1
|
Jia Y, Zhang K. A facile and green one-step synthesis of Ag/reduced graphene oxide and its application in catalysts and SERS. RSC Adv 2025; 15:8764-8776. [PMID: 40124914 PMCID: PMC11926798 DOI: 10.1039/d5ra00001g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
Herein, we present a facile one-step approach for synthesizing Ag/reduced graphene oxide (Ag-rGO) through synchronous reduction and in situ coagulation of graphene oxide (GO) and silver nitrate (AgNO3) under a nitrogen atmosphere. In this process, GO serves as the carrier and template, AgNO3 as the precursor, and rutin functions both as the reducing and stabilizing agent. The Ag-rGO nanocomposite is synthesized using an eco-friendly method, where spherical silver nanoparticles are randomly dispersed on the surface of reduced graphene oxide (rGO). This nanocomposite exhibits excellent catalytic activity for degrading methylene blue (MB) and demonstrates good surface-enhanced Raman scattering (SERS) activity as a SERS substrate. It was found that 3 mg Ag-rGO attained a decolorization rate of 96% within merely 9 minutes, with a corresponding reaction rate constant (k) of 0.362 min-1. SERS detection of R6G also exhibited good performance in terms of detection limits in the order of 10-7 M, an enhancement factor of 3.03 × 105, and high reproducibility (the maximum intensity deviation < 7.01%). The excellent performance can be attributed to the decreased size of Ag on the nanocomposite and the larger specific surface area achieved through the in situ synchronous reduction and coagulation method. Additionally, the in situ enrichment effect and superior electron transfer efficiency further enhance the catalytic performance of the nanocomposite, and the synergistic effect of chemical enhancement and electromagnetic enhancement contribute to the good Raman enhancement effect. The effects of reaction parameters such as time and varying reactant ratios on the catalytic and SERS activities of the nanocomposite were also investigated. These findings indicate the potential ability of the Ag-rGO for practical environmental monitoring and treatment applications.
Collapse
Affiliation(s)
- Yanling Jia
- College of Advanced Materials Engineering, Jiaxing Nanhu University Jiaxing 314000 China
| | - Ke Zhang
- Beijing Institute of Technology Beijing 100081 China
- Yangtze Delta Region Academy of Beijing Institute of Technolog Jiaxing 314000 PR China
| |
Collapse
|
2
|
Mazur N, Dzhagan V, Kapush O, Isaieva O, Demydov P, Lytvyn V, Chegel V, Kukla O, Yukhymchuk V. SERS of nitro group compounds for sensing of explosives. RSC Adv 2025; 15:252-260. [PMID: 39758932 PMCID: PMC11694722 DOI: 10.1039/d4ra07309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/07/2025] Open
Abstract
Detecting small concentrations of nitro-compounds via surface-enhanced Raman spectroscopy (SERS) is reported. In particular, explosive analogues, such as 4-nitrophenol, 1-nitronaphthalene, and 5-nitroisoquinoline, and an explosive material (picric acid) are investigated and prepared by measurements using two different methods. One method involved mixing the analyte with plasmonic silver nanoparticles (Ag NPs) in a solution, followed by subsequent drop-casting of the mixture onto a silicon substrate. In the second method, the analyte solution was drop-casted onto SERS substrates formed by annealing of thin Ag films deposited over self-assembled layers of SiO2 spheres. Both approaches allowed for the SERS detection of analyte concentrations down to 10-4-10-7 M. Furthermore, the possible reasons for the different enhancements of the above analytes as well as their differences in the liquid (drop) and dried states are discussed.
Collapse
Affiliation(s)
- Nazar Mazur
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Dzhagan
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Olga Kapush
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Oksana Isaieva
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Petro Demydov
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Vitalii Lytvyn
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Chegel
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Oleksandr Kukla
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| | - Volodymyr Yukhymchuk
- V. Ye. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 41 Nauky Avenue 03028 Kyiv Ukraine
| |
Collapse
|
3
|
Cisilino AP, Di Monno CD, Tomba JP. Polymer chain transport investigated using surface enhanced Raman spectroscopy: monitoring of diffusion kinetics on meso-structured plasmonic substrates. SOFT MATTER 2024; 20:7535-7545. [PMID: 39279506 DOI: 10.1039/d4sm00552j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
We utilize the results of surface-enhanced Raman spectroscopy (SERS)-based interdiffusion experiments on meso-structured substrates to independently validate direct observations of plasmonic enhancements on these elements. The plasmonic enhancement function (PEF) is crucial for accurately determining interdiffusion coefficients using this newly proposed SERS-based methodology. The substrates feature a microscale inverted pyramid geometry, coated with nanoscale sputtered gold. Interdiffusion experiments involve the sequential deposition of polymer bilayers, with deuterated polystyrene (dPS) at the bottom and polystyrene (PS) on top, followed by annealing while periodically acquiring Raman spectra. The temporal evolution of the PS Raman signal reflects not only the interdiffusion process but also plasmonic effects, as the Raman scattering primarily arises from the substrate's plasmonic hotspots. High-resolution finite element (FE) diffusion simulations, combined with experimental SERS data, are used to infer the PEF of the substrate. The derived PEF is consistent with two hotspots located at the apex and vertices of the pyramidal cavity, extending along the edges and spreading into the molecular layer in direct contact with the substrate. This finding is tested against experiments conducted at various diffusion rates, showing excellent agreement. It corroborates recent observations by Steuwe et al. regarding the localization of hotspots on this specific substrate but contradicts other studies that attribute hotspots solely to the micron-scale geometry. This analysis establishes a solid foundation for reliably determining diffusion coefficients using this SERS-based methodology.
