1
|
Zhou H, Li D, Lv Q, Lee C. Integrative plasmonics: optical multi-effects and acousto-electric-thermal fusion for biosensing, energy conversion, and photonic circuits. Chem Soc Rev 2025. [PMID: 40354162 DOI: 10.1039/d4cs00427b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Surface plasmons, a unique optical phenomenon arising at the interface between metals and dielectrics, have garnered significant interest across fields such as biochemistry, materials science, energy, optics, and nanotechnology. Recently, plasmonics is evolving from a focus on "classical plasmonics," which emphasizes fundamental effects and applications, to "integrative plasmonics," which explores the integration of plasmonics with multidisciplinary technologies. This review explores this evolution, summarizing key developments in this technological shift and offering a timely discussion on the fusion mechanisms, strategies, and applications. First, we examine the integration mechanisms of plasmons within the realm of optics, detailing how fundamental plasmonic effects give rise to optical multi-effects, such as plasmon-phonon coupling, nonlinear optical effects, electromagnetically induced transparency, chirality, nanocavity resonance, and waveguides. Next, we highlight strategies for integrating plasmons with technologies beyond optics, analyzing the processes and benefits of combining plasmonics with acoustics, electronics, and thermonics, including comprehensive plasmonic-electric-acousto-thermal integration. We then review cutting-edge applications in biochemistry (molecular diagnostics), energy (harvesting and catalysis), and informatics (photonic integrated circuits). These applications involve surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), chirality, nanotweezers, photoacoustic imaging, perovskite solar cells, photocatalysis, photothermal therapy, and triboelectric nanogenerators (TENGs). Finally, we conclude with a forward-looking perspective on the challenges and future of integrative plasmonics, considering advances in mechanisms (quantum effects, spintronics, and topology), materials (Dirac semimetals and hydrogels), technologies (machine learning, edge computing, in-sensor computing, and neuroengineering), and emerging applications (5G, 6G, virtual reality, and point-of-care testing).
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Qiaoya Lv
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117583, Singapore
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
2
|
Lin LL, Alvarez-Puebla R, Liz-Marzán LM, Trau M, Wang J, Fabris L, Wang X, Liu G, Xu S, Han XX, Yang L, Shen A, Yang S, Xu Y, Li C, Huang J, Liu SC, Huang JA, Srivastava I, Li M, Tian L, Nguyen LBT, Bi X, Cialla-May D, Matousek P, Stone N, Carney RP, Ji W, Song W, Chen Z, Phang IY, Henriksen-Lacey M, Chen H, Wu Z, Guo H, Ma H, Ustinov G, Luo S, Mosca S, Gardner B, Long YT, Popp J, Ren B, Nie S, Zhao B, Ling XY, Ye J. Surface-Enhanced Raman Spectroscopy for Biomedical Applications: Recent Advances and Future Challenges. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16287-16379. [PMID: 39991932 DOI: 10.1021/acsami.4c17502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The year 2024 marks the 50th anniversary of the discovery of surface-enhanced Raman spectroscopy (SERS). Over recent years, SERS has experienced rapid development and became a critical tool in biomedicine with its unparalleled sensitivity and molecular specificity. This review summarizes the advancements and challenges in SERS substrates, nanotags, instrumentation, and spectral analysis for biomedical applications. We highlight the key developments in colloidal and solid SERS substrates, with an emphasis on surface chemistry, hotspot design, and 3D hydrogel plasmonic architectures. Additionally, we introduce recent innovations in SERS nanotags, including those with interior gaps, orthogonal Raman reporters, and near-infrared-II-responsive properties, along with biomimetic coatings. Emerging technologies such as optical tweezers, plasmonic nanopores, and wearable sensors have expanded SERS capabilities for single-cell and single-molecule analysis. Advances in spectral analysis, including signal digitalization, denoising, and deep learning algorithms, have improved the quantification of complex biological data. Finally, this review discusses SERS biomedical applications in nucleic acid detection, protein characterization, metabolite analysis, single-cell monitoring, and in vivo deep Raman spectroscopy, emphasizing its potential for liquid biopsy, metabolic phenotyping, and extracellular vesicle diagnostics. The review concludes with a perspective on clinical translation of SERS, addressing commercialization potentials and the challenges in deep tissue in vivo sensing and imaging.
Collapse
Affiliation(s)
- Linley Li Lin
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ramon Alvarez-Puebla
- Departamento de Química Física e Inorganica, Universitat Rovira i Virgili, Tarragona 43007, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, Barcelona 08010, Spain
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Ikerbasque, Basque Foundation for Science, University of Santiago de nCompostela, Bilbao 48013, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
- Cinbio, University of Vigo, Vigo 36310, Spain
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Wang
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou 350117, China
| | - Laura Fabris
- Department of Applied Science and Technology, Politecnico di Torino Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry and Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xiao Xia Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Aiguo Shen
- School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Shikuan Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Chunchun Li
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Shao-Chuang Liu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian-An Huang
- Research Unit of Health Sciences and Technology, Faculty of Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Research Unit of Disease Networks, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
- Biocenter Oulu, University of Oulu, Aapistie 5 A, 90220 Oulu, Finland
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas 79106, United States
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Limei Tian
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Lam Bang Thanh Nguyen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Xinyuan Bi
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Pavel Matousek
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Nicholas Stone
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, California 95616, United States
| | - Wei Ji
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Wei Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Zhou Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - In Yee Phang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Malou Henriksen-Lacey
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
- Centro de Investigación Cooperativa en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián 20014, Spain
| | - Haoran Chen
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Zongyu Wu
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Heng Guo
- Department of Biomedical Engineering, and Center for Remote Health Technologies and Systems Texas A&M University, College Station, Texas 77843, United States
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gennadii Ustinov
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Siheng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sara Mosca
- Central Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, United Kingdom
| | - Benjamin Gardner
- Department of Physics and Astronomy, University of Exeter, Exeter EX4 4QL, United Kingdom
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein-Straße 9, 07745 Jena, Germany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shuming Nie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W. Green Street, Urbana, Illinois 61801, United States
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, International Joint Research Laboratory for Nano Energy Composites, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Ye
- Sixth People's Hospital, School of Medicine & School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Zhou G, Li P, Zhao C, Guo X, Dong R, Yang L. Insights of Surface-Enhanced Raman Spectroscopy Detection by Guiding Molecules into Nanostructures to Activate Hot Spots. Anal Chem 2025; 97:5612-5623. [PMID: 40059289 DOI: 10.1021/acs.analchem.4c06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
A misunderstanding of how target molecules enter hot spot nanostructures has significantly hindered the advancement of surface-enhanced Raman spectroscopy (SERS) detection methods in recent years. The challenge lies in finding convenient ways to transport target molecules to various nanostructures. In this work, we discovered that filling the gaps in empty nanostructures with water is often difficult, as metal surfaces are not well wetted. Additionally, the adsorption of pollutants from the air reduces the water wettability within the nanogaps, severely restricting the diffusion of molecules in the hot spots. This study proposes a method that uses a binary solvent mixture of ethanol and water (EtOH-H2O) to effectively guide target molecules into the nanostructures containing numerous hot spots. By utilizing the tunable surface tension gradient of this binary solvent mixture, we can control solvent transport within the nanostructures, significantly enhancing the activity of the hot spots and increasing the efficiency of SERS detection. The detection limit of this simple and rapid binary solvent mixing method is improved by 2-3 orders of magnitude compared to traditional methods that use only water or ethanol as solvents while also demonstrating high reproducibility. This method can be widely applied to various nanostructures for different types of molecules, maximizing the efficient use of intrinsic hot spots. This innovative approach provides new momentum for the advancement of SERS technology and lays a solid foundation for its widespread adoption in various analytical applications.
