1
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023; 930:117169. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Balkourani G, Brouzgou A, Archonti M, Papandrianos N, Song S, Tsiakaras P. Emerging materials for the electrochemical detection of COVID-19. J Electroanal Chem (Lausanne) 2021; 893:115289. [PMID: 33907536 PMCID: PMC8062413 DOI: 10.1016/j.jelechem.2021.115289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 virus is still causing a dramatic loss of human lives worldwide, constituting an unprecedented challenge for the society, public health and economy, to overcome. The up-to-date diagnostic tests, PCR, antibody ELISA and Rapid Antigen, require special equipment, hours of analysis and special staff. For this reason, many research groups have focused recently on the design and development of electrochemical biosensors for the SARS-CoV-2 detection, indicating that they can play a significant role in controlling COVID disease. In this review we thoroughly discuss the transducer electrode nanomaterials investigated in order to improve the sensitivity, specificity and response time of the as-developed SARS-CoV-2 electrochemical biosensors. Particularly, we mainly focus on the results appeard on Au-based and carbon or graphene-based electrodes, which are the main material groups recently investigated worldwidely. Additionally, the adopted electrochemical detection techniques are also discussed, highlighting their pros and cos. The nanomaterial-based electrochemical biosensors could enable a fast, accurate and without special cost, virus detection. However, further research is required in terms of new nanomaterials and synthesis strategies in order the SARS-CoV-2 electrochemical biosensors to be commercialized.
Collapse
Affiliation(s)
- G Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - A Brouzgou
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - M Archonti
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
| | - N Papandrianos
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| | - S Song
- The Key Lab of Low-carbon Chemistry & Energy Conservation of Guangdong Province, PCFM Lab, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - P Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, 1 Sekeri Str., Pedion Areos, 38834 Volos, Greece
- Laboratory of Materials and Devices for Clean Energy, Department of Technology of Electrochemical Processes, Ural Federal University, 19 Mira Str., Yekaterinburg 620002, Russian Federation
- Laboratory of Electrochemical Devices based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), Yekaterinburg 620990, Russian Federation
| |
Collapse
|
3
|
Mo J, Li M, Chen X, Li Q. Calixarene-mediated assembly of water-soluble C 60-attached ultrathin graphite hybrids for efficient activation of reactive oxygen species to treat neuroblastoma cells. Chem Commun (Camb) 2020; 56:7325-7328. [PMID: 32478761 DOI: 10.1039/d0cc01921f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Unprecedented nano-carbon hybrids consisting of exfoliated ultrathin graphite (or single-walled carbon nanotubes) with pristine C60 molecules attached on the surfaces have been produced in water in the presence of p-phosphonic acid calix[8]arene. The amphiphilic calixarene plays multiple roles in these processes to provide water dispersibility and π-π interactions with flexible conformations complementing curvatures of the carbon surfaces. The significantly increased water solubility and area of exposure of C60 enable efficient activation of reactive oxygen species for enhanced phototoxicity to SH-SY5Y human neuroblastoma cell line under laser irradiation.
Collapse
Affiliation(s)
- Jingxin Mo
- Clinical Research Center for Neurological Diseases of Guangxi Province, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China.
| | | | | | | |
Collapse
|
4
|
Yan Y, Chen M, Ge Q, Cong H, Fan Y, Sun L, Liu M, Tao Z. Enhanced response of benzo[6]urils sustained by graphene oxide for umbelliferones and its applications for quantitative detection of diquat. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
One-step and green strategy for exfoliation and stabilization of graphene by phosphate pillar[6]arene and its application for fluorescence sensing of paraquat. Microchem J 2019. [DOI: 10.1016/j.microc.2019.104203] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
6
|
Yang YD, Gong HY. Thermally activated isomeric all-hydrocarbon molecular receptors for fullerene separation. Chem Commun (Camb) 2019; 55:3701-3704. [PMID: 30788481 DOI: 10.1039/c8cc09911a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new all-hydrocarbon macrocycle, cyclo[8](1,3-(4,6-dimethyl)benzene) (CDMB-8) has been reported. As prepared, it exists in Cs symmetry and shows no interaction with fullerenes (e.g., C60 or C70). High temperature (573 K) treatment induces thermal conversion of the material to an isomeric conformer with D4d symmetry as a receptor for fullerene separation.