Collapse
Affiliation(s)
- Adrián P Cisilino
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| | - Carla D Di Monno
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| | - J Pablo Tomba
- Institute of Materials Science and Technology (INTEMA), National Research Council (CONICET), University of Mar del Plata, Mar del Plata, Argentina.
| |
Collapse
|
4
|
Padrez Y, Golubewa L. Black Silicon Surface-Enhanced Raman Spectroscopy Biosensors: Current Advances and Prospects. BIOSENSORS 2024; 14:453. [PMID: 39451667 PMCID: PMC11505860 DOI: 10.3390/bios14100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Black silicon was discovered by accident and considered an undesirable by-product of the silicon industry. A highly modified surface, consisting of pyramids, needles, holes, pillars, etc., provides high light absorption from the UV to the NIR range and gives black silicon its color-matte black. Although black silicon has already attracted some interest as a promising material for sensitive sensors, the potential of this material has not yet been fully exploited. Over the past three decades, black silicon has been actively introduced as a substrate for surface-enhanced Raman spectroscopy (SERS)-a molecule-specific vibrational spectroscopy technique-and successful proof-of-concept experiments have been conducted. This review focuses on the current progress in black silicon SERS biosensor fabrication, the recent advances in the design of the surface morphology and an analysis of the relation of surface micro-structuring and SERS efficiency and sensitivity. Much attention is paid to problems of non-invasiveness of the technique and biocompatibility of black silicon, its advantages over other SERS biosensors, cost-effectiveness and reproducibility, as well as the expansion of black silicon applications. The question of existing limitations and ways to overcome them is also addressed.
Collapse
Affiliation(s)
| | - Lena Golubewa
- Department of Molecular Compounds Physics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
5
|
de Araújo AVS, Rangel CJ, Ando RA. Multiconfigurational Calculations and Experimental Resonant Raman/SERRS of a Donor-Acceptor Thiadiazole Dye. J Phys Chem A 2023; 127:10789-10796. [PMID: 38109666 DOI: 10.1021/acs.jpca.3c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The resonant Raman (RR) and resonant SERS spectra of the thiadiazole-based dye dibromobenzo[c]-1,2,5-thiadiazole (DBTD) were studied through multiconfigurational XMS-CASPT2/CASSCF and experimental methods in solution. The results indicate that the S1 excited state of DBTD is described by π → π* with internal CT from the benzene ring to the thiadizole. In resonance conditions at 364 nm, the RR spectrum shows intensifications in modes that describe extensive geometrical changes at both the benzene ring and the thiadiazole region, indicating an internal CT character to the S1. The SERS spectra observed on gold and silver nanoparticles indicate different adsorption geometries, which leads to distinct enhancement patterns on the spectra with varying excitation energy. It evidences the major contribution of the chemical enhancement mechanism on the spectra from a metal → DBTD CT state, as confirmed by the simulated spectra. This theoretical approach proved strong in the prediction of the main features of the observed experimental resonant Raman and SERS spectra indicating a potential for adequate description of the chemical mechanism of SERS.
Collapse
Affiliation(s)
- Adalberto V Sanches de Araújo
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Butantã, 05508-000 São Paulo-SP, Brazil
| | - Clara J Rangel
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Butantã, 05508-000 São Paulo-SP, Brazil
| | - Rômulo A Ando
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, Butantã, 05508-000 São Paulo-SP, Brazil
| |
Collapse
|
6
|
Chauhan N, Saxena K, Rawal R, Yadav L, Jain U. Advances in surface-enhanced Raman spectroscopy-based sensors for detection of various biomarkers. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 184:32-41. [PMID: 37648087 DOI: 10.1016/j.pbiomolbio.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023]
Abstract
Surface enhanced Raman spectroscopy (SERS) allows the ultrasensitive detection of analytes present in traces or even single molecule levels by the generation of electromagnetic fields. It is a powerful vibrational spectroscopic method that is capable to detect traces of chemical and biological analytes. SERS technique is involved in the extremely sophisticated studies of molecules with high specificity and sensitivity. In the vicinity of nanomaterials decorated surfaces, SERS can monitor extremely low concentrations of analytes in a non-destructive manner with narrow line widths. This review article is focused on some recently developed SERS-based sensors for distinct types of analytes like disease-related biomarkers, organic and inorganic molecules, various toxins, dyes, pesticides, bacteria as well as single molecules. This study aims to enlighten the arising sensing approaches based on the SERS technique. Apart from this, some basics of the SERS technique like their mechanism, detection strategy, and involvement of some specific nanomaterials are also highlighted herein. Finally, the study concluded with some discussion of applications of SERS in various fields like food and environmental analysis.
Collapse
Affiliation(s)
- Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India
| | - Rachna Rawal
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Lalit Yadav
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida, 201313, India.
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), University of Petroleum and Energy Studies (UPES), Bidholi, 248007, Dehradun, India.
| |
Collapse
|
7
|
Matamoros-Ambrocio M, Sánchez-Mora E, Gómez-Barojas E. Surface-Enhanced Raman Scattering (SERS) Substrates Based on Ag-Nanoparticles and Ag-Nanoparticles/Poly (methyl methacrylate) Composites. Polymers (Basel) 2023; 15:2624. [PMID: 37376270 DOI: 10.3390/polym15122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
SERS substrates formed by spherical silver nanoparticles (Ag-NPs) with a 15 nm average diameter adsorbed on Si substrate at three different concentrations and Ag/PMMA composites formed by an opal of PMMA microspheres of 298 nm average diameter were synthesized. The Ag-NPs were varied at three different concentrations. We have observed from SEM micrographs, in the Ag/PMMA composites, the periodicity of the PMMA opals is slightly altered as the Ag-NP concentration is increased; as a consequence of this effect, the PBGs maxima shift toward longer wavelengths, decrease in intensity, and broaden as the Ag-NP concentration is increased in the composites. The performance of single Ag-NP and Ag/PMMA composites as SERS substrates was determined using methylene blue (MB) as a probe molecule with concentrations in the range of 0.5 µM to 2.5 µM. We found that in both single Ag-NP and Ag/PMMA composites as SERS substrates, the enhancement factor (EF) increases as the Ag-NP concentration is increased. We highlight that the SERS substrate with the highest concentration of Ag-NPs has the highest EF due to the formation of metallic clusters on the surface, which generates more "hot spots". The comparison of the EFs of the single Ag-NP with those of Ag/PMMA composite SERS substrates shows that the EFs of the former are nearly 10-fold higher than those of Ag/PMMA composites. This result is obtained probably due to the porosity of the PMMA microspheres that decreases the local electric field strength. Furthermore, PMMA exerts a shielding effect that affects the optical efficiency of Ag-NPs. Moreover, the metal-dielectric surface interaction contributes to the decrease in the EF. Other aspect to consider in our results is in relation to the difference in the EF of the Ag/PMMA composite and Ag-NP SERS substrates and is due to the existing mismatch between the frequency range of the PMMA opal stop band and the LSPR frequency range of the Ag metal nanoparticles adsorbed on the PMMA opal host matrix.