Collapse
Affiliation(s)
- Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chengxi Zhao
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Xinran Guo
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science & Technology of China, Hefei, Anhui 230026, China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
4
|
Trinh NB, Nguyen TA, Lam Truong SH, Vo KQ. Hierarchical structures of surface-accessible plasmonic gold and silver nanoparticles for SERS detection. SOFT MATTER 2025; 21:948-969. [PMID: 39807030 DOI: 10.1039/d4sm01272k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique with excellent molecular specificity. However, separate pristine nanoparticles produce relatively weak Raman signals. It is necessary to focus on increasing the "hot-spot" density generated at the nanogaps between the adjacent nanoparticles (second-generation SERS hotspot), thus significantly boosting the Raman signal by creating an electromagnetic field. This study employed a self-assembly method without using modifiers based on promoter-induced self-assembly to synthesize stable and plasmonically active surfaces from citrate-reduced Ag and Au nanoparticles. Hierarchical structures like Pickering emulsions (PEs) and stable plasmonic aggregates (SPAs) were studied, focusing on controlling their sizes using "promoters" (TBANO3). The sizes of the SPAs were also adjusted from 85.5 nm to 136 nm by regulating the ratio of the water to the oil phase. Furthermore, to understand the distribution of "hot-spots" on these Au or Ag hierarchical structures, the electric field was simulated using the finite difference time domain (FDTD) software. Third-generation hotspots were also created using hybrid structures of plasmonic nanomaterials and surfaces to significantly improve SERS detection by depositing the colloidosome structure on Cu foil (AgSPAs/Cu substrate). The SERS signal was amplified by achieving an enhancement factor of 7 × 107, compared to an enhancement factor of 2 × 106 when using the AgSPA/glass substrate. Significantly, the limits of detection (LOD) and quantification (LOQ) for the colloidosome substrate to detect crystal violet were found to be 4.51 ppb and 13.66 ppb, respectively. The reproducibility of the prepared substrates was demonstrated to be commendably high, characterized by relative standard deviations (RSDs) of 8.00% for the 1177 cm-1 peak, 7.61% for the 1588 cm-1 peak, and 9.35% for the 1619 cm-1 peak. The AgSPAs/Cu substrate's demonstrated reliability made it suitable for detecting and quantifying analytes, potentially for determining trace amounts of pesticide residues. The LOD and LOQ for thiram detection were calculated to be 0.1 ppm and 0.3 ppm, respectively. These findings highlight the effectiveness of increasing electromagnetic field density for SERS enhancement.
Collapse
Affiliation(s)
- Nhu-Bao Trinh
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Thu Anh Nguyen
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Son-Hai Lam Truong
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Khuong Quoc Vo
- Faculty of Chemistry, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh City, 227 Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City 70000, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
5
|
Zhang Y, Jia Y, Li Y, Xu H, Wang J, Wei M, Zhang Y, Yuan H, Gao M. Doping-induced band-gap shrinkage to modify the electronic structure of MoS 2 for organic wastewater management. Dalton Trans 2024; 54:318-327. [PMID: 39540628 DOI: 10.1039/d4dt00523f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
MoS2, with its high specific surface area and tunable electronic structure, has received much interest in the fields of sensing and environmental remediation. Nevertheless, pure MoS2 has the disadvantages of easy aggregation and high electron-hole pair complexity, which affect its SERS and photocatalytic performance. In this work, a band-gap shrinkage strategy was used to improve MoS2 performance for SERS and photocatalytic applications. It exhibited high SERS activity (enhancement factor (EF) = 3.61 × 108), great stability (4 mth), broad applicability (CV, CR and R6G), and excellent reusability (with a recovery of 95% after 5 cycles). In addition, the interfacial dipole-dipole interaction and charge transfer (CT) process caused by doping Ru together enhanced the SERS sensitivity, reducing the limit of detection of CV to 1011 M. The degradation rate of 10-5 M CV was up to 99% after 60 min of Ru-MoS2 photocatalytic degradation under visible light. This study investigated the effect of doping-induced bandgap shrinkage on charge transfer (CT), providing new insights into improving the sensitivity of semiconductor SERS substrates for efficient low-concentration SERS detection and low-cost sustainable wastewater remediation.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yuehan Jia
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yanjie Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Hongquan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Jingsu Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Maobin Wei
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Yong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| | - Hui Yuan
- State Key Laboratory of Catalytic Materials and Reaction Engineering, SINOPEC Research Institute of Petroleum Processing Co. Ltd., Beijing, 100083, China.
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun, 130103, P. R. China.
- National Demonstration Centre for Experimental Physics Education, Jilin Normal University, Siping, 136000, P. R. China
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, 130103, P. R. China
| |
Collapse
|
6
|
Lin D, Meng Z, Han C, Hong Y, Yang L. Rapid Dynamic Surface-Enhanced Raman Spectroscopy Detection of Amoxicillin-Mediated Morphological Changes in a Pathogen for Diagnosis of Clinical Urine Samples. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64609-64616. [PMID: 39540231 DOI: 10.1021/acsami.4c16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The swift and stable detection of pathogens in urine samples holds significant implications for the immediate clinical diagnosis and treatment of urinary tract infections (UTIs). In this study, we propose a detection strategy utilizing a hybrid substrate composed of graphene oxide (GO) and silver nanoparticles (Ag NPs) for the detection of pathogens subjected to amoxicillin-mediated (amo-mediated) treatment. This strategy employs dynamic surface-enhanced Raman spectroscopy (D-SERS) for stable and rapid detection, capturing signal variations induced by amo-mediated changes in pathogen morphology. During the 5 min D-SERS detection time window, stable SERS signals were detected for three types of pathogens and four types of pathogens were successfully distinguished using principal component analysis (PCA). In comparison to conventional nanosubstrates, the GO/Ag NP hybrid substrate exhibits outstanding stability and enhancement effects. This approach enables the dual detection of the pathogen cell structure and metabolites, facilitating specific identification of pathogens in the urinary tract, with a detection limit for Escherichia coli reaching 1 × 104 colony-forming units (CFU)/mL, meeting the clinical microbiology laboratory diagnostic standards for UTIs (105 CFU/mL). Testing of 188 clinically collected urine samples using this strategy yielded a sensitivity (SENS) of 86.4% and a specificity (SPC) of 89.7%. This introduces a novel method for diagnosing UTIs, offering broad applications in the field of clinical pathogen detection.
Collapse
Affiliation(s)
- Dongyue Lin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Zhicai Meng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Cong Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | - Yan Hong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
7
|
Zhang Q, Chen B, Ma Q, Fang Z, Li S, He X, Wang Y, Qi X, Chen Q, Cai T, Zhang L, Zou M, Wang C, Ma Q. Single-atom oxide-decorated AuNPs for universal enhancement in SERS detection of pesticide residues. Anal Chim Acta 2024; 1329:343192. [PMID: 39396282 DOI: 10.1016/j.aca.2024.343192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND In the context of modern agriculture, the proliferation of chemical use calls for enhanced pesticide detection to safeguard food quality and public health. The development of accurate testing methodologies is imperative to mitigate the environmental impact of pesticides and ensure the integrity of ecosystems, thereby reflecting the pressing need for advancements in agricultural safety protocols. Therefore, the development of highly sensitive monitoring technology for detecting pesticide residues in agricultural products is necessary for safeguarding human health, ensuring food safety, and maintaining environmental sustainability. RESULTS Herein, a controllable surface charge on single tungsten atom-modified gold nanoparticles was used to create an electrostatic force with positively charged pesticide residues. Moreover, hydrogen bonds formed by single-atom sites can induce analyte-adsorbed nanoparticle aggregation, and the sizes of single-tungsten-atom-decorated AuNPs can maintain a gap between each other, resulting in improved SERS detection sensitivity through analyte enrichment at gold nanoparticle hotspots. In terms of the detection limits for pesticide residue analysis, we can effectively achieve an ultrahigh sensitivity of 0.1 ppb for acetamiprid, paraquat and carbendazim, which is among the best SERS sensitivities at the state of the art. For apple sample analysis, our work demonstrated good reproductivity (RSD<6 %) and a strong linear relationship (R2 ≥ 0.97) for 4 pesticide residues after optimizing the pretreatment process, which proves the enormous potential in quantitative analysis. SIGNIFICANCE Single-atom sites hotspot are firstly successfully achieved and uniformly dispersed between Au nanoparticle, which can effectively increase the sensitivity, keep stability of the Raman scattering signals and possess a significant improvement beyond that of undecorated hotspots when applied in pesticide residue detection. This method can be employed as a universal strategy to capture pesticide residues at hotspots for SERS detection.
