1
|
Hu H, Luo C, Wang B, Lai T, Zhang G, Gao G. NaCl catalyzed transesterification and hydrolysis of ethylene carbonate. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
2
|
Malico AA, Calzini MA, Gayen AK, Williams GJ. Synthetic biology, combinatorial biosynthesis, and chemo‑enzymatic synthesis of isoprenoids. J Ind Microbiol Biotechnol 2020; 47:675-702. [PMID: 32880770 PMCID: PMC7666032 DOI: 10.1007/s10295-020-02306-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Isoprenoids are a large class of natural products with myriad applications as bioactive and commercial compounds. Their diverse structures are derived from the biosynthetic assembly and tailoring of their scaffolds, ultimately constructed from two C5 hemiterpene building blocks. The modular logic of these platforms can be harnessed to improve titers of valuable isoprenoids in diverse hosts and to produce new-to-nature compounds. Often, this process is facilitated by the substrate or product promiscuity of the component enzymes, which can be leveraged to produce novel isoprenoids. To complement rational enhancements and even re-programming of isoprenoid biosynthesis, high-throughput approaches that rely on searching through large enzymatic libraries are being developed. This review summarizes recent advances and strategies related to isoprenoid synthetic biology, combinatorial biosynthesis, and chemo-enzymatic synthesis, focusing on the past 5 years. Emerging applications of cell-free biosynthesis and high-throughput tools are included that culminate in a discussion of the future outlook and perspective of isoprenoid biosynthetic engineering.
Collapse
Affiliation(s)
| | - Miles A Calzini
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Anuran K Gayen
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
3
|
Mitschke N, Christoffers J, Wilkes H. A Straightforward Synthesis of Trideuterated α‐Terpinene for Mechanistic Studies. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Nico Mitschke
- Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Jens Christoffers
- Institut für Chemie Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| | - Heinz Wilkes
- Institut für Chemie und Biologie des Meeres (ICBM) Carl von Ossietzky Universität Oldenburg 26111 Oldenburg Germany
| |
Collapse
|
4
|
Steck V, Kolev JN, Ren X, Fasan R. Mechanism-Guided Design and Discovery of Efficient Cytochrome P450-Derived C-H Amination Biocatalysts. J Am Chem Soc 2020; 142:10343-10357. [PMID: 32407077 DOI: 10.1021/jacs.9b12859] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cytochromes P450 have been recently identified as a promising class of biocatalysts for mediating C-H aminations via nitrene transfer, a valuable transformation for forging new C-N bonds. The catalytic efficiency of P450s in these non-native transformations is however significantly inferior to that exhibited by these enzymes in their native monooxygenase function. Using a mechanism-guided strategy, we report here the rational design of a series of P450BM3-based variants with dramatically enhanced C-H amination activity acquired through disruption of the native proton relay network and other highly conserved structural elements within this class of enzymes. This approach further guided the identification of XplA and BezE, two "atypical" natural P450s implicated in the degradation of a man-made explosive and in benzastatins biosynthesis, respectively, as very efficient C-H aminases. Both XplA and BezE could be engineered to further improve their C-H amination reactivity, which demonstrates their evolvability for abiological reactions. These engineered and natural P450 catalysts can promote the intramolecular C-H amination of arylsulfonyl azides with over 10 000-14 000 catalytic turnovers, ranking among the most efficient nitrene transfer biocatalysts reported to date. Mechanistic and structure-reactivity studies provide insights into the origin of the C-H amination reactivity enhancement and highlight the divergent structural requirements inherent to supporting C-H amination versus C-H monooxygenation reactivity within this class of enzymes. Overall, this work provides new promising scaffolds for the development of nitrene transferases and demonstrates the value of mechanism-driven rational design as a strategy for improving the catalytic efficiency of metalloenzymes in the context of abiological transformations.
