1
|
Ali H, Orooji Y, Alzahrani AYA, Hassan HMA, Ajmal Z, Yue D, Hayat A. Advanced Porous Aromatic Frameworks: A Comprehensive Overview of Emerging Functional Strategies and Potential Applications. ACS NANO 2025; 19:7482-7545. [PMID: 39965777 DOI: 10.1021/acsnano.4c16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Porous aromatic frameworks (PAFs) are a fundamental group of porous materials characterized by their distinct structural features and large surface areas. These materials are synthesized from aromatic building units linked by strong carbon-carbon bonds, which confer exceptional rigidity and long-term stability. PAFs functionalities may arise directly from the intrinsic chemistry of their building units or through the postmodification of aromatic motifs using well-defined chemical processes. Compared to other traditional porous materials such as zeolites and metallic-organic frameworks, PAFs demonstrate superior stability under severe chemical treatments due to their robust carbon-carbon bonding. Even in challenging environments, the chemical stability and ease of functionalization of PAFs demonstrate their flexibility and specificity. Research on PAFs has significantly expanded and accelerated over the past decade, necessitating a comprehensive overview of key advancements in this field. This review provides an in-depth analysis of the recent advances in the synthesis, functionalization, and dimensionality of PAFs, along with their distinctive properties and wide-ranging applications. This review explores the innovative methodologies in PAFs synthesis, the strategies for functionalizing their structures, and the manipulation of their dimensionality to tailor their properties for specific potential applications. Similarly, the key application areas, including batteries, absorption, sensors, CO2 capture, photo-/electrocatalytic usages, supercapacitors, separation, and biomedical are discussed in detail, highlighting the versatility and potential of PAFs in addressing modern scientific and industrial challenges.
Collapse
Affiliation(s)
- Hamid Ali
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
- School of Resources and Environment, Shensi Lab, University of Electronic Science and Technology of China, Chengdu, 611731,China
| | - Yasin Orooji
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | | | - Hassan M A Hassan
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, 72345, Saudi Arabia
| | - Zeeshan Ajmal
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang PR, China
| | - Dewu Yue
- Information Technology Research Institute, Shenzhen Institute of Information Technology, Shenzhen, 518172, China
| | - Asif Hayat
- Department of Chemistry, Lishui University, Lishui, Zhejiang 323000, China
| |
Collapse
|
2
|
Zhang W, Zuo H, Cheng Z, Shi Y, Guo Z, Meng N, Thomas A, Liao Y. Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104952. [PMID: 35181945 DOI: 10.1002/adma.202104952] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Since discovered in 2007, conjugated microporous polymers (CMPs) have been developed for numerous applications including gas adsorption, sensing, organic and photoredox catalysis, energy storage, etc. While featuring abundant micropores, the structural rigidity derived from CMPs' stable π-conjugated skeleton leads to insolubility and thus poor processability, which severely limits their applicability, e.g., in CMP-based devices. Hence, the development of CMPs whose structure can not only be controlled on the micro- but also on the macroscale have attracted tremendous interest. In conventional synthesis procedures, CMPs are obtained as powders, but in recent years various bottom-up synthesis strategies have been developed, which yield CMPs as thin films on substrates or as hybrid materials, allowing to span length scales from individual conjugated monomers to micro-/macrostructures. This review surveys recent advances on the construction of CMPs into macroscale structures, including membranes, films, aerogels, sponges, and other architectures. The focus is to describe the underlying fabrication techniques and the implications which follow from the macroscale morphologies, involving new chemistry and physics in such materials for applications like molecular separation/filtration/adsorption, energy storage and conversion, photothermal transformation, sensing, or catalysis.