Collapse
Affiliation(s)
- Qi Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Binbin Chen
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Qingbian Ma
- Peking University Third Hospital, Beijing, 100191, China
| | - Zunlong Fang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Shu Li
- Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoyu He
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yufeng Wang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Xiaohua Qi
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Qian Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Ting Cai
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China
| | - Lin Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| | - Cong Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, 315012, China.
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China
| |
Collapse
|
8
|
Ranasinghe JC, Wang Z, Huang S. Unveiling brain disorders using liquid biopsy and Raman spectroscopy. NANOSCALE 2024; 16:11879-11913. [PMID: 38845582 PMCID: PMC11290551 DOI: 10.1039/d4nr01413h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Brain disorders, including neurodegenerative diseases (NDs) and traumatic brain injury (TBI), present significant challenges in early diagnosis and intervention. Conventional imaging modalities, while valuable, lack the molecular specificity necessary for precise disease characterization. Compared to the study of conventional brain tissues, liquid biopsy, which focuses on blood, tear, saliva, and cerebrospinal fluid (CSF), also unveils a myriad of underlying molecular processes, providing abundant predictive clinical information. In addition, liquid biopsy is minimally- to non-invasive, and highly repeatable, offering the potential for continuous monitoring. Raman spectroscopy (RS), with its ability to provide rich molecular information and cost-effectiveness, holds great potential for transformative advancements in early detection and understanding the biochemical changes associated with NDs and TBI. Recent developments in Raman enhancement technologies and advanced data analysis methods have enhanced the applicability of RS in probing the intricate molecular signatures within biological fluids, offering new insights into disease pathology. This review explores the growing role of RS as a promising and emerging tool for disease diagnosis in brain disorders, particularly through the analysis of liquid biopsy. It discusses the current landscape and future prospects of RS in the diagnosis of brain disorders, highlighting its potential as a non-invasive and molecularly specific diagnostic tool.
Collapse
Affiliation(s)
- Jeewan C Ranasinghe
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Ziyang Wang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
9
|
Ge Y, Yang Y, Zhu Y, Yuan M, Sun L, Jiang D, Liu X, Zhang Q, Zhang J, Wang Y. 2D TiS 2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302410. [PMID: 37635113 DOI: 10.1002/smll.202302410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Herein, a hybrid substrate for surface-enhanced Raman scattering (SERS) is fabricated, which couples localized surface plasmon resonance (LSPR), charge transfer (CT) resonance, and molecular resonance. Exfoliated 2D TiS2 nanosheets with semimetallic properties accelerate the CT with the tested analytes, inducing a remarkable chemical mechanism enhancement. In addition, the LSPR effect is coupled with a concave gold array located underneath the thin TiS2 nanosheet, providing a strong electromagnetic enhancement. The concave gold array is prepared by etching silicone nanospheres assembled on larger polystyrene nanospheres, followed by depositing a gold layer. The LSPR intensity near the gold layer can be adjusted by changing the layer thickness to couple the molecular and CT resonances, in order to maximize the SERS enhancement. The best SERS performance is recorded on TiS2-nanosheet-coated plasmonic substrates, with a detectable methylene blue concentration down to 10-13 m and an enhancement factor of 2.1 × 109 and this concentration is several orders of magnitude lower than that of the TiS2 nanosheet (10-11 m) and plasmonic substrates (10-9 m). The present hybrid substrate with triple-coupled resonance further shows significant advantages in the label-free monitoring of curcumin (a widely applied drug for treating multiple cancers and inflammations) in serum and urine.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yajie Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Meiling Yuan
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Liangbin Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Danfeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Jinyi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| |
Collapse
|
10
|
Wang Z, Yang Z, Song X, Zhang H, Sun B, Zhai J, Yang S, Xie Y, Liang P. Raman spectrum model transfer method based on Cycle-GAN. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123416. [PMID: 37722159 DOI: 10.1016/j.saa.2023.123416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
The disparity in hardware quality among various models of Raman spectrometers gives rise to variations in the acquired Raman spectral data, even when the same substance is collected under identical external conditions. Conventionally, models constructed using data obtained from a particular instrument exhibit issues such as limited applicability or poor performance when deployed to different instruments. Currently, numerous model transfer algorithms grounded in chemometrics have been developed, all aiming to establish a mapping relationship capable of transforming spectral data from the source domain to the target domain. With the advancement of deep learning techniques, the utilization of deep learning enables the effective resolution of nonlinear mapping relationships between two spectral vectors. In the field of image translation, the Cycle-Consistent Adversarial Networks, Cycle-GAN, has already achieved mutual transformation between two distinct style images. However, due to images being multidimensional matrix data, unlike one-dimensional spectral data vectors, we have constructed a deep learning network based on Cycle-GAN for vector-to-vector transformation. This network allows the direct conversion of spectral data from the source domain to the target domain, without requiring parameter adjustments or other operations. Compared with traditional chemometric methods, our method is more intelligent and efficient. Finally, the cosine similarity between the source domain data and the transformed target domain data exceeds 99%.
Collapse
Affiliation(s)
- Zilong Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Zhe Yang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Xiangning Song
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Hongzhe Zhang
- State Key Laboratory of Chemical Safety, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao 266104, China
| | - Biao Sun
- School of Electrical and Information Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Jinglei Zhai
- School of Electrical and Information Engineering, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Siwei Yang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Yuhao Xie
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
11
|
Yan W, Chen S, Li P, Dong R, Shin HH, Yang L. Real-Time Monitoring of a Single Molecule in Sub-nanometer Space by Dynamic Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2023; 14:8726-8733. [PMID: 37737102 DOI: 10.1021/acs.jpclett.3c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
In biology and chemistry, the ultimate goal is to monitor single molecules without labels. However, long-term monitoring of label-free molecules remains a challenge. Here, on the basis of the photothermal effect of gold nanorods (GNRs), we developed a platform for monitoring of a single molecule employing surface-enhanced Raman spectroscopy (SERS). Laser re-irradiation forms 1.0 nm gaps between GNRs, allowing us to observe single crystal violet (CV) molecules blinking for up to 4 min with dynamic surface-enhanced Raman spectroscopy (D-SERS). Bianalyte experiments confirm single-molecule features at CV concentrations of 10-14 M. Combining density functional theory (DFT) calculations with a free CV molecule observed in millisecond D-SERS, we propose that CV molecules can be confined to sub-nanometer space and the orientation of an individual CV moving in the range of 50-90° can be dynamically captured by D-SERS. This will provide a novel idea for effective exploration of the temporal and spatial dynamic processes of different reactions.
