1
|
Pirojsirikul T, Lee VS, Nimmanpipug P. Unraveling Bacterial Single-Stranded Sequence Specificities: Insights from Molecular Dynamics and MMPBSA Analysis of Oligonucleotide Probes. Mol Biotechnol 2024; 66:582-591. [PMID: 38374320 DOI: 10.1007/s12033-024-01082-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/10/2024] [Indexed: 02/21/2024]
Abstract
We utilized molecular dynamics (MD) simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) free energy calculations to investigate the specificity of two oligonucleotide probes, namely probe B and probe D, in detecting single-stranded DNA (ssDNA) within three bacteria families: Enterobacteriaceae, Pasteurellaceae, and Vibrionaceae. Due to the limited understanding of molecular mechanisms in the previous research, we have extended the discussion to focus specifically on investigating the binding process of bacteria-probe DNA duplexes, with an emphasis on analyzing the binding free energy. The role of electrostatic contributions in the specificity between the oligonucleotide probes and the bacterial ssDNAs was investigated and found to be crucial. Our calculations yielded results that were highly consistent with the experimental data. Through our study, we have successfully exhibited the benefits of utilizing in-silico approaches as a powerful virtual-screening tool, particularly in research areas that demand a thorough comprehension of molecular interactions.
Collapse
Affiliation(s)
- Teerapong Pirojsirikul
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand.
| | - Vannajan Sanghiran Lee
- Department of Chemistry, Center of Theoretical and Computational Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| |
Collapse
|
2
|
K G, Verma A, Mondal P, Mandal SS. Molecular contacts in the Cren7-DNA complex: A quantitative investigation for electrostatic interaction. Biophys J 2023; 122:1701-1719. [PMID: 37016575 PMCID: PMC10183371 DOI: 10.1016/j.bpj.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/15/2023] [Accepted: 03/29/2023] [Indexed: 04/06/2023] Open
Abstract
The molecular association of proteins with nucleic acids leading to the formation of macromolecular complexes is a crucial step in several biological processes. Stabilization of these complexes involves electrostatic interactions between ion pairs (salt bridges) of nucleic acid phosphates and protein side chains. The crenarchaeal DNA binding protein, Cren7 plays a key role in the regulation of chromosomal structure and gene expression in eukaryotic extremophiles. However, the molecular contacts that occur at the interface of protein-DNA complexes and their contribution to the electrostatic interaction have not been fully elucidated. This work presents a quantitative description of the mechanism of the electrostatic interaction between the protein and DNA. We have identified a few residues located at the Cren7-DNA interface that could potentially be responsible for the interaction. Structural studies using circular dichroism indicate mutation of these surface residues minimally affect their structure and stability. The binding affinity of these mutants for the DNA duplexes was examined from reverse titration, biolayer interferometry, and fluorescence anisotropy measurements with calf thymus DNA, polynucleotides, and small DNA oligonucleotides. The resulting kinetic parameters highlight a difference in electrostatic interactions potentials exhibited by residues positioned at different locations of the protein-DNA interface. Computational studies attribute this difference to their surrounding atmosphere and energetic stabilization parameters. The biophysical approach described here can be extended for other proteins that play a crucial role in DNA bending and compaction, to properly evaluate the role of specific residues on the mechanisms of DNA binding.
Collapse
Affiliation(s)
- Geethika K
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Arunima Verma
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Padmabati Mondal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India.
| | - Soumit S Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India.
