1
|
Ma X, Yang Z, Luo Y, Jin Z, Zou J, Wang Y, Zhao X. A novel fluorescent probe with Aggregation-Induced emission characteristics for PTP1B activity sensing and inhibitor screening. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125394. [PMID: 39520822 DOI: 10.1016/j.saa.2024.125394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/21/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an attractive target for the treatment of metabolic diseases such as type 2 diabetes and obesity. In this study, a novel fluorescent probe with aggregation-induced emission (AIE) characteristics was designed and synthesized. Within the fluorescent probe, a tetraphenylethene core is connected to a peptide sequence that can be specifically recognized and hydrolysed by PTP1B. Due to the dephosphorylation of PTP1B, the fluorescent probe exhibited AIE in a turn-on manner, indicating PTP1B activity. This probe was successfully used to detect PTP1B activity in HepG2 cell lysates. Then, a probe-based method was applied to screen for potential PTP1B inhibitors from a natural product library, and three novel PTP1B inhibitors were discovered. These findings indicated that the proposed approach offered a new avenue for discovering potential PTP1B inhibitors.
Collapse
Affiliation(s)
- Xiangwei Ma
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhenzhong Yang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanlin Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zehua Jin
- State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingtao Zou
- Tonghua Huaxia Pharmaceutical Company, Tonghua 134000, China
| | - Yi Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Chinese Medicine Modernization, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoping Zhao
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Liu S, Zhang Q, Zhang X, Du C, Chen J, Si S. Real-time monitoring of dephosphorylation process of phosphopeptide and rapid assay of PTP1B activity based on a 100 MHz QCM biosensing platform. Talanta 2024; 277:126399. [PMID: 38876030 DOI: 10.1016/j.talanta.2024.126399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
The misregulation of protein phosphatases is a key factor in the development of many human diseases, notably cancers. Here, based on a 100 MHz quartz crystal microbalance (QCM) biosensing platform, the dephosphorylation process of phosphopeptide (P-peptide) caused by protein tyrosine phosphatase 1B (PTP1B) was monitored in real time for the first time and PTP1B activity was assayed rapidly and sensitively. The QCM chip, coated with a gold (Au) film, was used to immobilized thiol-labeled single-stranded 5'-phosphate-DNAs (P-DNA) through Au-S bond. The P-peptide, specific to PTP1B, was then connected to the P-DNA via chelation between Zr4+ and phosphate groups. When PTP1B was injected into the QCM flow cell where the P-peptide/Zr4+/MCH/P-DNA/Au chip was placed, the P-peptide was dephosphorylated and released from the Au chip surface, resulting in an increase in the frequency of the QCM Au chip. This allowed the real-time monitoring of the P-peptide dephosphorylation process and sensitive detection of PTP1B activity within 6 min with a linear detection range of 0.01-100 pM and a detection limit of 0.008 pM. In addition, the maximum inhibitory ratios of inhibitors were evaluated using this proposed 100 MHz QCM biosensor. The developed 100 MHz QCM biosensing platform shows immense potential for early diagnosis of diseases related to protein phosphatases and the development of drugs targeting protein phosphatases.
Collapse
Affiliation(s)
- Shuping Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China; School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Shihui Si
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
3
|
Feng T, Yan S, Hou S, Fan X. Novel fluorescence biosensor custom-made for protein tyrosine phosphatase 1B detection based on titanium dioxide-decorated single-walled carbon nanohorn nanocomposite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121548. [PMID: 35763945 DOI: 10.1016/j.saa.2022.121548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This paper presents a new fluorescent approach for the detection of protein tyrosine phosphatase 1B (PTP1B) based on titanium dioxide-decorated single-wall carbon nanohorns (TiO2-SWCNHs). The novel TiO2-SWCNHs nanocomposite was synthesized and characterized for the first time and the phosphorylated peptide as the substrate of PTP1B was designed. Properties of SWCNHs and TiO2 were combined by growing nano-sized TiO2 particles on SWCNHs, resulting in TiO2-SWCNHs. TiO2 provides SWCNHs a large adsorption surface area and can specifically bind to phosphopeptide substrate. TiO2-SWCNHs effectively quenched the fluorescence of the phosphorylated peptide substrate labeled by the fluorophore, and the system had a low fluorescence background. In the presence of PTP1B, dephosphorylation of the peptide occurred owing to the reaction between PTP1B and the peptide, causing the separation of the dye-labeled peptide from TiO2-SWCNHs, which resulted in fluorescence enhancement of the reaction system. Thus, a simple and rapid strategy for the detection of PTP1B activity was developed, with a detection limit of 0.01 ng/mL and linear range of 0-10 ng/mL. The system can be used to detect PTP1B in serum using the standard addition method. This system provides a new approach for screening PTP1B inhibitors.