Collapse
Affiliation(s)
- Yu-Dong Yang
- College of Chemistry, Beijing Normal University, No. 19, XinJieKouWai St, HaiDian District, Beijing 100875, P. R. China.
| | | |
Collapse
|
7
|
Zang W, Toster J, Das B, Gondosiswanto R, Liu S, Eggers PK, Zhao C, Raston CL, Chen X. p-Phosphonic acid calix[8]arene mediated synthesis of ultra-large, ultra-thin, single-crystal gold nanoplatelets. Chem Commun (Camb) 2019; 55:3785-3788. [DOI: 10.1039/c8cc10145k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Large, ultrathin, single-crystal gold platelets are produced in the presence of p-phosphonic acid calix[8]arene as both a catalyst and stabiliser.
Collapse
Affiliation(s)
- Wenzhe Zang
- Flinders Institute for NanoScale Science & Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Jeremiah Toster
- Flinders Institute for NanoScale Science & Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Biswanath Das
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | | | - Shiyang Liu
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Paul K. Eggers
- Flinders Institute for NanoScale Science & Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Chuan Zhao
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | - Colin L. Raston
- Flinders Institute for NanoScale Science & Technology
- College of Science and Engineering
- Flinders University
- Adelaide
- Australia
| | - Xianjue Chen
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|
8
|
Chen TW, Li ZQ, Wang K, Wang FB, Xia XH. Exploring the Confinement Effect of Carbon Nanotubes on the Electrochemical Properties of Prussian Blue Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6983-6990. [PMID: 29786444 DOI: 10.1021/acs.langmuir.7b03690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel and efficient photochemical method has been proposed for the encapsulation of Prussian blue nanoparticles (PBNPs) inside the channels of carbon nanotubes (PB-in-CNTs) in an acidic ferrocyanide solution under UV/vis illumination, and the confinement effect of CNTs on the electrochemical properties of PBNPs is systematically explored. PB-in-CNTs show a faster electron-transfer process, an enhanced electrocatalytic activity toward the reduction of H2O2, and an increased anti-base ability compared to PBNPs loaded outside of CNTs (PB-out-CNTs). In addition, PB-in-CNTs show an increased electrochemical reversibility and an unexpected diameter-independent catalytic activity with the decrease of CNT diameters. The improved electrochemical properties of PB-in-CNTs are attributed to the modified electronic properties and dimensions of PBNPs induced by the confinement effect of CNTs. This work provides further insights into the confinement effect on the properties of nanomaterials and will inspire extensive relevant investigations in the development of novel composites or excellent catalysts.
Collapse
Affiliation(s)
- Ti-Wei Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Feng-Bin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210093 , China
| |
Collapse
|
9
|
Ran X, Qu Q, Liu C, Zhang S, Qian X, Wang Q, Jiang C, Yang L, Li L. Highly-effective palladium nanoclusters supported on para-sulfonated calix[8]arene-functionalized carbon nanohorns for ethylene glycol and glycerol oxidation reactions. NEW J CHEM 2018. [DOI: 10.1039/c8nj00716k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-Pt noble metal clusters like Pd clusters are considered as promising electrocatalysts for fuel cells, but they suffer from problems such as easy aggregation during the catalysis reactions.
Collapse
Affiliation(s)
- Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Qing Qu
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Chang Liu
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Shihong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Xingcan Qian
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Qiang Wang
- CNPC. South-east Asia Pipeline Co. Ltd
- Beijing
- China
| | | | - Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- China
| | - Lei Li
- Laboratory for Conservation and Utilization of Bio-Resources
- Yunnan University
- Kunming
- China
| |
Collapse
|
10
|
D'Alonzo NJ, Eggers PK, Eroglu E, Raston CL. p-Phosphonated Calix[n]arene Stabilizes Superparamagnetic Nanoparticles for Nitrate and Phosphate Uptake. Chempluschem 2017; 82:416-422. [PMID: 31962030 DOI: 10.1002/cplu.201600554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/20/2016] [Indexed: 11/06/2022]
Abstract
Highly faceted superparamagnetic magnetite nanoparticles roughly 11 nm in diameter are readily accessible in the presence of p-phosphonated calix[n]arenes of different ring sizes (n=4, 5 and 6), through the use of a simple co-precipitation technique. In contrast, the larger calix[8]arene affords spherical particles of comparable size. The maximum magnetization is 70-60 emu g-1 , which decreases with increasing size of the calixarene macrocycle, and the evidence indicates that the calixarenes bind to the surface of the nanoparticles via the phosphonate head groups rather than the phenolic oxygen centers. The stabilized nanoparticles show dual functionality: they remove up to 62 % of nitrate nitrogen and 48 % of phosphate from an aqueous effluent after 24 hours at concentrations of only 1 g L-1 of calixarene-coated nanoparticles.