| |
Collapse
|
3
|
Luo S, Xiong D, Zhao X, Duan L. An Attempt of Seeking Favorable Binding Free Energy Prediction Schemes Considering the Entropic Effect on Fis-DNA Binding. J Phys Chem B 2023; 127:1312-1324. [PMID: 36735878 DOI: 10.1021/acs.jpcb.2c07811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein-DNA binding mechanisms in a complex manner are essential for understanding many biological processes. Over the past decades, numerous experiments and calculations have analyzed the specificity of protein-DNA binding. However, the accuracy of binding free energy prediction for multi-base DNA systems still needs to be improved. Fis is a DNA-binding protein that regulates various transcription and recombination reactions. In the present work, we tested several methods of predict binding free energy based on this system to find a favorable prediction scheme and explore the binding mechanism of Fis protein and DNA. Two solvent models (explicit and implicit solvent models) were chosen for the dynamics process, and the predicted binding free energy was more accurate under the explicit solvent model. When different Poisson-Boltzmann/Generalized Born (PB/GB) models were tested for DNA force fields (BSC1 and OL15), it was found that the binding free energy predicted by the selected OL15 force field performed better and the correlation between predicted and experimental values was improved with the increasing interior dielectric constant (Dk). Finally, using Dk = 8, the GBOBC1 model combined with interaction entropy (IE), which was calculated for entropic contribution (GBOBC1_IE_8), was screened out for the binding free energy prediction and analysis of the Fis-DNA system, and the validity of the method was further verified by testing the Cren7-DNA system. By performing conformational analysis of the minor groove, it was found that mutation of the DNA central sequence A/T to C/G and deletion of the guanine 2-amino group would change the minor groove width and thus affect the formation of the major groove, altering the interaction and atomic contact between the protein and the major groove, thus changing the binding affinity of Fis and DNA. Hopefully, the series of tests in this work can shed some light on the related studies of protein and DNA systems.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
4
|
Bie LH, Fei JW, Gao J. Molecular mechanism of methyl-dependent and spatial-specific DNA recognition of c-Jun homodimer. J Mol Model 2021; 27:227. [PMID: 34264385 DOI: 10.1007/s00894-021-04840-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
DNA methylation is important in regulation of gene expression and normal development because it alters the interplay between protein and DNA. Experiments have shown that a single 5-methylcytosine at different CpG sites (mCpG) might have different effects on specific recognition, but the atomistic origin and dynamic details are largely unclear. In this work, we investigated the mechanism of monomethylation at different CpG sites in the cognate motif and the cooperativity of full methylation. By constructing four models of c-Jun/Jun protein binding to the 5[Formula: see text]-XGAGTCA-3[Formula: see text] (X represents C or methylated C) motif, we characterized the dynamics of the contact interface using the all-atom molecular dynamics method. Free energy analysis of MM/GBSA suggests that regardless of whether the C12pG13 site of the bottom strand is methylated, the effects from mC25 of the top strand are dominant and can moderately enhance the binding by [Formula: see text] 31 kcal/mol, whereas mC12 showed a relatively small contribution, in agreement with the experimental data. Remarkably, we found that this spatial-specific influence was induced by different regulatory rules. The influence of the mC25 site is mainly mediated by steric hindrance. The additional methyl group leads to the conformational changes in nearby residues and triggers an obvious structural bending in the protein, which results in the formation of a new T-Asn-C triad that enhances the specific recognition of TCA half-sites. The substitution of the methyl group at the mC12 site of the bottom strand breaks the original H-bonds directly. Such changes in electrostatic interactions also lead to the remote allosteric effects of protein by multifaceted interactions but have negligible contributions to binding. Although these two influence modes are different, they can both fine-tune the local environment, which might produce remote allosteric effects through protein-protein interactions. Further analysis reveals that the discrepancies in these two modes are primarily due to their location. Moreover, when both sites are methylated, the major determinant of binding specificity depends on the context and the location of the methylation site, which is the result of crosstalk and cooperativity.
Collapse
Affiliation(s)
- Li-Hua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jun-Wen Fei
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Laursen SP, Bowerman S, Luger K. Archaea: The Final Frontier of Chromatin. J Mol Biol 2020; 433:166791. [PMID: 33383035 PMCID: PMC7987875 DOI: 10.1016/j.jmb.2020.166791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The three domains of life employ various strategies to organize their genomes. Archaea utilize features similar to those found in both eukaryotic and bacterial chromatin to organize their DNA. In this review, we discuss the current state of research regarding the structure-function relationships of several archaeal chromatin proteins (histones, Alba, Cren7, and Sul7d). We address individual structures as well as inferred models for higher-order chromatin formation. Each protein introduces a unique phenotype to chromatin organization, and these structures are put into the context of in vivo and in vitro data. We close by discussing the present gaps in knowledge that are preventing further studies of the organization of archaeal chromatin, on both the organismal and domain level.
