RE, Kevlishvili I, Berg AC, Kitos Vasconcelos AP, Nelson A, Kulik HJ, Craig SL, Klausen RS. Enabling Selective Mechanochemical Scission of Network Crosslinks by Exchanging Single Carbon Atoms for Silicon. J Am Chem Soc 2025; 147:6006-6015. [PMID: 39904515 DOI: 10.1021/jacs.4c16323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The tearing of a polymer network arises from mechanochemically coupled bond-breaking events in the backbone of a polymer chain. An emerging research area is the identification of molecular strategies for network toughening, such as the strategic placement of mechanochemically reactive groups (e.g., scissile mechanophores) in the crosslinks of a network instead of in the load-bearing primary strands. These mechanically labile crosslinkers have typically relied on release of ring strain or weak covalent bonds for selective covalent bond scission. Here, we report a novel chemical design for accelerated mechanochemical bond scission based on replacing a single carbon atom in a crosslinker with a silicon atom. This single-atom replacement affords up to a two-fold increase in the tearing energy. We suggest a mechanism, validated by computational modeling, for accelerated mechanochemical Si-C bond scission based on minimizing the energy required to distort the starting material toward the transition-state geometry. We demonstrated the seamless incorporation of these scissile carbosilanes to toughen 3D-printed networks, which demonstrates their suitability for additive manufacturing processes.
Collapse
Affiliation(s)
- Sophia J Melvin
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rowina C Bell
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ryann E Kemmerling
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Ilia Kevlishvili
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Angus C Berg
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27710, United States
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
O'Neill RT, Boulatov R. Mechanochemical Approaches to Fundamental Studies in Soft-Matter Physics. Angew Chem Int Ed Engl 2024; 63:e202402442. [PMID: 38404161 PMCID: PMC11497353 DOI: 10.1002/anie.202402442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
Stretching a segment of a polymer beyond its contour length makes its (primarily backbone) bonds more dissociatively labile, which enables polymer mechanochemistry. Integrating some backbone bonds into suitably designed molecular moieties yields mechanistically and kinetically diverse chemistry, which is becoming increasingly exploitable. Examples include, most prominently, attempts to improve mechanical properties of bulk polymers, as well as prospective applications in drug delivery and synthesis. This review aims to highlight an emerging effort to apply the concepts and experimental tools of mechanochemistry to fundamental physical questions in soft matter. A succinct summary of the state-of-the-knowledge of the field, with emphasis on foundational concepts and generalizable observations, is followed by analysis of 3 recent examples of mechanochemistry yielding molecular-level details of elastomer failure, macromolecular chain dynamics in elongational flows and kinetic allostery. We conclude with reasons to assume that the highlighted approaches are generalizable to a broader range of physical problems than considered to date.
Collapse
Affiliation(s)
- Robert T. O'Neill
- Department of ChemistryUniversity of LiverpoolUniversity of LiverpoolDepartment of ChemistryGrove StreetLiverpoolL69 7ZD
| | - Roman Boulatov
- Department of ChemistryUniversity of LiverpoolUniversity of LiverpoolDepartment of ChemistryGrove StreetLiverpoolL69 7ZD
| |
Collapse
|
3
|
Schwarz R, Diesendruck CE. Semi-Telechelic Polymers from Mechanochemical C─C Bond Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304571. [PMID: 37870199 DOI: 10.1002/advs.202304571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/22/2023] [Indexed: 10/24/2023]
Abstract
Unstrained C─C bond activation is attained in homopolymers through mechanochemical bond scission followed by functionalization to yield mostly semi-telechelic polymer chains. Ball milling poly(ethylene oxide) (PEO) in the presence of 1-(bromoacetyl)pyrene (BAPy) yields the pyrene terminated PEO. Similarly, milling with 2,4'-dibromoacetophenone followed by Suzuki coupling allows the introduction of various aryl end groups. PEOs with a molecular weight below 20 kDa show no functionalization, supporting a mechanochemical mechanism. The protocol is also tested with doxorubicin, yielding the drug-polymer conjugate. PEO halogenation is also demonstrated by milling PEO with iodine, N-bromosuccinimide, or N-iodosuccinimide, which can then be reacted with an amine substituted anthracene. Grinding additional carbon polymers with BAPy indicates that this functionalization method is general for different polymer chemistries.