Collapse
Affiliation(s)
- Viktoria Steck
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Joshua N Kolev
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Xinkun Ren
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Rudi Fasan
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Ker DS, Chan KG, Othman R, Hassan M, Ng CL. Site-directed mutagenesis of β sesquiphellandrene synthase enhances enzyme promiscuity. PHYTOCHEMISTRY 2020; 173:112286. [PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
Collapse
Affiliation(s)
- De-Sheng Ker
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Kok Gan Chan
- International Genome Centre, Jiangsu University, Zhenjiang, China; Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Roohaida Othman
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Maizom Hassan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia
| | - Chyan Leong Ng
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
6
|
Souza AA, Vessecchi R, Castro-Gamboa I, Furlan M. Combined use of tandem mass spectrometry and computational chemistry to study 2H-chromenes from Piper aduncum. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:634-642. [PMID: 31144377 DOI: 10.1002/jms.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Natural 2H-chromenes were isolated from the crude extract of Piper aduncum (Piperaceae) and analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) applying collision-induced dissociation. Density functional theory (DFT) calculations were used to explain the preferred protonation sites of the 2H-chromenes based on thermochemical parameters, including atomic charges, proton affinity, and gas-phase basicity. After identifying the nucleophilic sites, the pathways were proposed to justify the formation of the diagnostic ions under ESI-MS/MS conditions. The calculated relative energy for each pathway was in good agreement with the energy-resolved plot obtained from ESI-MS/MS data. Moreover, the 2H-chromene underwent proton attachment on the prenyl moiety via a six-membered transition state. This behavior resulted in the formation of a diagnostic ion due to 2-methylpropene loss. These studies provide novel insights into gas-phase dissociation for natural benzopyran compounds, indicating how reactivity is correlated to the intrinsic acid-base equilibrium and structural aspects, including the substitution pattern on the aromatic moiety. Therefore, these results can be applied in the identification of benzopyran derivatives in a variety of biological samples.
Collapse
Affiliation(s)
- Amauri Alves Souza
- Universidade Estadual Paulista - UNESP, Instituto de Química, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brazil
| | - Ian Castro-Gamboa
- Universidade Estadual Paulista - UNESP, Instituto de Química, Rua Professor Francisco Degni, 55, Araraquara, SP, 14800-900, Brazil
| | | |
Collapse
|
7
|
Vattekkatte A, Garms S, Brandt W, Boland W. Enhanced structural diversity in terpenoid biosynthesis: enzymes, substrates and cofactors. Org Biomol Chem 2019; 16:348-362. [PMID: 29296983 DOI: 10.1039/c7ob02040f] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The enormous diversity of terpenes found in nature is generated by enzymes known as terpene synthases, or cyclases. Some are also known for their ability to convert a single substrate into multiple products. This review comprises monoterpene and sesquiterpene synthases that are multiproduct in nature along with the regulation factors that can alter the product specificity of multiproduct terpene synthases without genetic mutations. Variations in specific assay conditions with focus on shifts in product specificity based on change in metal cofactors, assay pH and substrate geometry are described. Alterations in these simple cellular conditions provide the organism with enhanced chemodiversity without investing into new enzymatic architecture. This versatility to modulate product diversity grants organisms, especially immobile ones like plants with access to an enhanced defensive repertoire by simply altering cofactors, pH level and substrate geometry.
Collapse
Affiliation(s)
- Abith Vattekkatte
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, D-07745 Jena, Germany.