Collapse
Affiliation(s)
- Wuwen Yan
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| | - Hyun-Hang Shin
- Department of Chemistry, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
- University of Science & Technology of China, Hefei, Anhui 230026, People's Republic of China
- Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
12
|
Xu L, Du X, Liu T, Sun D. In situ and dynamic SERS monitoring of glutathione levels during cellular ferroptosis metabolism. Anal Bioanal Chem 2023; 415:6145-6153. [PMID: 37644323 DOI: 10.1007/s00216-023-04909-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023]
Abstract
Ferroptosis is a non-apoptotic cell death regulated by iron-dependent lipid peroxidation. Glutathione (GSH), a key antioxidant against oxidative damage, is involved in one of the most important metabolic pathways of ferroptosis. Herein, an excellent plasmonic nanoprobe was developed for highly sensitive, in situ, dynamic real-time monitoring of intracellular GSH levels during ferroptosis. A nanoprobe was prepared by functionalizing gold nanoparticles (AuNPs) with the probe molecule crystal violet (CV). The fluctuation in the SERS signal intensity of CV via the competitive displacement reaction can be used to detect GSH. The advantages of the plasmonic nanoprobe including low-cost production techniques, outstanding stability and biocompatibility, high specificity and sensitivity towards GSH with a detection limit of 0.05 μM. It enables real-time dynamic monitoring of GSH levels in living cells during erastin-induced ferroptosis. This approach is expected to provide important theoretical support for elucidating the GSH-related ferroptosis metabolic mechanism and advancing our understanding of ferroptosis-based cancer therapy. Overview of the workflow of sensing principle for highly sensitive, in situ and dynamic tracking of intracellular GSH levels during drug-triggered ferroptosis process.
Collapse
Affiliation(s)
- Lixing Xu
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Xing Du
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Dan Sun
- School of Pharmacy, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
13
|
Zhu K, Zhou T, Chen P, Zong S, Wu L, Cui Y, Wang Z. Long-lived SERS Matrix for Real-Time Biochemical Detection Using "Frozen" Transition State. ACS Sens 2023; 8:3360-3369. [PMID: 37702084 DOI: 10.1021/acssensors.3c00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
For the long-time tracking of biological events, maintaining the bioactivity of the analytes during the detection process is essential. Here, we show a versatile surface-enhanced Raman Scattering (SERS) platform, termed a superwettable-omniphobic lubricous porous SERS (SOLP-SERS) substrate. The SOLP-SERS substrate could generate a three-dimensional liquid "hotspots" matrix with an ultra-long lifetime (tens of days) by confining tiny amounts of liquids within the gaps between nanoparticles. Then, the analytes are trapped in the uniform liquid "hotspots", whose bioactivity can be well maintained over a long period of time during SERS detection. Limits of detection down to femtomolar levels were achieved for various molecules. More importantly, SERS signals were uniform within the substrate and remained stable for more than 30 days. As a proof-of-concept experiment, the dynamic detection of the polymerization of Aβ peptides into amyloids was monitored by the SOLP-SERS substrate within 48 h. Moreover, the exosomes secreted by breast cancer cells, an important biomarker of cancer, were also measured. These results demonstrate that the SOLP-SERS platform will provide new insights into the development of real-time biochemical sensors with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tong Zhou
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Peng Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
- School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Chen L, Guan Y, Zheng S, Fodjo EK, Deng W, Li D. Identification and Detection of Intracellular Reactive Sulfur Species Using a Reaction-Mediated Dual-Recognition Strategy. Anal Chem 2023; 95:12427-12434. [PMID: 37560995 DOI: 10.1021/acs.analchem.3c02094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Reactive sulfur species (RSS) are emerging as a potential key gasotransmitter in diverse physiological processes linking two signaling molecules H2S and SO2. However, the exact roles of H2S and SO2 remain unclear. A major hurdle is the shortage of accurate and robust approaches for sensing of H2S and SO2 in biological systems. Herein, we report a reaction-mediated dual-recognition strategy-based nanosensor, silver nanoparticles (AgNPs)-loaded MIL-101 (Fe) (ALM) hybrids, for the simultaneous detection of H2S and SO2 in a living cell. Upon exposure to H2S, AgNPs can be oxidized to form Ag2S, causing a decrease of surface enhanced Raman spectroscopy (SERS) signals of p,p'-dimercaptoazobenzene. Moreover, SO2 reacts with the amino moiety of MIL-101 to form charge-transfer complexes, resulting in an increment of fluorescent (FL) intensity. The ALM with dual-modal signals can simultaneously analyze H2S and SO2 at a concentration as low as 2.8 × 10-6 and 0.003 μM, respectively. Most importantly, the ALM sensing platform enables targeting mitochondria and detection multiple RSS simultaneously in living cells under external stimulation, as well as displays indiscernible crosstalk between SERS and FL signals, which is very beneficial for the comprehension of physiological issues related with RSS.
Collapse
Affiliation(s)
- Li Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Yue Guan
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Essy Kouadio Fodjo
- Laboratory of Constitution and Reaction of Matter, UFR SSMT, Felix Houphouet Boigny University, 22 BP 582, Abidjan 22, Cote d'Ivoire
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China
| |
Collapse
|
15
|
Wang J, Zhou G, Lin D, Hong Y, Liang Z, Dong R, Yang L. An autofocusing method for dynamic surface-enhanced Raman spectroscopy detection realized by optimized hill-climbing algorithm with long time stable hotspots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122820. [PMID: 37167745 DOI: 10.1016/j.saa.2023.122820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
In the manual dynamic surface-enhanced Raman spectroscopy (D-SERS) detection process, it is difficult to focus on sample drop due to the constantly changing hotspot and easy judgment method. In this paper, we proposed an automatic focusing method based on long time stable hotspot with aid of optimization of hill-climbing algorithm and achieved on a designed device. First, set up a high temperature accelerating evaporation process to obtain hotspot and then cool to a low temperature rapidly to maintain it. Then, the spectral intensity was used as a focus of feedback signal in optimized hill-climbing algorithm to drive the sample stage to move up and down to adjust the depth of the laser on the samples to realize automatic focusing. As a result, the hotspot can be maintained for 5 min, and the autofocusing result can be achieved within 9 s, while the sensitivity was improved with two orders of magnitude in D-SERS detection of crystal violet (CV) compared with manual focusing.
Collapse
Affiliation(s)
- Jingxia Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Dongyue Lin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yan Hong
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China
| | - Zhen Liang
- School of Biomedical Engineering, Anhui Medical University, Hefei 230032, China.
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
16
|
Kim T, Lee J, Yu ES, Lee S, Woo H, Kwak J, Chung S, Choi I, Ryu YS. Fabry-Perot Cavity Control for Tunable Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207003. [PMID: 37017491 DOI: 10.1002/smll.202207003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/25/2023] [Indexed: 06/19/2023]
Abstract
The Fabry-Perot (FP) resonator is an intuitive and versatile optical structure owing to its uniqueness in light-matter interactions, yielding resonance with a wide range of wavelengths as it couples with photonic materials encapsulated in a dielectric cavity. Leveraging the FP resonator for molecular detection, a simple geometry of the metal-dielectric-metal structure is demonstrated to allow tuning of the enhancement factors (EFs) of surface-enhanced Raman scattering (SERS). The optimum near-field EF from randomly dispersed gold nano-gaps and dynamic modulation of the far-field SERS EF by varying the optical resonance of the FP etalon are systematically investigated by performing computational and experimental analyses. The proposed strategy of combining plasmonic nanostructures with FP etalons clearly reveals wavelength matching of FP resonance to excitation and scattering wavelengths plays a key role in determining the magnitude of the SERS EF. Finally, the optimum near-field generating optical structure with controlled dielectric cavity is suggested for a tunable SERS platform, and its dynamic SERS switching performance is confirmed by demonstrating information encryption through liquid immersion.