Collapse
Affiliation(s)
- Weiyi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hongyu Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhonghua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yu Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhengjun Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nan Meng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Arne Thomas
- Technische Universität Berlin, Department of Chemistry, Functional Materials, Sekretariat BA 2, Hardenbergstr. 40, 10623, Berlin, Germany
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Atilgan A, Beldjoudi Y, Yu J, Kirlikovali KO, Weber JA, Liu J, Jung D, Deria P, Islamoglu T, Stoddart JF, Farha OK, Hupp JT. BODIPY-Based Polymers of Intrinsic Microporosity for the Photocatalytic Detoxification of a Chemical Threat. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12596-12605. [PMID: 35234435 DOI: 10.1021/acsami.1c21750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Effective heterogeneous photocatalysts capable of detoxifying chemical threats in practical settings must exhibit outstanding device integrity. We report a copolymerization that yields robust, porous, processible, chromophoric BODIPY (BDP; boron-dipyrromethene)-containing polymers of intrinsic microporosity (BDP-PIMs). Installation of a pentafluorophenyl at the meso position of a BDP produced reactive monomer that when combined with 5,5,6,6-tetrahydroxy-3,3,3,3-tetramethyl-1,1-spirobisindane (TTSBI) and tetrafluoroterephthalonitrile (TFTPN) yields PIM-1. Postsynthetic modification of these polymers yields Br-BDP-PIM-1a and -1b─polymers containing bromine at the 2,6-positions. Remarkably, the brominated polymers display porosity and processability features similar to those of H-BDP-PIMs. Gas adsorption reveals molecular-scale porosity and Brunette-Emmet-Teller surface areas as high as 680 m2 g-1. Electronic absorption spectra reveal charge-transfer (CT) bands centered at 660 nm, while bands arising from local excitations, LE, of BDP and TFTPN units are at 530 and 430 nm, respectively. Fluorescence spectra of the polymers reveal a Förster resonance energy-transfer (FRET) pathway to BDP units when TFTPN units are excited at 430 nm; weak phosphorescence at room temperature indicates a singlet-to-triplet intersystem crossing. The low-lying triplet state is well positioned energetically to sensitize the conversion of ground-state (triplet) molecular oxygen to electronically excited singlet oxygen. Photosensitization capabilities of these polymers toward singlet-oxygen-driven detoxification of a sulfur-mustard simulant 2-chloroethyl ethyl sulfide (CEES) have been examined. While excitation of CT and LEBDP bands yields weak catalytic activity (t1/2 > 15 min), excitation to higher energy states of TFTPN induces significant increases in photoactivity (t1/2 ≅ 5 min). The increase is attributable to (i) enhanced light collection, (ii) FRET between TFTPN and BDP, (iii) the presence of heavy atoms (bromine) having large spin-orbit coupling energies that can facilitate intersystem crossing from donor-acceptor CT-, FRET-, or LE-generated BDP singlet states to BDP-related triplet states, and (iv) polymer triplet excited-state sensitization of the formation of CEES-reactive, singlet oxygen.
Collapse
Affiliation(s)
- Ahmet Atilgan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Kent O Kirlikovali
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jacob A Weber
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Dahee Jung
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
4
|
Ma Y, Cui F, Rong H, Song J, Jing X, Tian Y, Zhu G. Continuous Porous Aromatic Framework Membranes with Modifiable Sites for Optimized Gas Separation. Angew Chem Int Ed Engl 2022; 61:e202113682. [PMID: 34687128 DOI: 10.1002/anie.202113682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/20/2021] [Indexed: 11/09/2022]
Abstract
Continuous microporous membranes are widely studied for gas separation, due to their low energy premium and strong molecular specificity. Porous aromatic frameworks (PAFs) with their exceptional stability and structural flexibility are suited to a wide range of separations. Main-stream PAF-based membranes are usually prepared with polymeric matrices, but their discrete entities and boundary defects weaken their selectivity and permeability. The synthesis of continuous PAF membranes is still a major challenge because PAFs are insoluble. Herein, we successfully synthesized a continuous PAF membrane for gas separation. Both pore size and chemistry of the PAF membrane were modified by ion-exchange, resulting in good selectivity and permeance for the gas mixtures H2 /N2 and CO2 /N2 . The membrane with Br- as a counter ion in the framework exhibited a H2 /N2 selectivity of 72.7 with a H2 permeance of 51844 gas permeation units (GPU). When the counter ions were replaced by BF4 - , the membrane showed a CO2 permeance of 23058 GPU, and an optimized CO2 /N2 selectivity of 60.0. Our results show that continuous PAF membranes with modifiable pores are promising for various gas separation situations.