Collapse
Affiliation(s)
- Shawn P Laursen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80303, United States
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, United States; Howard Hughes Medical Institute, Chevy Chase, MD 20815, United States.
| |
Collapse
|
6
|
Zsidó BZ, Hetényi C. Molecular Structure, Binding Affinity, and Biological Activity in the Epigenome. Int J Mol Sci 2020; 21:ijms21114134. [PMID: 32531926 PMCID: PMC7311975 DOI: 10.3390/ijms21114134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Development of valid structure–activity relationships (SARs) is a key to the elucidation of pathomechanisms of epigenetic diseases and the development of efficient, new drugs. The present review is based on selected methodologies and applications supplying molecular structure, binding affinity and biological activity data for the development of new SARs. An emphasis is placed on emerging trends and permanent challenges of new discoveries of SARs in the context of proteins as epigenetic drug targets. The review gives a brief overview and classification of the molecular background of epigenetic changes, and surveys both experimental and theoretical approaches in the field. Besides the results of sophisticated, cutting edge techniques such as cryo-electron microscopy, protein crystallography, and isothermal titration calorimetry, examples of frequently used assays and fast screening techniques are also selected. The review features how different experimental methods and theoretical approaches complement each other and result in valid SARs of the epigenome.
Collapse
|
7
|
Donde R, Gupta MK, Gouda G, Kumar J, Vadde R, Sahoo KK, Dash SK, Behera L. Computational characterization of structural and functional roles of DREB1A, DREB1B and DREB1C in enhancing cold tolerance in rice plant. Amino Acids 2019; 51:839-853. [PMID: 30900088 DOI: 10.1007/s00726-019-02727-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/16/2019] [Indexed: 12/20/2022]
|
8
|
Sun YZ, Chen XB, Wang RR, Li WY, Ma Y. Exploring the effect of N308D mutation on protein tyrosine phosphatase-2 cause gain-of-function activity by a molecular dynamics study. J Cell Biochem 2018; 120:5949-5961. [PMID: 30304563 DOI: 10.1002/jcb.27883] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/19/2018] [Indexed: 01/27/2023]
Abstract
One of the most common protein tyrosine phosphatase-2 (SHP2) mutations in Noonan syndrome is the N308D mutation, and it increases the activity of the protein. However, the molecular basis of the activation of N308D mutation on SHP2 conformations is poorly understood. Here, molecular dynamic simulations were performed on SHP2 and SHP2-N308D to explore the effect of N308D mutation on SHP2 cause gain of function activity, respectively. The principal component analysis, dynamic cross-correlation map, secondary structure analysis, residue interaction networks, and solvent accessible surface area analysis suggested that the N308D mutation distorted the residues interactions network between the allosteric site (residue Gly244-Gly246) and C-SH2 domain, including the hydrogen bond formation and the binding energy. Meanwhile, the activity of catalytic site (residue Gly503-Val505) located in the Q-loop in mutant increased due to this region's high fluctuations. Therefore, the substrate had more chances to access to the catalytic activity site of the precision time protocol domain of SHP2-N308D, which was easy to be exposed. In addition, we had speculated that the Lys244 located in the allosteric site was the key residue which lead to the protein conformation changes. Consequently, overall calculations presented in this study ultimately provide a useful understanding of the increased activity of SHP2 caused by the N308D mutation.
Collapse
Affiliation(s)
- Ying-Zhan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiu-Bo Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China.,Eye Hospital, Tianjin Medical University, School of Optometry and Ophthalmology, Tianjin Medical University, Tianjin, China
| | - Rui-Rui Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei-Ya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Bie L, Du L, Yuan Q, Gao J. How a single 5-methylation of cytosine regulates the recognition of C/EBPβ transcription factor: a molecular dynamic simulation study. J Mol Model 2018; 24:159. [PMID: 29892907 DOI: 10.1007/s00894-018-3678-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
CpG methylation can regulate gene expression by altering the specific binding of protein and DNA. In order to understand how a single 5mC regulates protein-DNA interactions, we have compared the structures and dynamics of CEBP/βprotein-DNA complexes before and after methylation, and the results indicate that even a single 5mC can regulate protein-DNA recognition by steric-hindrance effect of methyl group and changing the hydrogen bond interactions. The interactions between the methyl group, mCpG motif, and the conserved residue arginine make the protein read out the variation of local environment, which further enhances the specific recognition and affects the base pair stacking. The stacking interactions can propagate along the backbone of DNA and lead to long-range allosteric effects, including obvious conformational variations for DNA base pairs.