Collapse
Affiliation(s)
- Taehyun Kim
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Micro/Nano Systems, Korea University, Seoul, 02841, Republic of Korea
| | - Jongsu Lee
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eui-Sang Yu
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seungha Lee
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
| | - Hyeonbin Woo
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seok Chung
- Department of Micro/Nano Systems, Korea University, Seoul, 02841, Republic of Korea
- School of Mechanical Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Inhee Choi
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong-Sang Ryu
- Center for Brain Technology, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02481, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02481, Republic of Korea
| |
Collapse
|
17
|
Xiao J, Wang J, Luo Y, Xu T, Zhang X. Wearable Plasmonic Sweat Biosensor for Acetaminophen Drug Monitoring. ACS Sens 2023; 8:1766-1773. [PMID: 36990683 DOI: 10.1021/acssensors.3c00063] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Monitoring the acetaminophen dosage is important to prevent the occurrence of adverse reactions such as liver failure and kidney damage. Traditional approaches to monitoring acetaminophen dosage mainly rely on invasive blood collection. Herein, we developed a noninvasive microfluidic-based wearable plasmonic sensor to achieve simultaneous sweat sampling and acetaminophen drug monitoring for vital signs. The fabricated sensor employs an Au nanosphere cone array as the key sensing component, which poses a substrate with surface-enhanced Raman scattering (SERS) activity to noninvasively and sensitively detect the fingerprint of acetaminophen molecules based on its unique SERS spectrum. The developed sensor enabled the sensitive detection and quantification of acetaminophen at concentrations as low as 0.13 μM. We further evaluated the sweat sensor integrated with a Raman spectrometer for monitoring acetaminophen in drug-administered subjects. These results indicated that the sweat sensor could measure acetaminophen levels and reflect drug metabolism. The sweat sensors have revolutionized wearable sensing technology by adopting label-free and sensitive molecular tracking methods for noninvasive and point-of-care drug monitoring and management.
Collapse
Affiliation(s)
- Jingyu Xiao
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Jing Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Yong Luo
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Tailin Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, P. R. China
| |
Collapse
|
18
|
Cheng Y, Qin M, Li P, Yang L. Solvent-driven biotoxin into nano-units as a versatile and sensitive SERS strategy. RSC Adv 2023; 13:4584-4589. [PMID: 36760288 PMCID: PMC9897048 DOI: 10.1039/d2ra07216e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, marine biotoxins have posed a great threat to fishermen, human security and military prevention and control due to their diverse, complex, toxic and widespread nature, and the development of rapid and sensitive methods is essential. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for the rapid and sensitive in situ detection of marine biotoxins due to its advantages of rapid, high sensitivity, and fingerprinting information. However, the complex structure of toxin molecules, small Raman scattering cross-section and low affinity to conventional substrates make it difficult to achieve direct and sensitive SERS detection. Here, we generate a large number of active hotspot structures by constructing monolayer nanoparticle films with high density hotspots, which have good target molecules that can actively access the hotspot structures using nanocapillaries. In addition, the efficient and stable signal can be achieved during dynamic detection, increasing the practicality and operability of the method. This versatile SERS method achieves highly sensitive detection of marine biotoxins GTX and NOD, providing good prospects for convenient, rapid and sensitive SERS detection of marine biotoxins.
Collapse
Affiliation(s)
- Yizhuang Cheng
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- University of Science & Technology of China Hefei 230026 Anhui China
- Hefei Cancer Hospital, Chinese Academy of Sciences Hefei 230031 Anhui China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 China
- University of Science & Technology of China Hefei 230026 Anhui China
| |
Collapse
|
19
|
Chen HY, Xin PL, Xu HB, Lv J, Qian RC, Li DW. Self-Assembled Plasmonic Nanojunctions Mediated by Host-Guest Interaction for Ultrasensitive Dual-Mode Detection of Cholesterol. ACS Sens 2023; 8:388-396. [PMID: 36617720 DOI: 10.1021/acssensors.2c02570] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein, a fluorescence and surface-enhanced Raman spectroscopy dual-mode system was designed for cholesterol detection based on self-assembled plasmonic nanojunctions mediated by the competition of rhodamine 6G (R6G) and cholesterol with β-cyclodextrin modified on gold nanoparticles (HS-β-CD@Au). The fluorescence of R6G was quenched by HS-β-CD@Au due to the fluorescence resonance energy transfer effect. When cholesterol was introduced as the competitive guest, R6G in the cavities of HS-β-CD@Au was displaced to recover its fluorescence. Moreover, two of HS-β-CD@Au can be linked by one cholesterol to form a more stable 2:1 complex, and then, plasmonic nanojunctions were generated, which resulted in the increasing SERS signal of R6G. In addition, fluorescence and SERS intensity of R6G increased linearly with the increase in the cholesterol concentrations with the limits of detection of 95 and 74 nM, respectively. Furthermore, the dual-mode strategy can realize the reliable and sensitive detection of cholesterol in the serum with good accuracy, and two sets of data can mutually validate each other, which demonstrated great application prospects in the surveillance of diseases related with cholesterol.
Collapse
Affiliation(s)
- Hua-Ying Chen
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Pei-Lin Xin
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Shanghai Key Laboratory of Functional Materials Chemistry, Joint International Laboratory for Precision Chemistry, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai200237, P. R. China
| |
Collapse
|
20
|
Estefany C, Sun Z, Hong Z, Du J. Raman spectroscopy for profiling physical and chemical properties of atmospheric aerosol particles: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114405. [PMID: 36508807 DOI: 10.1016/j.ecoenv.2022.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Atmosphere aerosols have significant impact on human health and the environment. Aerosol particles have a number of characteristics that influence their health and environmental effects, including their size, shape, and chemical composition. A great deal of difficulty is associated with quantifying and identifying atmospheric aerosols because these parameters are highly variable on a spatial and temporal scale. An important component of understanding aerosol fate is Raman Spectroscopy (RS), which is capable of resolving chemical compositions of individual particles. This review presented strategic techniques, especially RS methods for characterizing atmospheric aerosols. The nature and properties of atmospheric aerosols and their influence on environment and human health were briefly described. Analytical methodologies that offer insight into the chemistry and multidimensional properties of aerosols were discussed. In addition, perspectives for practical applications of atmospheric aerosols using RS are featured.
Collapse
Affiliation(s)
- Cedeño Estefany
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhenli Sun
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zijin Hong
- Key Laboratory of Resources and Environmental System Optimization of Ministry of Education, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingjing Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
21
|
Zhu Q, Li X, Li D, Lu F, Zhao Y, Yuan Y. A Rapid Therapeutic Drug Monitoring Strategy of Carbamazepine in Serum by Using Coffee-Ring Effect Assisted Surface-Enhanced Raman Spectroscopy. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010128. [PMID: 36615322 PMCID: PMC9822333 DOI: 10.3390/molecules28010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Carbamazepine (CBZ) has a narrow therapeutic concentration range, and therapeutic drug monitoring (TDM) is necessary for its safe and effective individualized medication. This study aims to develop a procedure for CBZ detection in serum using coffee-ring effect assisted surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles deposited onto silicon wafers were used as the SERS-active material. Surface treatment optimization of the silicon wafers and the liquid-liquid extraction method were conducted to eliminate the influence of impurities on the silicon wafer surface and the protein matrix. The proposed detection procedure allows for the fast determination of CBZ in artificially spiked serum samples within a concentration range of 2.5-40 μg·mL-1, which matches the range of the drug concentrations in the serum after oral medication. The limit of detection for CBZ was found to be 0.01 μg·mL-1. The developed method allowed CBZ and its metabolites to be ultimately distinguished from real serum samples. The developed method is anticipated to be a potential tool for monitoring other drug concentrations.