Collapse
Affiliation(s)
- Mayra Matamoros-Ambrocio
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico
| | - Enrique Sánchez-Mora
- Institute of Physics, Benemérita Universidad Autónoma de Puebla, Eco Campus Valsequillo, Independencia O 2 sur No. 50, San Pedro Zacachimalpa, P.O. Box J-48, Puebla 72960, Mexico
| | - Estela Gómez-Barojas
- Centro de Investigaciones en Dispositivos Semiconductores (CIDS-ICUAP), Benemérita Universidad Autónoma de Puebla, P.O. Box 196, Puebla 72570, Mexico
| |
Collapse
|
8
|
Benelmekki M, Kim JH. Stimulus-Responsive Ultrathin Films for Bioapplications: A Concise Review. Molecules 2023; 28:molecules28031020. [PMID: 36770701 PMCID: PMC9921802 DOI: 10.3390/molecules28031020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The term "nanosheets" has been coined recently to describe supported and free-standing "ultrathin film" materials, with thicknesses ranging from a single atomic layer to a few tens of nanometers. Owing to their physicochemical properties and their large surface area with abundant accessible active sites, nanosheets (NSHs) of inorganic materials such as Au, amorphous carbon, graphene, and boron nitride (BN) are considered ideal building blocks or scaffolds for a wide range of applications encompassing electronic and optical devices, membranes, drug delivery systems, and multimodal contrast agents, among others. A wide variety of synthetic methods are employed for the manufacturing of these NSHs, and they can be categorized into (1) top-down approaches involving exfoliation of layered materials, or (2) bottom-up approaches where crystal growth of nanocomposites takes place in a liquid or gas phase. Of note, polymer template liquid exfoliation (PTLE) methods are the most suitable as they lead to the fabrication of high-performance and stable hybrid NSHs and NSH composites with the appropriate quality, solubility, and properties. Moreover, PTLE methods allow for the production of stimulus-responsive NSHs, whose response is commonly driven by a favorable growth in the appropriate polymer chains onto one side of the NSHs, resulting in the ability of the NSHs to roll up to form nanoscrolls (NSCs), i.e., open tubular structures with tunable interlayer gaps between their walls. On the other hand, this review gives insight into the potential of the stimulus-responsive nanostructures for biosensing and controlled drug release systems, illustrating the last advances in the PTLE methods of synthesis of these nanostructures and their applications.
Collapse
Affiliation(s)
- Maria Benelmekki
- Nanomaterials Lab, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, UK
- Correspondence:
| | - Jeong-Hwan Kim
- Cardiovascular Research Institute, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
9
|
Li J, Shi J, Liang A, Jiang Z. Highly catalysis amplification of MOF Nd-loaded nanogold combined with specific aptamer SERS/RRS assay of trace glyphosate. Analyst 2022; 147:2369-2377. [PMID: 35535968 DOI: 10.1039/d2an00549b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
A neodymium metal-organic framework (MOFNd) was prepared using 1H-pyrazole-3,5-dicarboxylic acid (H3pdc) and 2-pyrazinecarboxylic acid as ligands. Through the addition of HAuCl4 as a precursor and NaBH4 as a reducing agent, a new MOFNd-loaded nanogold (AuNPs) (Au@MOFNd) nanosol with good stability and high catalytic activity was conveniently prepared via a solvothermal-reduction method and characterized. It was found that the indicator reaction of reducing HAuCl4 by Na2SO3 to generate AuNPs was slow. Au@MOFNd strongly catalyzes this nanoreaction, and the produced AuNPs exhibit a strong resonance Rayleigh scattering (RRS) peak at 370 nm, and a strong surface-enhanced Raman scattering (SERS) peak at 1617 cm-1 with the addition of the molecular probe Victoria blue 4R (VB4r). A novel SERS/RRS di-mode quantitative analysis method for glyphosate (GLY) was established by coupling this new Au@MOFNd catalytic indicator reaction with the aptamer (Apt) reaction of GLY, with SERS and RRS detection limits of 0.02 nM and 0.3 nM, respectively. It has been applied to the analysis of soil samples with a recovery rate of 93.0%-106.5% and precision of 2.2%-4.1%, and the results were satisfactory.
Collapse
Affiliation(s)
- Jingjing Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Jinling Shi
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Aihui Liang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| | - Zhiliang Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
| |
Collapse
|
10
|
Marques FC, Azevedo GC, Senna CA, Archanjo BS, Corrêa CC, Matos RC, Dos Santos DP, Andrade GFS. Structural characterization and plasmonic properties of manganese oxide-coated gold nanorods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:120988. [PMID: 35151165 DOI: 10.1016/j.saa.2022.120988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
The preparation of metal@(dielectric or semiconductor) core@shell hybrid materials have been shown promising for both SERS and SEF applications due to improved stability in the presence of ions and the adsorbate compared to non-covered metallic nanoparticles. However, fine control over the thickness of the covering layer is essential to maximize the intrinsic trade-off between the plasmonic enhancement and the chemical stability improvement. Here, the preparation of manganese dioxide ultrathin layers covered gold nanorods (AuNR@MnO2) with varying thicknesses of the MnO2 layer is reported, and the characterization and evaluation of the resulting materials as SERS and SEF substrate. The MnO2 layer over the AuNR was prepared by reducing potassium permanganate by sodium oxalate in a basic medium. The AuNR@MnO2 hybrid material was characterized by UV-Vis spectroscopy, transmission electron microscopy, X-ray powder diffraction, and cyclic voltammetry. It was studied the SEF effect of the cyanine dye IR-820 excited at 785 nm with high performance for several thicknesses of the MnO2 ultrathin film. The enhancement factor increased for thicker oxide layers. The SERS effect of the IR-820 dye excited at 633 nm showed the most significant enhancement factor for thinner layers. The seemly opposite behavior of the two plasmonic effects may be assigned to the distance dependence of the electromagnetic field generated in the AuNR, which results in decreasing SERS performance. For SEF, the thinner layers resulted in the Au nanoparticles' emission quenching, so a more significant distance was necessary to observe enhancement.