Collapse
Affiliation(s)
- Lihua Bie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Likai Du
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Jun Gao
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
10
|
Tang X, Wang Z, Lei T, Zhou W, Chang S, Li D. Importance of protein flexibility on molecular recognition: modeling binding mechanisms of aminopyrazine inhibitors to Nek2. Phys Chem Chem Phys 2018; 20:5591-5605. [PMID: 29270587 DOI: 10.1039/c7cp07588j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NIMA-related kinase 2 (Nek2) plays a significant role in cell cycle regulation, and overexpression of Nek2 has been observed in several types of carcinoma, suggesting it is a potential target for cancer therapy. In this study, we attempted to gain more insight into the binding mechanisms of a series of aminopyrazine inhibitors of Nek2 through multiple molecular modeling techniques, including molecular docking, molecular dynamics (MD) simulations and free energy calculations. The simulation results showed that the induced fit docking and ensemble docking based on multiple protein structures yield better predictions than conventional rigid receptor docking, highlighting the importance of incorporating receptor flexibility into the accurate predictions of the binding poses and binding affinities of Nek2 inhibitors. Additionally, we observed that the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) calculations did not show better performance than the docking scoring to rank the binding affinities of the studied inhibitors, suggesting that MM/GBSA is system-dependent and may not be the best choice for the Nek2 systems. Moreover, the detailed information on protein-ligand binding was characterized by the MM/GBSA free energy decomposition, and a number of derivatives with improved docking scores were designed. It is expected that our study can provide valuable information for the future rational design of novel and potent inhibitors of Nek2.
Collapse
Affiliation(s)
- Xinyi Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Sandmann A, Sticht H. Probing the role of intercalating protein sidechains for kink formation in DNA. PLoS One 2018; 13:e0192605. [PMID: 29432448 PMCID: PMC5809078 DOI: 10.1371/journal.pone.0192605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/28/2018] [Indexed: 11/18/2022] Open
Abstract
Protein binding can induce DNA kinks, which are for example important to enhance the specificity of the interaction and to facilitate the assembly of multi protein complexes. The respective proteins frequently exhibit amino acid sidechains that intercalate between the DNA base steps at the site of the kink. However, on a molecular level there is only little information available about the role of individual sidechains for kink formation. To unravel structural principles of protein-induced DNA kinking we have performed molecular dynamics (MD) simulations of five complexes that varied in their architecture, function, and identity of intercalated residues. Simulations were performed for the DNA complexes of wildtype proteins (Sac7d, Sox-4, CcpA, TFAM, TBP) and for mutants, in which the intercalating residues were individually or combined replaced by alanine. The work revealed that for systems with multiple intercalated residues, not all of them are necessarily required for kink formation. In some complexes (Sox-4, TBP), one of the residues proved to be essential for kink formation, whereas the second residue has only a very small effect on the magnitude of the kink. In other systems (e.g. Sac7d) each of the intercalated residues proved to be individually capable of conferring a strong kink suggesting a partially redundant role of the intercalating residues. Mutation of the key residues responsible for kinking either resulted in stable complexes with reduced kink angles or caused conformational instability as evidenced by a shift of the kink to an adjacent base step. Thus, MD simulations can help to identify the role of individual inserted residues for kinking, which is not readily apparent from an inspection of the static structures. This information might be helpful for understanding protein-DNA interactions in more detail and for designing proteins with altered DNA binding properties in the future.