Collapse
Affiliation(s)
- Qingxia Zhu
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200199, China
| | - Xinhang Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dan Li
- Department of Pharmacy, Shanghai Chang Hai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Feng Lu
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (Y.Z.); (Y.Y.)
| | - Yongfang Yuan
- Department of Pharmacy, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200199, China
- Correspondence: (Y.Z.); (Y.Y.)
| |
Collapse
|
22
|
Wang PS, Ma H, Yan S, Lu X, Tang H, Xi XH, Peng XH, Huang Y, Bao YF, Cao MF, Wang H, Huang J, Liu G, Wang X, Ren B. Correlation coefficient-directed label-free characterization of native proteins by surface-enhanced Raman spectroscopy. Chem Sci 2022; 13:13829-13835. [PMID: 36544733 PMCID: PMC9710310 DOI: 10.1039/d2sc04775f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/30/2022] [Indexed: 12/24/2022] Open
Abstract
Investigation of proteins in their native state is the core of proteomics towards better understanding of their structures and functions. Surface-enhanced Raman spectroscopy (SERS) has shown its unique advantages in protein characterization with fingerprint information and high sensitivity, which makes it a promising tool for proteomics. It is still challenging to obtain SERS spectra of proteins in the native state and evaluate the native degree. Here, we constructed 3D physiological hotspots for a label-free dynamic SERS characterization of a native protein with iodide-modified 140 nm Au nanoparticles. We further introduced the correlation coefficient to quantitatively evaluate the variation of the native degree, whose quantitative nature allows us to explicitly investigate the Hofmeister effect on the protein structure. We realized the classification of a protein of SARS-CoV-2 variants in 15 min, which has not been achieved before. This study offers an effective tool for tracking the dynamic structure of proteins and biomedical research.
Collapse
Affiliation(s)
- Ping-Shi Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xinyu Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hui Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiao-Hui Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yajun Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yi-Fan Bao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mao-Feng Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Huimeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jinglin Huang
- Laser Fusion Research Center, China Academy of Engineering Physics Mianyang 621900 China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University Xiamen 361005 China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
23
|
Shen S, Wang J, Zhu Y, Yang W, Gao R, Li JF, Sun G, Zhilin Y. Large-area metal-dielectric heterostructures for surface-enhanced raman scattering. OPTICS EXPRESS 2022; 30:38256-38265. [PMID: 36258397 DOI: 10.1364/oe.464631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/17/2022] [Indexed: 06/16/2023]
Abstract
Metal-dielectric heterostructures have shown great application potentials in physics, chemistry and material science. In this work, we have designed and manufactured ordered metal-dielectric multiple heterostructures with tunable optical properties, which can be as large as the order of square centimeters in size. We experimentally realized that the surface-enhanced Raman scattering signal of the periodic multiple heterostructures increased 50 times compared with the silicon nanodisk-gold film arrays, which is attributed to the large-scale hotspots and high efficient coupling between the optical cavities and surface plasmon resonance modes. More importantly, the substrate also features a good uniformity and an excellent reproducible fabrication, which is very promising for practical applications.
Collapse
|
24
|
Wang B, Liu Y, Ai C, Chu R, Chen M, Ye H, Wang H, Zhou F. Highly sensitive SERS detection in a non-volatile liquid-phase system with nanocluster-patterned optical fiber SERS probes. OPTICS EXPRESS 2022; 30:15846-15857. [PMID: 36221441 DOI: 10.1364/oe.454409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/16/2022] [Indexed: 06/16/2023]
Abstract
The use of surface-enhanced Raman scattering (SERS) spectroscopy for the detection of substances in non-volatile systems, such as edible oil and biological cells, is an important issue in the fields of food safety and biomedicine. However, traditional dry-state SERS detection with planar SERS substrates is not suitable for highly sensitive and rapid SERS detection in non-volatile liquid-phase systems. In this paper, we take contaminant in edible oil as an example and propose an in situ SERS detection method for non-volatile complex liquid-phase systems with high-performance optical fiber SERS probes. Au-nanorod clusters are successfully prepared on optical fiber facet by a laboratory-developed laser-induced dynamic dip-coating method, and relatively high detection sensitivity (LOD of 2.4 × 10-6 mol/L for Sudan red and 3.6 × 10-7 mol/L for thiram in sunflower oil) and good reproducibility (RSD less than 10%) are achieved with a portable Raman spectrometer and short spectral integration time of 10 s even in complex edible oil systems. Additionally, the recovery rate experiment indicates the reliability and capability of this method for quantitative detection applications. This work provides a new insight for highly sensitive and rapid SERS detection in non-volatile liquid-phase systems with optical fiber SERS probes and may find important practical applications in food safety and biomedicine.
Collapse
|
25
|
Ge Y, Wang F, Yang Y, Xu Y, Ye Y, Cai Y, Zhang Q, Cai S, Jiang D, Liu X, Liedberg B, Mao J, Wang Y. Atomically Thin TaSe 2 Film as a High-Performance Substrate for Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107027. [PMID: 35246940 DOI: 10.1002/smll.202107027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An atomically thin TaSe2 sample, approximately containing two to three layers of TaSe2 nanosheets with a diameter of 2.5 cm is prepared here for the first time and applied on the detection of various Raman-active molecules. It achieves a limit of detection of 10-10 m for rhodamine 6G molecules. The excellent surface-enhanced Raman scattering (SERS) performance and underlying mechanism of TaSe2 are revealed using spectrum analysis and density functional theory. The large adsorption energy and the abundance of filled electrons close to the Fermi level are found to play important roles in the chemical enhancement mechanism. Moreover, the TaSe2 film enables highly sensitive detection of bilirubin in serum and urine samples, highlighting the potential of using 2D SERS substrates for applications in clinical diagnosis, for example, in the diagnosis of jaundice caused by excess bilirubin in newborn children.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Fei Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yi Xu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ying Ye
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yu Cai
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Shengying Cai
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - DanFeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
26
|
Wang X, Xia Z, Fodjo EK, Deng W, Li D. A dual-responsive nanozyme sensor with ultra-high sensitivity and ultra-low cross-interference towards metabolic biomarker monitoring. J Mater Chem B 2022; 10:3023-3031. [PMID: 35352076 DOI: 10.1039/d1tb02796d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Accurate, sensitive and selective detection of metabolic biomarkers in biofluids are of vital significance for health self-monitoring and chronic disease prevention. Here, for the first time, a smart dual-responsive nanozyme sensor (DNS) was developed for simultaneous analysis of glucose and caffeine utilizing stimuli-responsive yolk-shell gold nanoparticles (GNPs)-embedded MIL-53 (Al) (GNPs@MIL-53) structures. After the introduction of glucose, GNPs@MIL-53 displays excellent glucose oxidase (GOx)-like activity to induce the conversion of glucose to gluconic acid and H2O2. H2O2 can oxidize 3,3',5,5'-tetramethylbenzidine (TMB) with the generation a bright-blue color, enabling in-field visualization and surface enhanced Raman scattering (SERS) detection of glucose. Upon the addition of caffeine, 2-aminoterephthalic acid modified MIL-53 can react with the caffeine to form intermolecular hydrogen-bonded complexes, leading to strong cyan fluorescence and significant Raman enhancements. The DNS with multi-channel signal outputs can simultaneously determine glucose and caffeine at concentrations of as low as 3 × 10-8 M and 1.2 × 10-11 M, respectively. Importantly, the DNS-based analytical system not only enables visual discrimination and accurate assay of glucose and caffeine in biofluids, but also exhibits negligible cross-interference between glucose and caffeine determination. The combined characteristics of high selectivity, enhanced accuracy and superior quantitative performance make our platform suitable for the point-of-care monitoring of chronic-disease-related metabolic biomarkers.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Zhaoping Xia
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Essy Kouadio Fodjo
- Laboratory of Physical Chemistry, UFR SSMT, Felix Houphouet Boigny University, 22 BP 582 Abidjan 22, Côte d'Ivoire
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| |
Collapse
|
27
|
Wang W, Pu S, Hu W, Gu J, Ren B, Tian ZQ, Liu G. Exploring Synergistic Effect of Capillary Force and Electrostatic Attraction towards the SERS Sensitivity of D-SERS. Chem Commun (Camb) 2022; 58:3953-3956. [DOI: 10.1039/d2cc00824f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Constructing well defined nanostructure is the primary step realizing the SERS detection with high sensitivity. The solid substrate prepared by liquid-liquid interface self-assembly has been demonstrated with the controllable and...