Collapse
Affiliation(s)
- Flávia C Marques
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos de Materiais (CEM), Departamento de Química, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, MG, Brazil.
| | - Gustavo C Azevedo
- Núcleo de Pesquisa em Instrumentação e Separações Analíticas (NUPIS), Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Carlos A Senna
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém-Duque de Caxias, RJ, Brazil
| | - Bráulio S Archanjo
- Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Qualidade e Tecnologia, Xerém-Duque de Caxias, RJ, Brazil
| | - Charlane C Corrêa
- Grupo de Pesquisa em Química dos Materiais Porosos (GPQMAP), Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Renato C Matos
- Núcleo de Pesquisa em Instrumentação e Separações Analíticas (NUPIS), Departamento de Química, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Diego Pereira Dos Santos
- Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gustavo F S Andrade
- Laboratório de Nanoestruturas Plasmônicas, Núcleo de Espectroscopia e Estrutura Molecular, Centro de Estudos de Materiais (CEM), Departamento de Química, Universidade Federal de Juiz de Fora, R. José Lourenço Kelmer, s/n, 36036-900 Juiz de Fora, MG, Brazil.
| |
Collapse
|
11
|
Optically active plasmonic cellulose fibers based on Au nanorods for SERS applications. Carbohydr Polym 2022; 279:119010. [PMID: 34980354 DOI: 10.1016/j.carbpol.2021.119010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022]
Abstract
Cellulose might be a promising material for surface-enhanced Raman scattering (SERS) substrates due to its wide availability, low cost, ease of fabrication, high flexibility and low optical activity. This work shows, for the first time development of the cellulose-based substrate, that owes its SERS activity to the presence of gold nanorods in its internal structure, and not only on the surface, as it is shown elsewhere, thus ensuring superior stability of the obtained material. This flexible cellulose-based substrate exhibiting plasmonic activity, provide easy and reproducible detection of different analytes via SERS technique. The substrate was prepared by introduction of gold nanorods into the cellulose fibers matrix using an eco-friendly process based on N-Methylmorpholine-N-Oxide. Au-modified cellulose fibers were used for the detection of p-Mercaptobenzoic acid and Bovine Serum Albumin by the SERS method. The obtained results show that this substrate offers large signal enhancement of 6-orders of magnitude, and high signal reproducibility with a relative standard deviation of 8.3%. Additionally, washing tests (90 °C, 20 h) showed superior stability of the as prepared plasmonic fibers, thus proving the good reusability of the substrates and the long shelf life.
Collapse
|
12
|
Gallant SMV, Whelan LD, Stewart LD, Merschrod S EF. Hierarchical Magnetic Films for High-Performance Plasmonic Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14043-14049. [PMID: 34818018 DOI: 10.1021/acs.langmuir.1c02078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hierarchically structured films comprise a growing section of the field of surface-enhanced Raman spectroscopy (SERS). Here, we report a novel, powerfully enhancing hierarchical plasmonic substrate featuring patterned multilayers of magnetic iron oxide nanospheres using an external magnetic field to create sets of radial ridges. This new substrate allows for effective analyte adsorption and significant Raman signal enhancement, thanks to the contribution of both the magnetic and plasmonic components to the electromagnetic hotspots. We demonstrate significant and reliable Raman enhancement for polycyclic aromatic hydrocarbons (PAHs), dilute but persistent environmental pollutants, in a complex and real-world matrix of produced water (PW). The substrate activity for PAHs is validated by gas chromatography-mass spectrometry analysis. An impressive signal-to-noise ratio (SNR) of several dB enables detection of the analyte below 1 ppm. This multilayer magnetic film sensor substrate shows remarkable stability and robustness suitable for real-world applications while boasting simple methods and strong potential to scale up fabrication.
Collapse
Affiliation(s)
- Stephanie M V Gallant
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Liam D Whelan
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Spectroleum Labs Inc., 85 Barnes Road, Outer Cove, NL A1K 4A3, Canada
| | - Lucas D Stewart
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
- Spectroleum Labs Inc., 85 Barnes Road, Outer Cove, NL A1K 4A3, Canada
| | - Erika F Merschrod S
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
13
|
Liang A, Zhi S, Liu Q, Li C, Jiang Z. A New Covalent Organic Framework of Dicyandiamide-Benzaldehyde Nanocatalytic Amplification SERS/RRS Aptamer Assay for Ultratrace Oxytetracycline with the Nanogold Indicator Reaction of Polyethylene Glycol 600. BIOSENSORS 2021; 11:458. [PMID: 34821674 PMCID: PMC8616007 DOI: 10.3390/bios11110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
In this paper, dicyandiamide (Dd) and p-benzaldehyde (Bd) were heated at 180 °C for 3 h to prepare a new type of stable covalent organic framework (COF) DdBd nanosol with high catalysis. It was characterized by molecular spectroscopy and electron microscopy. The study found that DdBd had a strong catalytic effect on the new indicator reaction of polyethylene glycol 600 (PEG600)-chloroauric acid to form gold nanoparticles (AuNPs). AuNPs have strong resonance Rayleigh scattering (RRS) activity, and in the presence of Victoria Blue B (VBB) molecular probes, they also have a strong surface-enhanced Raman scattering (SERS) effect. Combined with a highly selective oxytetracycline (OTC) aptamer (Apt) reaction, new dual-mode scattering SERS/RRS methods were developed to quantitatively analyze ultratrace OTC. The linear range of RRS is 3.00 × 10-3 -6.00 × 10-2 nmol/L, the detection limit is 1.1 × 10-3 nmol/L, the linear range of SERS is 3.00 × 10-3-7.00 × 10-2 nmol/L, and the detection limit is 9.0 × 10-4 nmol/L. Using the SERS method to analyze OTC in soil samples, the relative standard deviation is 1.35-4.78%, and the recovery rate is 94.3-104.9%.