Collapse
Affiliation(s)
- Tingting Feng
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Shuzhu Yan
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Shanshan Hou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning Province 110016, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zhang Q, Yang H, Du C, Liu S, Zhang X, Chen J. Bifunctional Magnetic Fe 3O 4@Cu 2O@TiO 2 Nanosphere-Mediated Dual-Mode Assay of PTP1B Activity Based on Photocurrent Polarity Switching and Nanozyme-Engineered Biocatalytic Precipitation Strategies. Anal Chem 2022; 94:13342-13349. [PMID: 36129464 DOI: 10.1021/acs.analchem.2c01575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dysregulation of protein phosphatases is associated with the progression of various human diseases and cancers. Herein, a photoelectrochemical (PEC)-quartz crystal microbalance (QCM) dual-mode sensing platform was developed for protein tyrosine phosphatase 1B (PTP1B) activity assay based on bifunctional magnetic Fe3O4@Cu2O@TiO2 nanosphere-mediated PEC photocurrent polarity switching and QCM signal amplification strategies. The PTP1B-specific phosphopeptide (P-peptide) with a cysteine end was designed and immobilized onto the QCM Au chip via the Au-S bond. Subsequently, the Fe3O4@Cu2O@TiO2 nanosphere was connected to the P-peptide via the specific interaction between the phosphate group on the P-peptide and TiO2. After incubation with PTP1B, the dephosphorylation of the P-peptide occurred, causing some Fe3O4@Cu2O@TiO2 nanospheres to be released from the chip surface. The released magnetic Fe3O4@Cu2O@TiO2 nanospheres (labeled as R-Fe3O4@Cu2O@TiO2) were quickly separated via magnetic separation technology and attached to the Bi2S3-decorated magnetic indium-tin oxide (Bi2S3/MITO) electrode by magnetic force, inducing the switch of the photocurrent polarity of the electrode from anodic current (the Bi2S3/MITO electrode) to cathodic current (the R-Fe3O4@Cu2O@TiO2/Bi2S3/MITO electrode). Also, the nondephosphorylated P-peptide linked Fe3O4@Cu2O@TiO2 nanospheres as nanozymes with horseradish peroxidase activity to catalyze the formation of precipitation on the surface of the Au chip, leading to a frequency change of the QCM. Thus, the proposed PEC-QCM dual-mode sensing platform achieved accurate and reliable assay of PTP1B activity because of the different mechanisms and independent signal transductions. In addition, this dual-mode sensing platform can be easily extended for other protein phosphatase activity analysis and shows great potential in the early diagnosis of the protein phosphatase-related diseases and the protein phosphatase-targeted drug discovery.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Haokun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
5
|
Xiao K, Zhu R, Du C, Zheng H, Zhang X, Chen J. Zinc-Air Battery-Assisted Self-Powered PEC Sensors for Sensitive Assay of PTP1B Activity Based on Perovskite Quantum Dots Encapsulated in Vinyl-Functionalized Covalent Organic Frameworks. Anal Chem 2022; 94:9844-9850. [PMID: 35749712 DOI: 10.1021/acs.analchem.2c01702] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The self-powered sensors have attracted widespread attention in the analysis field due to a huge demand of point-of-care testing (POCT) in the early diagnosis of diseases. However, the output voltage of the reported self-powered sensors is always small, resulting in a narrow linear detection range and low assay sensitivity. Herein, a self-powered photoelectrochemical (PEC) sensor with zinc-air batteries as a power source was developed for activity assay of protein tyrosine phosphatase 1B (PTP1B) based on perovskite quantum dots encapsulated in the vinyl-functionalized covalent organic framework (COF-V). CsPbBr3 nanocrystals were stabilized by the confinement effect of the COF-V cage without aggregation, and the resulting CsPbBr3@COF-V composite was used as the cathodic photoelectric material to construct the zinc-air battery with a large open-circuit voltage (OCV, 1.556 V). Before PTP1B activity assay, an auxiliary peptide-polyamidoamine-phosphopeptide (P2-PAMAM-P1) hybrid was introduced into the photocathode via thiol-ene click reaction between the thiol group on the P1 and the vinyl group on the COF-V. The steric hindrance effect of the P1-PAMAM-P2 hybrid inhibited the PEC performance of the photocathode, resulting in a small OCV of the zinc-air battery. When the PTP1B existed, PTP1B-catalyzed dephosphorylation of tyrosine on P1 facilitated the cleavage process of P1 by chymotrypsin, leading to the removal of the P2-PAMAM-P1 hybrid from the photocathode and consequently the enhancement of the OCV. Therefore, the activity of PTP1B was sensitively detected. The developed self-powered PEC sensor showed superior performance for PTP1B activity assay (broad linear response range, 0.1 pM to 10 nM and low detection limit, 0.032 pM) due to the large output voltage of the constructed zinc-air battery and has great potential in POCT of protein phosphatase-related diseases and the discovery of protein phosphatase-targeted drugs.