Collapse
|
28
|
From lab to field: Surface-enhanced Raman scattering-based sensing strategies for on-site analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2021.116488] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Lin D, He Y, Dong R, Li W, Meng F, Zhang Y, Yang L. The rapid SERS detection of succinylcholine chloride in human plasma is based on the high affinity between quaternary ammonium salt structures. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120172. [PMID: 34273893 DOI: 10.1016/j.saa.2021.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/26/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Succinylcholine chloride (SCC) is a common poison that threatens human life. At present, there is a lack of research on its on-site rapid detection methods. In this work, the use of gold nanorods as an enhanced substrate based on the high affinity between the quaternary ammonium salt structure can achieve rapid SERS detection of SCC in plasma. The long alkane chain structure of cetyltrimethylammonium bromide (CTAB) and the quaternary ammonium salt structure of SCC have a high molecular affinity, so that the target molecule can show a strong and obvious characteristic signal of SERS. Combined with a simple pretreatment method, acetonitrile is used as a protein precipitation agent to effectively remove matrix interference. The constructed SERS substrate can achieve the sensitive detection of 2 × 10-8 M level of SCC in plasma samples and has high detection reproducibility. The entire pre-processing and testing process can be completed within 7 min, which can be used as an important technical basis for the preliminary identification of on-site SCC-related drug cases. The research results provide an effective solution for the establishment of SCC analysis strategies in complex matrices, and can provide new ideas for solving the problems of difficult identification of common poisons in the field and the lack of rapid detection methods on site.
Collapse
Affiliation(s)
- Dongyue Lin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China; Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031,China
| | - Yao He
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ronglu Dong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; University of Science and Technology of China, Hefei 230026, China
| | - Wei Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Fanli Meng
- Northeastern University, Shenyang 110819, China
| | - Yunfeng Zhang
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China.
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031,China.
| |
Collapse
|
30
|
A simple and reliable approach for the fabrication of nanoporous silver patterns for surface-enhanced Raman spectroscopy applications. Sci Rep 2021; 11:22295. [PMID: 34785690 PMCID: PMC8595463 DOI: 10.1038/s41598-021-01727-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/26/2021] [Indexed: 11/27/2022] Open
Abstract
The fabrication of plasmonic nanostructures with a reliable, low cost and easy approach has become a crucial and urgent challenge in many fields, including surface-enhanced Raman spectroscopy (SERS) based applications. In this frame, nanoporous metal films are quite attractive, due to their intrinsic large surface area and high density of metal nanogaps, acting as hot-spots for Raman signal enhancement. In this paper, we report a detailed study on the fabrication of nanoporous silver-based SERS substrates, obtained by the application of two successive treatments with an Inductively Coupled Plasma (ICP) system, using synthetic air and Ar as feeding gases. The obtained substrates exhibit a quite broad plasmonic response, covering the Vis–NIR range, and an enhancement factor reaching 6.5 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times\, 10^7$$\end{document}×107, estimated by using 4-mercaptobenzoic acid (4-MBA) as probe molecule at 532 nm. Moreover, the substrates exhibit a quite good spatial reproducibility on a centimeter scale, which assures a good signal stability for analytical measurements. Globally, the developed protocol is easy and cost effective, potentially usable also for mass production thanks to the remarkable inter-batches reproducibility. As such, it holds promise for its use in SERS-based sensing platforms for sensitive detection of targets molecules.
Collapse
|
31
|
Das GM, Managò S, Mangini M, De Luca AC. Biosensing Using SERS Active Gold Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2679. [PMID: 34685120 PMCID: PMC8539114 DOI: 10.3390/nano11102679] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has become a powerful tool for biosensing applications owing to its fingerprint recognition, high sensitivity, multiplex detection, and biocompatibility. This review provides an overview of the most significant aspects of SERS for biomedical and biosensing applications. We first introduced the mechanisms at the basis of the SERS amplifications: electromagnetic and chemical enhancement. We then illustrated several types of substrates and fabrication methods, with a focus on gold-based nanostructures. We further analyzed the relevant factors for the characterization of the SERS sensor performances, including sensitivity, reproducibility, stability, sensor configuration (direct or indirect), and nanotoxicity. Finally, a representative selection of applications in the biomedical field is provided.
Collapse
Affiliation(s)
| | - Stefano Managò
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| | | | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Second Unit, Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (G.M.D.); (M.M.)
| |
Collapse
|
32
|
Zhang D, Liang P, Chen W, Tang Z, Li C, Xiao K, Jin S, Ni D, Yu Z. Rapid field trace detection of pesticide residue in food based on surface-enhanced Raman spectroscopy. Mikrochim Acta 2021; 188:370. [PMID: 34622367 DOI: 10.1007/s00604-021-05025-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022]
Abstract
Surface-enhanced Raman spectroscopy is an alternative detection tool for monitoring food security. However, there is still a lack of a conclusion of SERS detection with respect to pesticides and real sample analysis, and the summary of intelligent algorithms in SERS is also a blank. In this review, a comprehensive report of pesticides detection using SERS technology is given. The SERS detection characteristics of different types of pesticides and the influence of substrate on inspection are discussed and compared by the typical ways of classification. The key points, including the progress in real sample analysis and Raman data processing methods with intelligent algorithm, are highlighted. Lastly, major challenges and future research trends of SERS analysis of pesticide residue are also addressed. SERS has been proven to be a powerful technique for rapid test of residue pesticides in complex food matrices, but there still is a tremendous development space for future research.
Collapse
Affiliation(s)
- De Zhang
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China.
| | - Wenwen Chen
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Chen Li
- Jiangxi Sericulture and Tea Research Institute, Nanchang, 330203, China
| | - Kunyue Xiao
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Dejiang Ni
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi Yu
- College of Horticulture & Forestry Sciences, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Wang XA, Shen W, Zhou B, Yu D, Tang X, Liu J, Huang X. The rationality of using core -shell nanoparticles with embedded internal standards for SERS quantitative analysis based glycerol-assisted 3D hotspots platform. RSC Adv 2021; 11:20326-20334. [PMID: 35479874 PMCID: PMC9033995 DOI: 10.1039/d1ra01957k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Surface enhanced Raman spectroscopy (SERS) is a promising sensing technique that can provide unique chemical and structural fingerprint information, but gaining reliable SERS quantitative data with high sensitivity and stability still remains a challenge. Although using a molecule as an internal standard (IS) can improve the SERS quantitative capability, the reliability and SERS measuring conditions for signal fluctuations during calibration based on IS are yet to be explored when the embedded IS molecules and target objects are located in different environments. Herein, a 3D hotspot matrix SERS platform based on Au@4-MPy@AgNPs was constructed in water with the assistance of glycerol and the dynamic signal changes from the IS, i.e. 4-Mpy, and target molecules were monitored during the process of evaporation with high sensitivity and stability. In contrast to the traditional water-dispersed drying film system, the variation trends of IS and target molecules were consistent in the glycerol-assisted liquid film protection system. Therefore, it is reasonable to calibrate the signal fluctuation by utilizing the embedded IS based on the construction strategy of a glycerol-assisted 3D hotspot platform. This work demonstrates a rational, reliable and precise SERS quantitative technique for testing analyte concentrations in practical systems and has great application prospects in the field of analytical chemistry.