Collapse
Affiliation(s)
- Aihui Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Shengfu Zhi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Qiwen Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Chongning Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China; (A.L.); (S.Z.); (Q.L.); (C.L.)
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin 541004, China
| |
Collapse
|
14
|
Bilgin B, Yanik C, Torun H, Onbasli MC. Genetic Algorithm-Driven Surface-Enhanced Raman Spectroscopy Substrate Optimization. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2905. [PMID: 34835670 PMCID: PMC8618775 DOI: 10.3390/nano11112905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive and molecule-specific detection technique that uses surface plasmon resonances to enhance Raman scattering from analytes. In SERS system design, the substrates must have minimal or no background at the incident laser wavelength and large Raman signal enhancement via plasmonic confinement and grating modes over large areas (i.e., squared millimeters). These requirements impose many competing design constraints that make exhaustive parametric computational optimization of SERS substrates prohibitively time consuming. Here, we demonstrate a genetic-algorithm (GA)-based optimization method for SERS substrates to achieve strong electric field localization over wide areas for reconfigurable and programmable photonic SERS sensors. We analyzed the GA parameters and tuned them for SERS substrate optimization in detail. We experimentally validated the model results by fabricating the predicted nanostructures using electron beam lithography. The experimental Raman spectrum signal enhancements of the optimized SERS substrates validated the model predictions and enabled the generation of a detailed Raman profile of methylene blue fluorescence dye. The GA and its optimization shown here could pave the way for photonic chips and components with arbitrary design constraints, wavelength bands, and performance targets.
Collapse
Affiliation(s)
- Buse Bilgin
- Electrical and Electrical Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
| | - Cenk Yanik
- Sabanci University Nanotechnology Research and Application Center, SUNUM, Tuzla, Istanbul 34956, Turkey;
| | - Hulya Torun
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Bio-Medical Sciences and Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey
| | - Mehmet Cengiz Onbasli
- Electrical and Electrical Engineering, Graduate School of Sciences and Engineering, Koç University, Sarıyer, Istanbul 34450, Turkey;
- Koç University Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul 34450, Turkey;
| |
Collapse
|
15
|
Wang W, Dong RL, Gu D, He JA, Yi P, Kong SK, Ho HP, Loo J, Wang W, Wang Q. Antibody-free rapid diagnosis of malaria in whole blood with surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. Adv Med Sci 2020; 65:86-92. [PMID: 31923771 DOI: 10.1016/j.advms.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study is to establish a rapid antibody-free diagnostic method of malaria infection with Plasmodium falciparum and Plasmodium vivax in whole blood with Surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. MATERIALS AND METHODS The blood samples collected from patients were first lysed and centrifuged before dropping on the gold nano-structure (AuNS) substrate. Malaria diagnosis was performed by detecting Raman peaks from Surface Enhanced Raman Spectroscopy (SERS) with a 532 nm laser excitation. RESULTS Raman peaks at 1370 cm-1, 1570 cm-1, and 1627 cm-1, known to have high specificity against interference from other mosquito-borne diseases such as Dengue and West Nile virus infection, were selected as the fingerprint markers associated with P. falciparum and P. vivax infection. The limit of detection was 10-5 dilution, corresponding to the concentration of parasitized blood cells of 100/mL. A total number of 25 clinical samples, including 5 from patients with P. falciparum infection, 10 with P. vivax infection and 10 from healthy volunteers, were evaluated to support its clinical practical use. The whole assay on malaria detection took 30 min to complete. CONCLUSIONS While the samples analyzed in this work have strong clinical relevance, we have clearly demonstrated that sensitive malaria detection using AuNS-SERS is a practical direction for rapid in-field diagnosis of malaria infection.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rui-Ling Dong
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian-An He
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Pin Yi
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jacky Loo
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wen Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Fan M, Andrade GFS, Brolo AG. A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal Chim Acta 2019; 1097:1-29. [PMID: 31910948 DOI: 10.1016/j.aca.2019.11.049] [Citation(s) in RCA: 236] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
This review is focused on recent developments of surface-enhanced Raman scattering (SERS) applications in Analytical Chemistry. The work covers advances in the fabrication methods of SERS substrates, including nanoparticles immobilization techniques and advanced nanopatterning with metallic features. Recent insights in quantitative and sampling methods for SERS implementation and the development of new SERS-based approaches for both qualitative and quantitative analysis are discussed. The advent of methods for pre-concentration and new approaches for single-molecule SERS quantification, such as the digital SERS procedure, has provided additional improvements in the analytical figures-of-merit for analysis and assays based on SERS. The use of metal nanostructures as SERS detection elements integrated in devices, such as microfluidic systems and optical fibers, provided new tools for SERS applications that expand beyond the laboratory environment, bringing new opportunities for real-time field tests and process monitoring based on SERS. Finally, selected examples of SERS applications in analytical and bioanalytical chemistry are discussed. The breadth of this work reflects the vast diversity of subjects and approaches that are inherent to the SERS field. The state of the field indicates the potential for a variety of new SERS-based methods and technologies that can be routinely applied in analytical laboratories.
Collapse
Affiliation(s)
- Meikun Fan
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Gustavo F S Andrade
- Centro de Estudos de Materiais, Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário s/n, CEP 36036-900, Juiz de Fora, Brazil
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, PO Box 3055, Victoria, BC, V8W 3V6, Canada; Centre for Advanced Materials and Related Technology, University of Victoria, V8W 2Y2, Canada.