Collapse
Affiliation(s)
- Yue Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Huazhen Rong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jian Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaofei Jing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
5
|
Ma Y, Cui F, Rong H, Song J, Jing X, Tian Y, Zhu G. Continuous Porous Aromatic Framework Membranes with Modifiable Sites for Optimized Gas Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Ma
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Fengchao Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Huazhen Rong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Jian Song
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Xiaofei Jing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Yuyang Tian
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| | - Guangshan Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Northeast Normal University Changchun 130024 China
| |
Collapse
|
6
|
Zhang M, Feng X. Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Sala L, Sedmidubská B, Vinklárek I, Fárník M, Schürmann R, Bald I, Med J, Slavíček P, Kočišek J. Electron attachment to microhydrated 4-nitro- and 4-bromo-thiophenol. Phys Chem Chem Phys 2021; 23:18173-18181. [PMID: 34612280 DOI: 10.1039/d1cp02019f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effect of microhydration on electron attachment to thiophenols with halogen (Br) and nitro (NO2) functional groups in the para position. We focus on the formation of anions upon the attachment of low-energy electrons with energies below 8 eV to heterogeneous clusters of the thiophenols with water. For nitro-thiophenol (NTP), the primary reaction channel observed is the associative electron attachment, irrespective of the microhydration. On the other hand, bromothiophenol (BTP) fragments significantly upon the electron attachment, producing Br- and (BTP-H)- anions. Microhydration suppresses fragmentation of both molecules, however in bromothiophenol, the Br- channel remains intense and Br(H2O)n- hydrated fragment clusters are observed. The results are supported by the reaction energetics obtained from ab initio calculations. Different dissociation dynamics of NTP and BTP can be related to different products of their plasmon induced reactions on Au nanoparticles. Computational modeling of the simplified BTP(H2O) system indicates that the electron attachment products reflect the structure of neutral precursor clusters - the anion dissociation dynamics is controlled by the hydration site.
Collapse
Affiliation(s)
- Leo Sala
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Lee MY, Ahmed I, Yu K, Lee CS, Kang KK, Jang MS, Ahn WS. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. CHEMOSPHERE 2021; 265:129161. [PMID: 33302201 DOI: 10.1016/j.chemosphere.2020.129161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A new porphyrinic porous organic polymer (PPOP) with high stability and excellent textural properties (929 m2/g surface area with 0.73 cm3/g pore volume) was made via the Friedel-Crafts reaction and applied for bisphenol A (BPA) adsorption in water. The material was examined by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state 13C CP-MAS nuclear magnetic resonance spectroscopy. PPOP was proven highly effective for capturing BPA among the many adsorbent materials investigated. The Langmuir model could closely match the adsorption isotherm data with a high adsorption amount of ca. 653 mg/g at 25 °C. Approximately 95% of BPA was adsorbed in 50 min, and the pseudo-second-order kinetic model satisfactorily described the adsorption behavior. This adsorption process was exothermic (ΔH° = -39.10 kJ/mol), and the capacity gradually decreased with increasing pH. Spectroscopic analyses indicated that the BPA adsorption on PPOP was affected by (1) π-π interaction between BPA and the aromatic constituents of PPOP, (2) hydrogen bonding between the N sites of porphyrin units in PPOP and the hydroxyl group of BPA and, and (3) hydrophobic interactions. PPOP was easily regenerated after acetone washing, and >98% efficiency was observed throughout the five repeated adsorption-desorption cycles.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Imteaz Ahmed
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Kwangsun Yu
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea
| | - Kyoung-Ku Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea.
| | - Min-Seok Jang
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Wha-Seung Ahn
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea.
| |
Collapse
|
9
|
Liu Z, Yin Y, Eginligil M, Wang L, Liu J, Huang W. Two-dimensional conjugated microporous polymer films: fabrication strategies and potential applications. Polym Chem 2021. [DOI: 10.1039/d0py01368d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This review describes the latest advances in the preparation and application of two-dimensional conjugated microporous polymers, as well as the future research directions of this field.
Collapse
Affiliation(s)
- Zhengdong Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Yuhang Yin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Mustafa Eginligil
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Laiyuan Wang
- Shaanxi Institute of Flexible Electronics (SIFE)
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
- Shaanxi Institute of Flexible Electronics (SIFE)
| |
Collapse
|
10
|
Ratsch M, Ye C, Yang Y, Zhang A, Evans AM, Börjesson K. All-Carbon-Linked Continuous Three-Dimensional Porous Aromatic Framework Films with Nanometer-Precise Controllable Thickness. J Am Chem Soc 2020; 142:6548-6553. [PMID: 32186875 PMCID: PMC7309314 DOI: 10.1021/jacs.9b10884] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Inherently porous materials that
are chemically and structurally
robust are challenging to construct. Conventionally, dynamic chemistry
is thought to be needed for the formation of uniform porous organic
frameworks, but dynamic bonds can limit the stability of these materials.