Collapse
Affiliation(s)
- Rony Schwarz
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Haifa, 3200008, Israel
| |
Collapse
|
4
|
Zhang H, Diesendruck CE. Off-center Mechanophore Activation in Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202213980. [PMID: 36394518 PMCID: PMC10108114 DOI: 10.1002/anie.202213980] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
5
|
Synthesized Phosphonium Compounds Demonstrate Resistant Modulatory and Antibiofilm Formation Activities against Some Pathogenic Bacteria. HETEROATOM CHEMISTRY 2022. [DOI: 10.1155/2022/7411957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A library of six compounds with new hybrids in a single molecule triazole ring attached to the phosphonium salts was synthesized. Click chemistry was, however, used to synthesize the 1-, 2-, and 3-triazole intermediates as a tether for the hybrid phosphonium salts. Their antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and Mycobacterium smegmatis mc2155 was determined using the HT-SPOTi assay. Compound 2 showed the most effective antimicrobial activity as it inhibited the growth of Pseudomonas aeruginosa and Staphylococcus aureus at 0.0125 µg/mL and 31.25 µg/mL, respectively. From the FICI data, compounds 2ET-TOL (2) and RABYL-TOL (4) successfully modulated the activities of amoxicillin against Pseudomonas aeruginosa and Staphylococcus aureus. All the test compounds exhibited a concentration-dependent biofilm formation inhibition against S. aureus, except P-Z (compound 6). Compounds P-MEOXY (1) and 2ET-TOL (2) exhibited mild activity against P. aeruginosa with compound 4 showing antimycobacterial activity at 500 µg/mL.
Collapse
|
6
|
Nijem S, Song Y, Schwarz R, Diesendruck CE. Flex-activated CO mechanochemical production for mechanical damage detection. Polym Chem 2022. [DOI: 10.1039/d2py00503d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
New flex-activated mechanophore allows for mechanical damage in polymers using a simple household CO detectors, in addition to the formation of an extended and fluorescent π system.
Collapse
Affiliation(s)
- Sally Nijem
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Ying Song
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
- Department of Chemistry, Nanning Normal University, 530001, Nanning, Guangxi, China
| | - Rony Schwarz
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and Grand Technion Energy Program, Technion – Israel Institute of Technology, 320003, Haifa, Israel
| |
Collapse
|
7
|
Kekessie FK, Amengor CDK, Brobbey A, Addotey JN, Danquah CA, Peprah P, Harley BK, Ben IO, Zoiku FK, Borquaye LS, Gasu EN, Ofori-Attah E, Tetteh M. Synthesis, molecular docking studies and ADME prediction of some new triazoles as potential antimalarial agents. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Wang L, Yu Y, Razgoniaev AO, Johnson PN, Wang C, Tian Y, Boulatov R, Craig SL, Widenhoefer RA. Mechanochemical Regulation of Oxidative Addition to a Palladium(0) Bisphosphine Complex. J Am Chem Soc 2020; 142:17714-17720. [PMID: 32957791 DOI: 10.1021/jacs.0c08506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Here, we report the effect of force applied to the biaryl backbone of a bisphosphine ligand on the rate of oxidative addition of bromobenzene to a ligand-coordinated palladium center. Local compressive and tensile forces on the order of 100 pN were generated using a stiff stilbene force probe. A compressive force increases the rate of oxidative addition, whereas a tensile force decreases the rate, relative to that of the parent complex of strain-free ligand. Rates vary by a factor of ∼6 across ∼340 pN of force applied to the complexes. The crystal structures and DFT calculations support that force-induced perturbation of the geometry of the reactant is negligible. The force-rate relationship observed is mainly attributed to the coupling of force to nuclear motion comprising the reaction coordinate. These observations inform the development of catalysts whose activity can be tuned by an external force that is adjusted within a catalytic cycle.
Collapse
Affiliation(s)
- Liqi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yichen Yu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Anton O Razgoniaev
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chenxu Wang
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Yancong Tian
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ross A Widenhoefer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Jung S, Yoon HJ. Mechanical Force Induces Ylide-Free Cycloaddition of Nonscissible Aziridines. Angew Chem Int Ed Engl 2020; 59:4883-4887. [PMID: 31944507 DOI: 10.1002/anie.201915438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/07/2020] [Indexed: 11/08/2022]
Abstract
The application of aziridines as nonvulnerable mechanophores is reported. Upon exposure to a mechanical force, stereochemically pure nonactivated aziridines incorporated into the backbone of a macromolecule do not undergo cis-trans isomerization, thus suggesting retention of the ring structure under force. Nonetheless, aziridines react with a dipolarophile and seem not to obey conventional reaction pathways that involve C-C or C-N bond cleavage prior to the cycloaddition. Our work demonstrates that a nonvulnerable chemical structure can be a mechanophore.