Collapse
Affiliation(s)
- Achim Sandmann
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Heinrich Sticht
- Bioinformatik, Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
12
|
Wang C, Greene D, Xiao L, Qi R, Luo R. Recent Developments and Applications of the MMPBSA Method. Front Mol Biosci 2018; 4:87. [PMID: 29367919 PMCID: PMC5768160 DOI: 10.3389/fmolb.2017.00087] [Citation(s) in RCA: 370] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
The Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) approach has been widely applied as an efficient and reliable free energy simulation method to model molecular recognition, such as for protein-ligand binding interactions. In this review, we focus on recent developments and applications of the MMPBSA method. The methodology review covers solvation terms, the entropy term, extensions to membrane proteins and high-speed screening, and new automation toolkits. Recent applications in various important biomedical and chemical fields are also reviewed. We conclude with a few future directions aimed at making MMPBSA a more robust and efficient method.
Collapse
Affiliation(s)
- Changhao Wang
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, United States
| | - D'Artagnan Greene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Li Xiao
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| | - Ruxi Qi
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Ray Luo
- Chemical and Materials Physics Graduate Program, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
13
|
Chen Y, Wang J, Zhang J, Wang W. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study. J Biomol Struct Dyn 2017; 36:3967-3977. [DOI: 10.1080/07391102.2017.1404933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
How Does the L884P Mutation Confer Resistance to Type-II Inhibitors of JAK2 Kinase: A Comprehensive Molecular Modeling Study. Sci Rep 2017; 7:9088. [PMID: 28831147 PMCID: PMC5567357 DOI: 10.1038/s41598-017-09586-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023] Open
Abstract
Janus kinase 2 (JAK2) has been regarded as an essential target for the treatment of myeloproliferative neoplasms (MPNs). BBT594 and CHZ868, Type-II inhibitors of JAK2, illustrate satisfactory efficacy in preclinical MPNs and acute lymphoblastic leukemia (ALL) models. However, the L884P mutation of JAK2 abrogates the suppressive effects of BBT594 and CHZ868. In this study, conventional molecular dynamics (MD) simulations, umbrella sampling (US) simulations and MM/GBSA free energy calculations were employed to explore how the L884P mutation affects the binding of BBT594 and CHZ868 to JAK2 and uncover the resistance mechanism induced by the L884P mutation. The results provided by the US and MD simulations illustrate that the L884P mutation enhances the flexibility of the allosteric pocket and alters their conformations, which amplify the conformational entropy change (−TΔS) and weaken the interactions between the inhibitors and target. Additionally, the structural analyses of BBT594 and CHZ868 in complex with the WT JAK2 illustrate that the drug tail with strong electronegativity and small size located in the allosteric pocket of JAK2 may enhance anti-resistance capability. In summary, our results highlight that both of the changes of the conformational entropies and enthalpies contribute to the L884P-induced resistance in the binding of two Type-II inhibitors into JAK2 kinase.
Collapse
|
15
|
Gardini S, Furini S, Santucci A, Niccolai N. A structural bioinformatics investigation on protein–DNA complexes delineates their modes of interaction. MOLECULAR BIOSYSTEMS 2017; 13:1010-1017. [DOI: 10.1039/c7mb00071e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A non-redundant dataset of 629 protein–DNA complexes has been used to investigate on amino acid composition of protein-DNA interfaces. Structural proteins, transcription factors and DNA-related enzymes show specific patterns accounting for different modes of their interaction with DNA.
Collapse
Affiliation(s)
- Simone Gardini
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| | - Simone Furini
- Department of Medical Biotechnologies
- University of Siena
- Siena
- Italy
| | - Annalisa Santucci
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| | - Neri Niccolai
- Department of Biotechnology
- Chemistry and Pharmacy
- University of Siena
- Italy
| |
Collapse
|
16
|
Yesudhas D, Anwar MA, Panneerselvam S, Durai P, Shah M, Choi S. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes. PLoS One 2016; 11:e0147240. [PMID: 26790000 PMCID: PMC4720428 DOI: 10.1371/journal.pone.0147240] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/30/2015] [Indexed: 01/17/2023] Open
Abstract
The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox20bp) or 3 base pairs (Oct4/Sox23bp) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox20bp and Oct4/Sox23bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | | | - Masaud Shah
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, 443–749, Korea
- * E-mail:
| |
Collapse
|