Collapse
Affiliation(s)
- Ke Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Rong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Cuicui Du
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hejie Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiaohua Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jinhua Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
6
|
Li Y, Sun S, Tian X, Qiu JG, Jiang B, Wang LJ, Zhang CY. Dephosphorylation-directed tricyclic DNA amplification cascades for sensitive detection of protein tyrosine phosphatase. Chem Commun (Camb) 2020; 56:11581-11584. [DOI: 10.1039/d0cc04714g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A new fluorescence method is developed for the sensitive detection of protein tyrosine phosphatase based on dephosphorylation-directed tricyclic DNA amplification cascades.
Collapse
Affiliation(s)
- Yueying Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Shuli Sun
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Xiaorui Tian
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jian-Ge Qiu
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - BingHua Jiang
- Academy of Medical Sciences
- Zhengzhou University
- Zhengzhou 450000
- China
| | - Li-juan Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Chun-yang Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
7
|
Durgannavar T, Kwon SJ, Ghisaidoobe ABT, Rho K, Kim JH, Yoon S, Kang HJ, Chung SJ. Label‐Free Detection of Protein Tyrosine Phosphatase 1B (PTP1B) by Using a Rationally Designed Förster Resonance Energy Transfer (FRET) Probe. Chembiochem 2018; 19:2495-2501. [DOI: 10.1002/cbic.201800529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Indexed: 01/10/2023]
Affiliation(s)
| | - Se Jeong Kwon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | | | - Kyungmin Rho
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Ju Hwan Kim
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sun‐Young Yoon
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| | - Hyo Jin Kang
- Department of ChemistryDongguk University Seoul 100–715 Republic of Korea
| | - Sang J. Chung
- School of PharmacySungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
8
|
Jiang C, Zhang Y, Shen H, Liu C. Target-Regulated Ce3+
/Ce4+
Redox Switch for Fluorescence Turn-on Detection of H2
O2
and Glucose. ChemistrySelect 2017. [DOI: 10.1002/slct.201701751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Chao Jiang
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, Shaanxi Province, P. R. China
| | - Yu Zhang
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, Shaanxi Province, P. R. China
| | - Haixia Shen
- Basic Experimental Teaching Centre; Shaanxi Normal University; Xi'an 710062, Shaanxi Province, P. R. China
| | - Chenghui Liu
- School of Chemistry and Chemical Engineering; Shaanxi Normal University; Xi'an 710062, Shaanxi Province, P. R. China
| |
Collapse
|
9
|
Lv J, Chen T, Yue X, Zhou J, Gong X, Zhang J. A colorimetric biosensor based on guanidinium recognition for the assay of protein tyrosine phosphatase 1B and its inhibitors. NEW J CHEM 2017. [DOI: 10.1039/c7nj02918g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new colorimetric biosensor for the assay of PTP1B and its inhibitors based on coordination between RGC/AuNPs and MNPs/APP.
Collapse
Affiliation(s)
- Jun Lv
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Tingjun Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xiquan Yue
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Jianqiong Zhou
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| | - Xiuqing Gong
- Materials Genome Institute
- Shanghai University
- Shanghai 200444
- China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- P. R. China
| |
Collapse
|
10
|
Zhang J, Lv J, Wang X, Li D, Wang Z, Li G. A simple and visible colorimetric method through Zr4+–phosphate coordination for the assay of protein tyrosine phosphatase 1B and screening of its inhibitors. Analyst 2015; 140:5716-23. [DOI: 10.1039/c5an00970g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibitors of protein tyrosine phosphatase 1B (PTP1B) are promising agents for the treatment of type 2 diabetes and obesity, so a colorimetric method has been developed in this work for PTP1B assay and screening of its inhibitors.
Collapse
Affiliation(s)
- Juan Zhang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Jun Lv
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Xiaonan Wang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Defeng Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Zhaoxia Wang
- Department of Oncology
- The Second Affiliated Hospital of Nanjing Medical University
- Nanjing 210011
- PR China
| | - Genxi Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| |
Collapse
|
11
|
Lv J, Wang X, Zhang Y, Li D, Zhang J, Sun L. Adsorption between TC-stabilized AuNPs and the phosphate group: application of the PTP1B activity assay. Analyst 2015; 140:8017-22. [DOI: 10.1039/c5an01906k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Based on the adsorption between tetracycline (TC) and phosphate groups, a general colorimetric method is explored in this work by using TC-stabilized gold nanoparticles (TC/AuNPs) and 4-aminophenyl phosphate-functionalized Fe3O4 magnetic nanoparticles (APP/MNPs).
Collapse
Affiliation(s)
- Jun Lv
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Xiaonan Wang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Yuanyuan Zhang
- Department of Obstetrics and Gynecology
- The First Affiliated Hospital of Nanjing Medical University
- 210036 Nanjing
- China
| | - Defeng Li
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Juan Zhang
- Laboratory of Biosensing Technology
- School of Life Sciences
- Shanghai University
- Shanghai 200444
- PR China
| | - Lizhou Sun
- Department of Obstetrics and Gynecology
- The First Affiliated Hospital of Nanjing Medical University
- 210036 Nanjing
- China
| |
Collapse
|