| |
Collapse
|
17
|
Rice D, Mouras R, Gleeson M, Liu N, Tofail SAM, Soulimane T, Silien C. APTES Duality and Nanopore Seed Regulation in Homogeneous and Nanoscale-Controlled Reduction of Ag Shell on SiO 2 Microparticle for Quantifiable Single Particle SERS. ACS OMEGA 2018; 3:13028-13035. [PMID: 31458023 PMCID: PMC6644844 DOI: 10.1021/acsomega.8b01247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 05/10/2023]
Abstract
Noble-metal nanoparticles size and packing density are critical for sensitive surface-enhanced Raman scattering (SERS) and controlled preparation of such films required to achieve reproducibility. Provided that they are made reliable, Ag shell on SiO2 microscopic particles (Ag/SiO2) are promising candidates for lab-on-a-bead analytical measurements of low analyte concentration in liquid specimen. Here, we selected nanoporous silica microparticles as a substrate for reduction of AgNO3 with 3-aminopropyltriethoxysilane (APTES). In a single preparation step, homogeneous and continuous films of Ag nanoparticles are formed on SiO2 surfaces with equimolar concentration of APTES and silver nitrate in ethanol. It is discussed that amine and silane moieties in APTES contribute first to an efficient reduction on the silica and second to capping the Ag nanoparticles. The high density and homogeneity of nanoparticle nucleation is further regulated by the nanoporosity of the silica. The Ag/SiO2 microparticles were tested for SERS using self-assembled 4-aminothiophenol monolayers, and an enhancement factor of ca. 2 × 106 is measured. Importantly, the SERS relative standard deviation is 36% when a single microparticle is considered and drops to 11% when sets of 10 microparticles are considered. As prepared, the microparticles are highly suitable for state-of-the-art quantitative lab-on-a-bead interrogation of specimens.
Collapse
Affiliation(s)
- Daragh Rice
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Rabah Mouras
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Matthew Gleeson
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ning Liu
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Syed A. M. Tofail
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Tewfik Soulimane
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Christophe Silien
- Department
of Physics & Bernal Institute and Department of Chemical Sciences
& Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- E-mail:
| |
Collapse
|
18
|
Joseph MM, Narayanan N, Nair JB, Karunakaran V, Ramya AN, Sujai PT, Saranya G, Arya JS, Vijayan VM, Maiti KK. Exploring the margins of SERS in practical domain: An emerging diagnostic modality for modern biomedical applications. Biomaterials 2018; 181:140-181. [PMID: 30081304 DOI: 10.1016/j.biomaterials.2018.07.045] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Excellent multiplexing capability, molecular specificity, high sensitivity and the potential of resolving complex molecular level biological compositions augmented the diagnostic modality of surface-enhanced Raman scattering (SERS) in biology and medicine. While maintaining all the merits of classical Raman spectroscopy, SERS provides a more sensitive and selective detection and quantification platform. Non-invasive, chemically specific and spatially resolved analysis facilitates the exploration of SERS-based nano probes in diagnostic and theranostic applications with improved clinical outcomes compared to the currently available so called state-of-art technologies. Adequate knowledge on the mechanism and properties of SERS based nano probes are inevitable in utilizing the full potential of this modality for biomedical applications. The safety and efficiency of metal nanoparticles and Raman reporters have to be critically evaluated for the successful translation of SERS in to clinics. In this context, the present review attempts to give a comprehensive overview about the selected medical, biomedical and allied applications of SERS while highlighting recent and relevant outcomes ranging from simple detection platforms to complicated clinical applications.
Collapse
Affiliation(s)
- Manu M Joseph
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Nisha Narayanan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jyothi B Nair
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Varsha Karunakaran
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Adukkadan N Ramya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Palasseri T Sujai
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Giridharan Saranya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Jayadev S Arya
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Vineeth M Vijayan
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Pappanamcode, Thiruvananthapuram, Kerala 695019, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Pappanamcode, Thiruvananthapuram, Kerala 695019, India.
| |
Collapse
|
19
|
Hutter T, Elliott SR, Mahajan S. Optical fibre-tip probes for SERS: numerical study for design considerations. OPTICS EXPRESS 2018; 26:15539-15550. [PMID: 30114813 DOI: 10.1364/oe.26.015539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/24/2018] [Indexed: 05/18/2023]
Abstract
Enhancement of sub-wavelength optical fields using sub-micron plasmonic probes has found many applications in chemical, material, biological and medical sciences. The enhancement is via localised surface-plasmon resonance (LSPR) which enables the highly sensitive vibrational-spectroscopy technique of surface-enhanced Raman scattering (SERS). Combining SERS with optical fibres can allow the monitoring of biochemical reactions in situ with high resolution. Here, we study the electromagnetic-field enhancement of a tapered optical fibre-tip coated with gold nanoparticles (AuNPs) using finite-element simulations. We investigate the electric-field enhancement associated with metallic NPs and study the effect of parameters such as tip-aperture radius, cone angle, nanoparticle size and gaps between them. Our study provides an understanding of the design and application of metal-nanoparticle-coated optical-fibre-tip probes for SERS. The approach of using fibre-coupled delivery adds flexibility and simplifies the system requirements in SERS, making it suitable for cellular imaging and mapping bio-interfaces.
Collapse
|
20
|
Kim M, Ko SM, Kim JM, Son J, Lee C, Rhim WK, Nam JM. Dealloyed Intra-Nanogap Particles with Highly Robust, Quantifiable Surface-Enhanced Raman Scattering Signals for Biosensing and Bioimaging Applications. ACS CENTRAL SCIENCE 2018; 4:277-287. [PMID: 29532028 PMCID: PMC5833005 DOI: 10.1021/acscentsci.7b00584] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 05/18/2023]
Abstract
Uniformly controlling a large number of metal nanostructures with a plasmonically enhanced signal to generate quantitative optical signals and the widespread use of these structures for surface-enhanced Raman scattering (SERS)-based biosensing and bioimaging applications are of paramount importance but are extremely challenging. Here, we report a highly controllable, facile selective-interdiffusive dealloying chemistry for synthesizing the dealloyed intra-nanogap particles (DIPs) with a ∼2 nm intragap in a high yield (∼95%) without the need for an interlayer. The SERS signals from DIPs are highly quantitative and polarization-independent with polarized laser sources. Remarkably, all the analyzed particles displayed the SERS enhancement factors (EFs) of ≥1.1 × 108 with a very narrow distribution of EFs. Finally, we show that DIPs can be used as ultrasensitive SERS-based DNA detection probes for detecting 10 aM to 1 pM target concentrations and highly robust, quantitative real-time cell imaging probes for long-term imaging with low laser power and short exposure time.