| | | | | | | |
Collapse
|
8
|
Said MS, Navale GR, Gajbhiye JM, Shinde SS. Retracted Article: Synthesis of deuterated isopentyl pyrophosphates for chemo-enzymatic labelling methods: GC-EI-MS based 1,2-hydride shift in epicedrol biosynthesis. RSC Adv 2019; 9:28258-28261. [PMID: 35530493 PMCID: PMC9071075 DOI: 10.1039/c9ra00163h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/19/2019] [Indexed: 11/21/2022] Open
Abstract
A sesquiterpene epicedrol cyclase mechanism was elucidated based on the gas chromatography coupled to electron impact mass spectrometry fragmentation data of deuterated (2H) epicedrol analogues. The chemo-enzymatic method was applied for the specific synthesis of 8-position labelled farnesyl pyrophosphate and epicedrol. EI-MS fragmentation ions compared with non-labelled and isotopic mass shift fragments suggest that the 2H of C6 migrates to the C7 position during the cyclization mechanism. The cyclisation mechanism of epicedrol cyclase elucidated based on GC-EI-MS fragmentation of specific deuterated (2H) epicedrol analogues. The chemo-enzymatic method was applied for the synthesis 8-position-2H-farnesyl pyrophosphate synthesis.![]()
Collapse
Affiliation(s)
- Madhukar S. Said
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Govinda R. Navale
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jayant M. Gajbhiye
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sandip S. Shinde
- Organic Chemistry Division
- CSIR-National Chemical Laboratory (CSIR-NCL)
- Pune-411008
- India
| |
Collapse
|
9
|
Tan W, Bartram S, Boland W. Mechanistic studies of sesquiterpene cyclases based on their carbon isotope ratios at natural abundance. PLANT, CELL & ENVIRONMENT 2018; 41:39-49. [PMID: 28045196 DOI: 10.1111/pce.12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/27/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
During the process of terpene biosynthesis, C-C bond breaking and forming steps are subjected to kinetic carbon isotope effects, leading to distinct carbon isotopic signatures of the products. Accordingly, carbon isotopic signatures could be used to reveal the 'biosynthetic history' of the produced terpenoids. Five known sesquiterpene cyclases, regulating three different pathways, representing simple to complex biosynthetic sequences, were heterologously expressed and used for in vitro assays with farnesyl diphosphate as substrate. Compound specific isotope ratio mass spectrometry measurements of the enzyme substrate farnesyl diphosphate (FDP) and the products of all the five cyclases were performed. The calculated δ13 C value for FDP, based on δ13 C values and relative amounts of the products, was identical with its measured δ13 C value, confirming the reliability of the approach and the precision of measurements. The different carbon isotope ratios of the products reflect the complexity of their structure and are correlated with the frequency of carbon-carbon bond forming and breaking steps on their individual biosynthetic pathways. Thus, the analysis of carbon isotopic signatures of terpenes at natural abundance can be used as a powerful tool in elucidation of associated biosynthetic mechanisms of terpene synthases and in future in vivo studies even without 'touching' the plant.
Collapse
Affiliation(s)
- Wenhua Tan
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Stefan Bartram
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
10
|
Vattekkatte A, Garms S, Boland W. Alternate Cyclization Cascade Initiated by Substrate Isomer in Multiproduct Terpene Synthase from Medicago truncatula. J Org Chem 2017; 82:2855-2861. [DOI: 10.1021/acs.joc.6b02696] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abith Vattekkatte
- Department of Bioorganic
Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Stefan Garms
- Department of Bioorganic
Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic
Chemistry, Max Planck Institute for Chemical Ecology, Beutenberg Campus, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| |
Collapse
|
11
|
Engel KC, Stökl J, Schweizer R, Vogel H, Ayasse M, Ruther J, Steiger S. A hormone-related female anti-aphrodisiac signals temporary infertility and causes sexual abstinence to synchronize parental care. Nat Commun 2016; 7:11035. [PMID: 27002429 PMCID: PMC4804164 DOI: 10.1038/ncomms11035] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/12/2016] [Indexed: 12/03/2022] Open
Abstract
The high energetic demand of parental care requires parents to direct their resources towards the support of existing offspring rather than investing into the production of additional young. However, how such a resource flow is channelled appropriately is poorly understood. In this study, we provide the first comprehensive analysis of the physiological mechanisms coordinating parental and mating effort in an insect exhibiting biparental care. We show a hormone-mediated infertility in female burying beetles during the time the current offspring is needy and report that this temporary infertility is communicated via a pheromone to the male partner, where it inhibits copulation. A shared pathway of hormone and pheromone system ensures the reliability of the anti-aphrodisiac. Female infertility and male sexual abstinence provide for the concerted investment of parental resources into the existing developing young. Our study thus contributes to our deeper understanding of the mechanisms underlying adaptive parental decisions. Parents are faced with the dilemma whether to invest in their current offspring, or potential future young. Here, Engel et al. show that nutritionally-dependent young induce temporary infertility in female burying beetles, which in turn is signalled to the male partner via a hormone-related anti-aphrodisiac.