For this reason, all-carbon-linked frameworks are expected to exhibit
higher stability performance than more traditional porous frameworks.
However, the limited reversibility of carbon–carbon bond-forming
reactions has restricted the exploration of these materials. In particular,
the challenges associated with producing uniform thin films of all-carbon-linked
frameworks has inhibited the study of these materials in applications
where well-defined films are required. Here, we synthesize continuous
and homogeneous films of two different all-carbon-linked three-dimensional
porous aromatic frameworks with nanometer-precision thickness (PAF-1
and BCMP-2). This was accomplished by kinetically promoting surface
reactivity while suppressing homogeneous nucleation. Through connection
of the PAF film to a gold substrate via a self-assembled monolayer
and use of flow conditions to continually introduce monomers, smooth
and continuous PAF films can be grown with controlled thickness. This
strategy allows traditional transition metal mediated carbon–carbon
cross-coupling reactions to form porous, organic thin films. We expect
that the chemical principles uncovered in this study will enable the
synthesis of a variety of chemically and structurally diverse carbon–carbon-linked
frameworks as high-quality films, which are inaccessible by conventional
methods.
Collapse
Affiliation(s)
- Martin Ratsch
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| | - Chen Ye
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| | - Yizhou Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| | - Airui Zhang
- Division of Energy and Environmental Measurement, National Institute of Metrology, China NIM, Beijing 100013, P.R. China
| | - Austin M Evans
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208 United States
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Kemigården 4, 412 96 Göteborg, Sweden
| |
Collapse
|
11
|
Kang CW, Choi J, Ko YJ, Lee SM, Kim HJ, Kim JP, Son SU. Thin Coating of Microporous Organic Network Makes a Big Difference: Sustainability Issue of Ni Electrodes on the PET Textile for Flexible Lithium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36936-36943. [PMID: 28990385 DOI: 10.1021/acsami.7b12653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Poly(ethylene terephthalate) fibers (PET-Fs) were coated with microporous organic networks (MONs) by the Sonogashira coupling of tetra(4-ethynylphenyl)methane with 1,4-diiodobenzene. Ni was deposited on the PET-F@MON via electroless deposition. Interestingly, although Ni on the PET-F showed a sharp decrease in conductivity in repeated bending tests, the PET-F@MON@Ni showed excellent retention of conductivity. We suggest that thin MON layers play roles of an efficient binder for Ni attachment to fibers and a structural buffer for the relaxation of bending strain. The positive effect of MON was supported by scanning electron microscopy studies of the PET-F@Ni or PET-F@MON@Ni retrieved after 2000 bending numbers. Although Ni on the PET-F showed severe detachment after bending tests, PET-F@MON@Ni retained the original morphologies. The pouch cells of lithium-ion batteries fabricated using PET-F@MON@Ni as the current collectors showed excellent performance against bending.
Collapse
Affiliation(s)
- Chang Wan Kang
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Korea
| | - Jaewon Choi
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, The National Center for Inter-University Research Facilities (NCIRF), Seoul National University , Seoul 08826, Korea
| | - Sang Moon Lee
- Korea Basic Science Institute , Daejeon 34133, Korea
| | - Hae Jin Kim
- Korea Basic Science Institute , Daejeon 34133, Korea
| | - Jong Pil Kim
- Korea Basic Science Institute , Busan 46742, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University , Suwon 16419, Korea
| |
Collapse
|
12
|
Byeon M, Lee E, Park JW. Precise Solution-Based Deposition of Ultrathin Covalent Molecular Networks by Layer-by-Layer Cross-Linking Polymerization of Tetra- and Bifunctional Amine/Isocyanate Pairs. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minseon Byeon
- School of Materials Science
and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Eunhye Lee
- School of Materials Science
and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| | - Ji-Woong Park
- School of Materials Science
and Engineering and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea
| |
Collapse
|
13
|
Li Q, Razzaque S, Jin S, Tan B. Morphology design of microporous organic polymers and their potential applications: an overview. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9089-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Chen Z, Chen M, Yu Y, Wu L. Robust synthesis of free-standing and thickness controllable conjugated microporous polymer nanofilms. Chem Commun (Camb) 2017; 53:1989-1992. [DOI: 10.1039/c6cc09763d] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new polymerization strategy based on Sonogashira–Hagihara reaction and Schiff-base reaction at oil–water interfaces is developed to synthesize free-standing and thickness controllable conjugated microporous polymer (CMP) nanofilms.