Collapse
Affiliation(s)
- Nicholas J D'Alonzo
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Paul K Eggers
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Ela Eroglu
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, WA, 6009, Australia.,Department of Chemical Engineering, Curtin University, Bentley, WA, 6845, Australia
| | - Colin L Raston
- Centre for NanoScale Science and Technology, School of Chemical and Physical Sciences, Flinders University, Bedford Park, SA, 5042, Australia
| |
Collapse
|
11
|
Calix[8]arene functionalized single-walled carbon nanohorns for dual-signalling electrochemical sensing of aconitine based on competitive host-guest recognition. Biosens Bioelectron 2016; 83:347-52. [DOI: 10.1016/j.bios.2016.04.079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/22/2016] [Accepted: 04/23/2016] [Indexed: 10/21/2022]
|
12
|
Yang L, Xie X, Cai L, Ran X, Li Y, Yin T, Zhao H, Li CP. p-sulfonated calix[8]arene functionalized graphene as a "turn on" fluorescent sensing platform for aconitine determination. Biosens Bioelectron 2016; 82:146-54. [PMID: 27085945 DOI: 10.1016/j.bios.2016.04.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/22/2016] [Accepted: 04/04/2016] [Indexed: 11/16/2022]
Abstract
This work reports a novel method for the determination of aconitine through the competitive host-guest interaction between p-sulfonated calix[8]arene (SCX8) and signal probe/target molecules by using SCX8 functionalized reduced graphene oxide (SCX8-RGO) as a receptor. Three dyes (ST, RhB, BRB) and aconitine were selected as the probe and target molecules, respectively. The formation of SCX8-RGO·ST, SCX8-RGO·RhB, and SCX8-RGO·BRB complexes greatly decreases the fluorescence emission of ST, RhB, and BRB. The aconitine/SCX8 complex possesses a higher binding constant than ST/SCX8, RhB/SCX8, and BRB/SCX8 complexes, thus the dye in the SCX8 cavity can be replaced by aconitine to revert the fluorescence emission of SCX8-RGO·dye, leading to a "switch-on" fluorescence response. The fluorescence intensity of SCX8-RGO·ST, SCX8-RGO·RhB, and SCX8-RGO·BRB complexes increased linearly with increasing concentration of aconitine ranging from 1.0 to 14.0μM, 2.0-16.0μM, and 1.0-16.0μM, respectively. Based on the competitive host-guest interaction, the proposed detection method for aconitine showed detection limits of 0.28μM, 0.60μM, and 0.37μM, respectively, and was successfully applied for the determination of aconitine in human serum samples with good recoveries from 95.1% to 104.8%. The proposed method showed high selectivity for aconitine beyond competitive binding analytes. In addition, the inclusion complex of the SCX8/aconitine was studied by the molecular docking and molecular dynamics simulation, which indicated that the phenyl ester group of the aconitine molecule was included into the SCX8 cavity.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Le Cai
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Xin Ran
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Yucong Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Tianpeng Yin
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China
| | - Hui Zhao
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, PR China.
| | - Can-Peng Li
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
13
|
Yang L, Zhao H, Li Y, Ran X, Deng G, Zhang Y, Ye H, Zhao G, Li CP. Indicator displacement assay for cholesterol electrochemical sensing using a calix[6]arene functionalized graphene-modified electrode. Analyst 2016; 141:270-8. [DOI: 10.1039/c5an01843a] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Indicator displacement assay for cholesterol (Cho) sensing using CX6–Gra against MB.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource
- Yunnan University
- Kunming 650091
- PR China
| | - Yucong Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Guogang Deng
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
14
|
Ye H, Yang L, Zhao G, Zhang Y, Ran X, Wu S, Zou S, Xie X, Zhao H, Li CP. A FRET-based fluorescent approach for labetalol sensing using calix[6]arene functionalized MnO2@graphene as a receptor. RSC Adv 2016. [DOI: 10.1039/c6ra14835b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A turn-on fluorescent sensing platform for labetalol has been developed based on competitive host–guest interaction between p-sulfonated calix[6]arene (SCX6) and target molecule by using SCX6 functionalized MnO2@reduced graphene oxide as a receptor.