Collapse
Affiliation(s)
- Minho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Sung Min Ko
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Won-Kyu Rhim
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South
Korea
| |
Collapse
|
21
|
Reyer A, Prinz A, Giancristofaro S, Schneider J, Bertoldo Menezes D, Zickler G, Bourret GR, Musso ME. Investigation of Mass-Produced Substrates for Reproducible Surface-Enhanced Raman Scattering Measurements over Large Areas. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25445-25454. [PMID: 28737921 DOI: 10.1021/acsami.7b06002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a versatile spectroscopic technique that suffers from reproducibility issues and usually requires complex substrate fabrication processes. In this article, we report the use of a simple mass production technology based on Blu-ray disc manufacturing technology to prepare large area SERS substrates (∼40 mm2) with a high degree of homogeneity (±7% variation in Raman signal) and enhancement factor of ∼6 × 106. An industrial high throughput injection molding process was used to generate periodic microstructured polymer substrates coated with a thin Ag film. A short chemical etching step produces a highly dense layer of Ag nanoparticles at the polymer surface, which leads to a large and reproducible Raman signal. Finite difference time domain simulations and cathodoluminescence mapping experiments suggest that the sample microstructure is responsible for the generation of SERS active nanostructures around the microwells. Comparison with commercial SERS substrates demonstrates the validity of our method to prepare cost-efficient, reliable, and sensitive SERS substrates.
Collapse
Affiliation(s)
- Andreas Reyer
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Adrian Prinz
- STRATEC Consumables GmbH, Sonystrasse 20, 5081 Anif/Salzburg, Austria
| | | | - Johannes Schneider
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Durval Bertoldo Menezes
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
- Federal Institute of Triângulo Mineiro, Doutor Randolfo Borges Júnior , 2900, Univerdecidade, 38064-300 Uberaba, Minas Gerias, Brazil
| | - Gregor Zickler
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Gilles R Bourret
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| | - Maurizio E Musso
- Department of Chemistry and Physics of Materials, University of Salzburg , Jakob-Haringer-Strasse 2a, 5020 Salzburg, Austria
| |
Collapse
|
22
|
Kim W, Lee JC, Lee GJ, Park HK, Lee A, Choi S. Low-Cost Label-Free Biosensing Bimetallic Cellulose Strip with SILAR-Synthesized Silver Core–Gold Shell Nanoparticle Structures. Anal Chem 2017; 89:6448-6454. [DOI: 10.1021/acs.analchem.7b00300] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wansun Kim
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Chul Lee
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Gi-Ja Lee
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hun-Kuk Park
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Anbok Lee
- Department
of Surgery, College of Medicine, Inje University, Busan 47392, Republic of Korea
| | - Samjin Choi
- Department
of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 2017; 91:664-672. [DOI: 10.1016/j.bios.2017.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
|
24
|
Surface Enhanced Raman Scattering Substrates Made by Oblique Angle Deposition: Methods and Applications. COATINGS 2017. [DOI: 10.3390/coatings7020026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Guicheteau JA, Tripathi A, Emmons ED, Christesen SD, Fountain A. Reassessing SERS enhancement factors: using thermodynamics to drive substrate design. Faraday Discuss 2017; 205:547-560. [DOI: 10.1039/c7fd00141j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past 40 years fundamental and application research into Surface-Enhanced Raman Scattering (SERS) has been explored by academia, industry, and government laboratories. To date however, SERS has achieved little commercial success as an analytical technique. Researchers are tackling a variety of paths to help break through the commercial barrier by addressing the reproducibility in both the SERS substrates and SERS signals as well as continuing to explore the underlying mechanisms. To this end, investigators use a variety of methodologies, typically studying strongly binding analytes such as aromatic thiols and azarenes, and report SERS enhancement factor calculations. However a drawback of the traditional SERS enhancement factor calculation is that it does not yield enough information to understand substrate reproducibility, application potential with another analyte, or the driving factors behind the molecule–metal interaction. Our work at the US Army Edgewood Chemical Biological Center has focused on these questions and we have shown that thermodynamic principles play a key role in the SERS response and are an essential factor in future designs of substrates and applications. This work will discuss the advantages and disadvantages of various experimental techniques used to report SERS enhancement with planar SERS substrates and present our alternative SERS enhancement value. We will report on three types of analysis scenarios that all yield different information concerning the effectiveness of the SERS substrate, practical application of the substrate, and finally the thermodynamic properties of the substrate. We believe that through this work a greater understanding for designing substrates will be achieved, one that is based on both thermodynamic and plasmonic properties as opposed to just plasmonic properties. This new understanding and potential change in substrate design will enable more applications for SERS based methodologies including targeting molecules that are traditionally not easily detected with SERS due to the perceived weak molecule–metal interaction of substrates.
Collapse
Affiliation(s)
- J. A. Guicheteau
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - A. Tripathi
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - E. D. Emmons
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | - S. D. Christesen
- USA RDECOM Edgewood Chemical Biological Center
- Aberdeen Proving Ground
- USA
| | | |
Collapse
|
26
|
Cao J, Zhao D, Mao Q. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed AgNPs on the silanized fiber taper. Analyst 2017; 142:596-602. [DOI: 10.1039/c6an02414a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tapered fiber probe with good SERS performance is presented by silanization of the optical fiber and subsequent hydrothermal growth process.