Collapse
Affiliation(s)
- Sangmin Jung
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Hyo Jae Yoon
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
10
|
|
11
|
Spain M, Wong JKH, Nagalingam G, Batten JM, Hortle E, Oehlers SH, Jiang XF, Murage HE, Orford JT, Crisologo P, Triccas JA, Rutledge PJ, Todd MH. Antitubercular Bis-Substituted Cyclam Derivatives: Structure-Activity Relationships and in Vivo Studies. J Med Chem 2018; 61:3595-3608. [PMID: 29558124 DOI: 10.1021/acs.jmedchem.7b01569] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We recently reported the discovery of nontoxic cyclam-derived compounds that are active against drug-resistant Mycobacterium tuberculosis. In this paper we report exploration of the structure-activity relationship for this class of compounds, identifying several simpler compounds with comparable activity. The most promising compound identified, possessing significantly improved water solubility, displayed high levels of bacterial clearance in an in vivo zebrafish embryo model, suggesting this compound series has promise for in vivo treatment of tuberculosis.
Collapse
Affiliation(s)
- Malcolm Spain
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Joseph K-H Wong
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Gayathri Nagalingam
- Microbial Immunity and Pathogenesis Group, Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - James M Batten
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Elinor Hortle
- Tuberculosis Research Program , Centenary Institute, Royal Prince Alfred Hospital , Missenden Road , Camperdown, Sydney , NSW 2050 , Australia
| | - Stefan H Oehlers
- Central Clinical School, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Xiao Fan Jiang
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Hasini E Murage
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Jack T Orford
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Patrick Crisologo
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - James A Triccas
- Microbial Immunity and Pathogenesis Group, Department of Infectious Diseases and Immunology, Sydney Medical School , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Peter J Rutledge
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| | - Matthew H Todd
- School of Chemistry , The University of Sydney , Sydney , NSW 2006 , Australia
| |
Collapse
|
12
|
Abstract
A transition-metal-free procedure for the N-arylation of tertiary amines to sp(3) quaternary ammonium salts is described. The presented conditions allow for the isolation of trialkylaryl, dialkyldiaryl, and novel triarylalkyl ammonium salts, including N-chiral quaternary ammonium salts. The reaction works at room temperature, open to air with electron-rich or -poor benzyne precursors and different tertiary amines, allowing the synthesis of a broad range of N-aryl ammonium salts that have applications in a variety of fields.
Collapse
Affiliation(s)
- Maayan Hirsch
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa, Israel
| | - Shubhendu Dhara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology , Haifa, Israel
| |
Collapse
|
13
|
Nagamani C, Liu H, Moore JS. Mechanogeneration of Acid from Oxime Sulfonates. J Am Chem Soc 2016; 138:2540-3. [DOI: 10.1021/jacs.6b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chikkannagari Nagamani
- Department
of Chemistry and ¶Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Huiying Liu
- Department
of Chemistry and ¶Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S. Moore
- Department
of Chemistry and ¶Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Cintas P, Cravotto G, Barge A, Martina K. Interplay Between Mechanochemistry and Sonochemistry. Top Curr Chem (Cham) 2014; 369:239-84. [PMID: 25860254 DOI: 10.1007/128_2014_623] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ultrasonic irradiation-based mechanochemical strategies have recently been the subject of intensive investigation because of the advantages they offer. These include simplicity, energy savings and wide applicability. Traditional areas of sonoprocessing such as cleaning, efficient mixing and solid activation have been extended to both macromolecular and micro/nanostructures, some of which are biologically significant, ultrasound-responsive actuators and crystal design, among others. Unlike conventional mechanochemical protocols, which require little solvent usage if any at all, mechanical (and chemical) effects promoted by ultrasound are observed in a liquid medium. Tensile forces, which share similarities with solid mechanochemistry, are generated by virtue of nonlinear effects, notably cavitation, when high-amplitude waves propagate in a fluid. This work aims to provide insight into some recent developments in the multifaceted field of sono-mechanochemistry using various examples that illustrate the role of ultrasonic activation, which is capable of boosting hitherto sterile transformations and inventing new crafts in applied chemistry. After a preliminary discussion of acoustics, which is intended to provide a mechanistic background, we mainly focus on experimental developments, while we often mention emerging science and occasionally delve into theoretical models and force simulations.
Collapse
Affiliation(s)
- Pedro Cintas
- Departamento de Química Orgánica e Inorgánica, Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Giancarlo Cravotto
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy.
| | - Alessandro Barge
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco and NIS, Centre for Nanostructured Interfaces and Surfaces, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|