Collapse
Affiliation(s)
- Hanzhang Ye
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Long Yang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Genfu Zhao
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Yanqiong Zhang
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xin Ran
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Shilian Wu
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Suo Zou
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Xiaoguang Xie
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-Resource
- Yunnan University
- Kunming 650091
- PR China
| | - Can-Peng Li
- School of Chemical Science and Technology
- Yunnan University
- Kunming 650091
- PR China
| |
Collapse
|
15
|
Yang L, Zhao H, Li Y, Ran X, Deng G, Xie X, Li CP. Fluorescent Detection of Tadalafil Based on Competitive Host-Guest Interaction Using p-Sulfonated Calix[6]arene Functionalized Graphene. ACS APPLIED MATERIALS & INTERFACES 2015; 7:26557-26565. [PMID: 26571350 DOI: 10.1021/acsami.5b07833] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A competitive fluorescence method toward tadalafil detection has been developed based on host-guest recognition by selecting rhodamine B (RhB) and p-sulfonated calix[6]arene functionalized graphene (CX6-Gra) as the "reporter pair". Upon the presence of tadalafil to the performed CX6-Gra-RhB complex, the RhB molecules are displaced by tadalafil, leading to a "switch-on" fluorescence signal. The observed fluorescence signal can be used for quantitative detection of tadalafil ranging from 1.00 to 50.00 μM with a detection limit of 0.32 μM (S/N = 3). The inclusion complex of tadalafil and CX6 was studied by molecular docking and the results indicated that a 1:1 host-guest stoichiometry had the lowest ΔG value of -7.18 kcal/mol. The docking studies demonstrated that the main forces including π-π interactions, electrostatic interactions, and hydrophobic interactions should be responsible for the formation of this inclusion compound. The mechanism of the competitive host-guest interaction was clarified. The binding constant (K) of the tadalafil/CX6 complex was more than 5 times greater than that of RhB/CX6.
Collapse
Affiliation(s)
- Long Yang
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University , Kunming 650091, People's Republic of China
| | - Yucong Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xin Ran
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Guogang Deng
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Xiaoguang Xie
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| | - Can-Peng Li
- School of Chemical Science and Engineering, Yunnan University , Kunming 650091, People's Republic of China
| |
Collapse
|
16
|
Sayin S, Azak H, Yildiz HB, Camurlu P, Akkus GU, Toppare L, Ersoz M. Calixarene assembly with enhanced photocurrents using P(SNS-NH2)/CdS nanoparticle structure modified Au electrode systems. Phys Chem Chem Phys 2015; 17:19911-8. [DOI: 10.1039/c5cp01932j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel calix[n]arene-adorned gold electrodes producing high photocurrent intensities were successfully constructed.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Environmental Engineering
- Faculty of Engineering
- Giresun University
- Giresun-28200
- Turkey
| | - Hacer Azak
- Department of Chemistry
- Karamanoglu Mehmetbey University
- 70100 Karaman
- Turkey
| | - Huseyin Bekir Yildiz
- Department of Materials Science and Nanotechnology Engineering
- KTO Karatay University
- 42020 Konya
- Turkey
| | - Pinar Camurlu
- Department of Chemistry
- Akdeniz University
- 07058 Antalya
- Turkey
| | - Gulderen Uysal Akkus
- Department of Chemistry
- Faculty of Art and Science
- Afyon Kocatepe University
- Afyonkarahisar
- Turkey
| | - Levent Toppare
- The Center for Solar Energy Research and Application (GUNAM)
- Middle East Technical University
- Ankara 06800
- Turkey
- Department of Polymer Science and Technology
| | - Mustafa Ersoz
- Department of Chemistry
- Selcuk University
- 42075 Konya
- Turkey
| |
Collapse
|