Collapse
Affiliation(s)
- Katharina C Engel
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89081 Ulm, Germany
| | - Johannes Stökl
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Rebecca Schweizer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89081 Ulm, Germany
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89081 Ulm, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, 93053 Regensburg, Germany
| | - Sandra Steiger
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, 89081 Ulm, Germany
| |
Collapse
|
12
|
Del Prete D, Millán E, Pollastro F, Chianese G, Luciano P, Collado JA, Munoz E, Appendino G, Taglialatela-Scafati O. Turmeric Sesquiterpenoids: Expeditious Resolution, Comparative Bioactivity, and a New Bicyclic Turmeronoid. JOURNAL OF NATURAL PRODUCTS 2016; 79:267-273. [PMID: 26788588 DOI: 10.1021/acs.jnatprod.5b00637] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
An expeditious strategy to resolve turmerone, the lipophilic anti-inflammatory principle of turmeric (Curcuma longa), into its individual bisabolane constituents (ar-, α-, and β-turmerones, 2-4, respectively) was developed. The comparative evaluation of these compounds against a series of anti-inflammatory targets (NF-κB, STAT3, Nrf2, HIF-1α) evidenced surprising differences, providing a possible explanation for the contrasting data on the activity of turmeric oil. Differences were also evidenced in the profile of more polar bisabolanes between the Indian and the Javanese samples used to obtain turmerone, and a novel hydroxylated bicyclobisabolane ketol (bicycloturmeronol, 8) was obtained from a Javanese sample of turmeric. Taken together, these data support the view that bisabolane sesquiterpenes represent an important taxonomic marker for turmeric and an interesting class of anti-inflammatory agents, whose strict structure-activity relationships are worth a systematic evaluation.
Collapse
Affiliation(s)
- Danilo Del Prete
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Via Bovio 6, 28100, Novara, Italy
| | - Estrella Millán
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba , Avenida Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Federica Pollastro
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Via Bovio 6, 28100, Novara, Italy
| | - Giuseppina Chianese
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Montesano 49, 80131, Napoli, Italy
| | - Paolo Luciano
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Montesano 49, 80131, Napoli, Italy
| | - Juan A Collado
- Dipartimento di Farmacia, Università di Napoli Federico II , Via Montesano 49, 80131, Napoli, Italy
| | - Eduardo Munoz
- Maimonides Biomedical Research Institute of Córdoba, Reina Sofía University Hospital, Department of Cell Biology, Physiology and Immunology, University of Córdoba , Avenida Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Giovanni Appendino
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale , Via Bovio 6, 28100, Novara, Italy
| | | |
Collapse
|
13
|
Vattekkatte A, Gatto N, Köllner TG, Degenhardt J, Gershenzon J, Boland W. Substrate geometry controls the cyclization cascade in multiproduct terpene synthases from Zea mays. Org Biomol Chem 2015; 13:6021-30. [DOI: 10.1039/c5ob00711a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multiproduct terpene synthases on incubation with (2Z) substrates showed enhanced enzymatic turnover with distinct preference for cyclic products than corresponding (2E) substrates.
Collapse
Affiliation(s)
- Abith Vattekkatte
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Nathalie Gatto
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Tobias G. Köllner
- Department of Biochemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Jörg Degenhardt
- Institute for Pharmacy
- University of Halle
- D-06120 Halle
- Germany
| | - Jonathan Gershenzon
- Department of Biochemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry
- Max Planck Institute for Chemical Ecology
- D-07745 Jena
- Germany
| |
Collapse
|