Collapse
Affiliation(s)
- Jie Cao
- Anhui Provincial Key Lab of Photonics Devices and Materials
- Anhui Institute of Optics and Fine Mechanics
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Di Zhao
- Anhui Provincial Key Lab of Photonics Devices and Materials
- Anhui Institute of Optics and Fine Mechanics
- Chinese Academy of Sciences
- Hefei 230031
- China
| | - Qinghe Mao
- Anhui Provincial Key Lab of Photonics Devices and Materials
- Anhui Institute of Optics and Fine Mechanics
- Chinese Academy of Sciences
- Hefei 230031
- China
| |
Collapse
|
27
|
Kim JH, Benelmekki M. Interfacial Transformation of an Amorphous Carbon Nanofilm upon Fe@Ag@Si Nanoparticle Landing and its Colloidal Nanoscrolls: Enhanced Nanocompositing-Based Performance for Bioapplications. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33121-33130. [PMID: 27934129 DOI: 10.1021/acsami.6b12993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a novel method for generating magneto-plasmonic carbon nanofilms and nanoscrolls using a combination of two gas-phase synthetic techniques. Ternary Fe@Ag@Si "onion-like" nanoparticles (NPs) are produced by a magnetron sputtering inert gas condensation source and are in situ landed onto the surface of carbon nanofilms, which were previously deposited by a DC arc discharge technique. Subsequently, a polyethylenimine-mediated chemical exfoliation process is performed to obtain carbon nanoscrolls (CNS) with embedded NPs (CNS-NPs). Of note, the carbon nanofilms undergo an interfacial transition upon addition of NPs and become rich in the sp2 phase. This transformation endows and enhances multiple functions, such as thermal conductivity and the plasmonic properties of the nanocomposites. The obtained two-dimentional (2D) nanocomposites not only exhibit a highly efficient surface-enhanced Raman scattering property, allowing sensitive detection of malachite green isothiocyanate (MGIT) and adenosine-triphosphate (ATP) molecules at concentrations as low as 1 × 10-10 M, but also show enhanced near-infrared-responsive photothermal activity when forming stable colloidal 1D CNS-NPs. In addition, the CNS-NPs present an enhanced single- and two-photon fluorescence in comparison with pristine CNS and NPs. These results make them suitable for the rational fabrication of "all-in-one" multifunctional nanocomposites with tubular structures toward a wide range of biomedical solutions.
Collapse
Affiliation(s)
- Jeong-Hwan Kim
- Cardiovascular Research Institute, Yokohama City University, Graduate School of Medicine , Yokohama 236-0004, Japan
- Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Maria Benelmekki
- Okinawa Institute of Science and Technology Graduate University , 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
- Norwegian University of Science and Technology , Department of Materials Science Engineering, NO-7491 Trondheim, Norway
| |
Collapse
|
28
|
Kalaivani G, Sivanesan A, Kannan A, Sevvel R. Generating monomeric 5-coordinated microperoxidase-11 using carboxylic acid functionalized silver nanoparticles: A surface-enhanced resonance Raman scattering analysis. Colloids Surf B Biointerfaces 2016; 146:722-30. [DOI: 10.1016/j.colsurfb.2016.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 07/03/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
|
29
|
Agoston R, Izake EL, Sivanesan A, Lott WB, Sillence M, Steel R. Rapid isolation and detection of erythropoietin in blood plasma by magnetic core gold nanoparticles and portable Raman spectroscopy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:633-641. [PMID: 26656628 DOI: 10.1016/j.nano.2015.11.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 09/24/2015] [Accepted: 11/07/2015] [Indexed: 11/29/2022]
Abstract
UNLABELLED Isolating, purifying, and identifying proteins in complex biological matrices are often difficult, time consuming, and unreliable. Herein we describe a rapid screening technique for proteins in biological matrices that combines selective protein isolation with direct surface enhanced Raman spectroscopy (SERS) detection. Magnetic core gold nanoparticles were synthesized, characterized, and subsequently functionalized with recombinant human erythropoietin (rHuEPO)-specific antibody. The functionalized nanoparticles were used to capture rHuEPO from horse blood plasma within 15 min. The selective binding between the protein and the functionalized nanoparticles was monitored by SERS. The purified protein was then released from the nanoparticles' surface and directly spectroscopically identified on a commercial nanopillar SERS substrate. ELISA independently confirmed the SERS identification and quantified the released rHuEPO. Finally, the direct SERS detection of the extracted protein was successfully demonstrated for in-field screening by a handheld Raman spectrometer within 1 min sample measurement time. FROM THE CLINICAL EDITOR The rapid detection of recombinant human erythropoietin (rHuEPO) is important in competitive sports to screen for doping offences. In this article, the authors reported their technique of direct surface enhanced Raman spectroscopy (SERS) detection using magnetic core gold nanoparticles functionalized with recombinant human erythropoietin-specific antibody. The findings should open a new way for future detection of other proteins.
Collapse
Affiliation(s)
- Roland Agoston
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Emad L Izake
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia.
| | - Arumugam Sivanesan
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia.
| | - William B Lott
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Martin Sillence
- Nanotechnology and Molecular Sciences Discipline, Faculty of Science and Engineering, Queensland University of Technology, Brisbane, Australia
| | - Rohan Steel
- Biological Research Unit, Racing Analytical Services Ltd., Melbourne, VIC, Australia
| |
Collapse
|
30
|
Neves TBV, Landi SM, Sena LA, Archanjo BS, Andrade GFS. Silicon dioxide covered Au and Ag nanoparticles for shell-isolated nanoparticle enhanced spectroscopies in the near-infrared. RSC Adv 2015. [DOI: 10.1039/c5ra08969g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SHINERS and SHINEF from Ag@SiO2and Au@SiO2excited in the near-infrared are presented, with high enhancement factors, together to TEM/EDX evidences of silica coverage over Au and Au nanoparticles.
Collapse
Affiliation(s)
- Tatiana B. V. Neves
- Laboratório de Nanoestruturas Plasmônicas
- Núcleo de Espectroscopia e Estrutura Molecular
- Departamento de Química
- Universidade Federal de Juiz de Fora
- Juiz de Fora
| | - Sandra M. Landi
- Divisão de Metrologia de Materiais
- Instituto Nacional de Metrologia
- Qualidade e Tecnologia (INMETRO)
- Duque de Caxias
- Brazil
| | - Lídia A. Sena
- Divisão de Metrologia de Materiais
- Instituto Nacional de Metrologia
- Qualidade e Tecnologia (INMETRO)
- Duque de Caxias
- Brazil
| | - Bráulio S. Archanjo
- Divisão de Metrologia de Materiais
- Instituto Nacional de Metrologia
- Qualidade e Tecnologia (INMETRO)
- Duque de Caxias
- Brazil
| | - Gustavo F. S. Andrade
- Laboratório de Nanoestruturas Plasmônicas
- Núcleo de Espectroscopia e Estrutura Molecular
- Departamento de Química
- Universidade Federal de Juiz de Fora
- Juiz de Fora
| |
Collapse
|