Collapse
Affiliation(s)
- Zhen Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Min Chen
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| | - Limin Wu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
15
|
Chaoui N, Trunk M, Dawson R, Schmidt J, Thomas A. Trends and challenges for microporous polymers. Chem Soc Rev 2017; 46:3302-3321. [DOI: 10.1039/c7cs00071e] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent trends and challenges for the emerging materials class of microporous polymers are reviewed. See the main article for graphical abstract image credits.
Collapse
Affiliation(s)
- Nicolas Chaoui
- Technische Universität Berlin
- Department of Chemistry, Functional Materials
- 10623 Berlin
- Germany
| | - Matthias Trunk
- Technische Universität Berlin
- Department of Chemistry, Functional Materials
- 10623 Berlin
- Germany
| | - Robert Dawson
- Department of Chemistry
- University of Sheffield
- Sheffield
- UK
| | - Johannes Schmidt
- Technische Universität Berlin
- Department of Chemistry, Functional Materials
- 10623 Berlin
- Germany
| | - Arne Thomas
- Technische Universität Berlin
- Department of Chemistry, Functional Materials
- 10623 Berlin
- Germany
| |
Collapse
|
16
|
Bildirir H, Osken I, Schmidt J, Ozturk T, Thomas A. Chemical RedOx Properties of a Donor-Acceptor Conjugated Microporous Dithienothiophene-Benzene co-Polymer FormedviaSuzuki-Miyaura Cross-coupling. ChemistrySelect 2016. [DOI: 10.1002/slct.201600057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hakan Bildirir
- Functional Materials; Department of Chemistry; Technische Universtät Berlin; Hardenbergstr. 40 10623 Berlin Germany
| | - Ipek Osken
- Department of Chemistry; Istanbul Technical University; Maslak Istanbul 34469 Turkey
- Department of Pure and Applied Chemistry; University of Strathclyde; Glasgow G1 1XL United Kingdom
| | - Johannes Schmidt
- Functional Materials; Department of Chemistry; Technische Universtät Berlin; Hardenbergstr. 40 10623 Berlin Germany
| | - Turan Ozturk
- Department of Chemistry; Istanbul Technical University; Maslak Istanbul 34469 Turkey
- Chemistry Group Laboratories; TUBITAK UME; PO Box: 54 41470 Gebze-Kocaeli Turkey
| | - Arne Thomas
- Functional Materials; Department of Chemistry; Technische Universtät Berlin; Hardenbergstr. 40 10623 Berlin Germany
| |
Collapse
|
17
|
Gu C, Huang N, Wu Y, Xu H, Jiang D. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angew Chem Int Ed Engl 2015; 54:11540-4. [PMID: 26234636 PMCID: PMC4600238 DOI: 10.1002/anie.201504786] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Indexed: 11/27/2022]
Abstract
Porous organic polymers allow the integration of various π-units into robust porous π-networks, but they are usually synthesized as unprocessable solids with poor light-emitting performance as a result of aggregation-related excitation dissipation. Herein, we report a general strategy for the synthesis of highly emissive photofunctional porous polymer films on the basis of a complementary scheme for the structural design of aggregation-induced-emissive π-systems. We developed a high-throughput and facile method for the direct synthesis of large-area porous thin films at the liquid-electrode interface. The approach enables the preparation of microporous films within only a few seconds or minutes and allows precise control over their thickness with sub-nanometer precision. By virtue of rapid photoinduced electron transfer, the thin films can detect explosives with enhanced sensitivity to low parts-per-million levels in a selective manner.
Collapse
Affiliation(s)
| | | | - Yang Wu
- Department of Materials Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences5-1 Higashiyama, Myodaiji, Okazaki 444-8787 (Japan) E-mail:
| | - Hong Xu
- Department of Materials Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences5-1 Higashiyama, Myodaiji, Okazaki 444-8787 (Japan) E-mail:
| | - Donglin Jiang
- Department of Materials Molecular Science, Institute for Molecular Science, National Institutes of Natural Sciences5-1 Higashiyama, Myodaiji, Okazaki 444-8787 (Japan) E-mail:
| |
Collapse
|
18
|
Gu C, Huang N, Wu Y, Xu H, Jiang D. Design of Highly Photofunctional Porous Polymer Films with Controlled Thickness and Prominent Microporosity. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201504786] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|