Collapse
Affiliation(s)
- Xiao-An Wang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Wei Shen
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Binbin Zhou
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Department of Mechanical Engineering, City University of Hong Kong Kowloon Hong Kong China
| | - Daoyang Yu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Xianghu Tang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
| | - Jinhuai Liu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Xingjiu Huang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences Hefei 230031 China +86-551-65591132 +86-551-65591142
- Institute of Physical Science and Information Technology, Anhui University Hefei 230601 China
| |
Collapse
|
34
|
Liu L, Li D, Deng W. Stimuli-responsive microgels with fluorescent and SERS activities for water and temperature sensing. Biosens Bioelectron 2021; 180:113138. [PMID: 33706159 DOI: 10.1016/j.bios.2021.113138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/23/2021] [Accepted: 02/28/2021] [Indexed: 11/29/2022]
Abstract
Design and application of stimulus-responsive microgels is still in its infancy but is an exhilarating topic in controllable sensing device. Here, we have fabricated a dual-responsive platform capable of both sensitive on-spot fluorescence analysis and reliable surface-enhanced Raman scattering (SERS) quantification of water and temperature by in-situ encapsulating 4,4'-dimercaptoazobenzene (DMAB), meso-formyl-1,3,5,7-tetramethyl pyrromethene fluoroborate (FPF) probe and Ag nanoparticles (AgNPs) into polyvinyl alcohol (PVA) microgels. The smart microgels exhibit ultra-sensitive (detection limit 10-4% v/v) and reversible response towards water due to the liner relationship between network volume and SERS performance of the microgels. Furthermore, the presence of water triggers the conversion of FPF to aldehyde hydrate, facilitating visual assay of trace water in matrix samples through the enhanced fluorescence signals. Interestingly, the SERS signals can be precisely tuned by the thermo-sensitive microgels substrate, thus achieving the temperature monitoring from 32 to 50 °C. The microgels-based sensor has fast-response (2 min), excellent stability, and enables accurate and reliable response of water in organic solvent and pharmaceutical products. As a smart and flexible sensor, the hybrid microgels will facilitate the field of POC analysis, as well as molecular recognition in the future.
Collapse
Affiliation(s)
- Lulu Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
35
|
Ge M, Li P, Zhou G, Chen S, Han W, Qin F, Nie Y, Wang Y, Qin M, Huang G, Li S, Wang Y, Yang L, Tian Z. General Surface-Enhanced Raman Spectroscopy Method for Actively Capturing Target Molecules in Small Gaps. J Am Chem Soc 2021; 143:7769-7776. [PMID: 33988987 DOI: 10.1021/jacs.1c02169] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over the past decade, many efforts have been devoted to designing and fabricating substrates for surface-enhanced Raman spectroscopy (SERS) with abundant hot spots to improve the sensitivity of detection. However, there have been many difficulties involved in causing molecules to enter hot spots actively or effectively. Here, we report a general SERS method for actively capturing target molecules in small gaps (hot spots) by constructing a nanocapillary pumping model. The ubiquity of hot spots and the inevitability of molecules entering them lights up all the hot spots and makes them effective. This general method can realize the highly sensitive detection of different types of molecules, including organic pollutants, drugs, poisons, toxins, pesticide residues, dyes, antibiotics, amino acids, antitumor drugs, explosives, and plasticizers. Additionally, in the dynamic detection process, an efficient and stable signal can be maintained for 1-2 min, which increases the practicality and operability of this method. Moreover, a dynamic detection process like this corresponds to the processes of material transformation in some organisms, so the method can be used to monitor transformation processes such as the death of a single cell caused by photothermal stimulation. Our method provides a novel pathway for generating hot spots that actively attract target molecules, and it can achieve general ultratrace detection of diverse substances and be applied to the study of cell behaviors in biological systems.
Collapse
Affiliation(s)
- Meihong Ge
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pan Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Guoliang Zhou
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Siyu Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Han
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Feng Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuman Nie
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Yaoxiong Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Miao Qin
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guangyao Huang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaofei Li
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yongtao Wang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,University of Science & Technology of China, Hefei, Anhui 230026, P. R. China
| | - Liangbao Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China.,Department of Pharmacy, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
36
|
Gao R, Li D, Zheng S, Gu H, Deng W. Colorimetric/fluorescent/Raman trimodal sensing of zinc ions with complexation-mediated Au nanorod. Talanta 2021; 225:121975. [PMID: 33592723 DOI: 10.1016/j.talanta.2020.121975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/30/2022]
Abstract
Accurate and selective in-field detection of metal ions in complex media has gained wide interests due to the complexed matrices and weak affinity towards sensing surface. Herein, we develop a first trimodal method for sensing of Zn2+ in complex matrices by stimuli-responsive N-[6-piperazinyl-2-pyridinyl]-N-(2-pyridinylmethyl)-2-Pyridinemethanamine dithiocarbamates (DPY) modified gold nanorods (GNRs-DPY). The presence of Zn2+ triggers the aggregation of GNRs-DPY, leading to increment of color and fluorescence intensity of the sensing system, which could be visually discerned with bare eye. Moreover, the intensive electromagnetic enhancement among "hot spots" of GNRs, generated during self-aggregation of the GNRs-DPY caused by Zn2+, lowers the detection limit of SERS assay to 6 × 10-3 pM. It is noteworthy that GNRs-DPY based sensing platform not only enables distinguishing Zn2+ from Cd2+, with simplicity and rapidity, but also demonstrates as trimodal nanoprobe for sensitive and selective quantitative determination of Zn2+ in different matrices. Therefore, the GNRs-DPY provides a new strategy for accurate and credible on-spot determination of Zn2+ in complicated specimens, as well as offering multiple applications in point-of-care monitoring.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Haixin Gu
- Shanghai Fire Research Institute of MEM, 918 Minjing Road, Shanghai, 200438, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
37
|
Peng X, Li D, Li Y, Xing H, Deng W. Plasmonic tunable Ag-coated gold nanorod arrays as reusable SERS substrates for multiplexed antibiotics detection. J Mater Chem B 2021; 9:1123-1130. [PMID: 33427845 DOI: 10.1039/d0tb02540b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibiotic contaminants in aqueous media pose a serious threat to human and ecological environments. Therefore, it is necessary to develop robust strategies to detect antibiotic residues. For this purpose, a self-assembly and in situ electrochemical reduction method is utilized to tailor silver nanoparticles (AgNPs)-coated GNRs (AgNPs/GNRs) large-scale vertical arrays. These AgNPs/GNRs arrays exhibit outstanding surface-enhanced Raman scattering (SERS) activities because of abundant Raman hot-spots among the adjacent AgNPs and GNRs, but also excellent stability and reproducibility due to the close-packed arrayed nanostructure. These remarkable features validate this arrayed substrate for high-sensitivity 4-aminothiophenol analysis with a detection limit of 0.35 pM and self-cleaning via electrochemical stripping of the adsorbed analytes and AgNPs from the GNRs arrays, therefore realizing renewable SERS applications. Moreover, the distinct SERS performance of AgNPs/GNRs arrays is verified via the analysis of multiplexed antibiotics at tens of picomolar level and no apparent changes of SERS activities are observed when recyclability is explored. The result demonstrates that the proposed AgNPs/GNRs arrays provide a novel strategy for avoiding conventional, disposable SERS substrates, as well as expanding SERS applications for simultaneous sensing and stripping of environmental contaminants.
Collapse
Affiliation(s)
- Xiaoya Peng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. China.
| | | | | | | | | |
Collapse
|
38
|
Zhang D, Tang L, Chen J, Tang Z, Liang P, Huang Y, Cao M, Zou M, Ni D, Chen J, Yu Z, Jin S. Controllable Self-Assembly of SERS Hotspots in Liquid Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:939-948. [PMID: 33397111 DOI: 10.1021/acs.langmuir.0c03323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable synthesis of novel metal nanoparticles and effective capture of hotspots are of great significance for SERS (surface-enhanced Raman spectroscopy) detection. Therefore, in this paper, a green controllable synthesis method of gold nanoparticle was achieved via epigallocatechin gallate reduction. Different morphologies of gold nanoparticles were synthesized just by changing the solution pH values, and the growth kinetics of AuNPs (gold nanoparticles) were systematically studied. The synthetic AuNPs were put in a droplet to study dynamic variations of self-assembly SERS hotspots from the liquid sol state to the solid dry state. The addition of halogen ions in the droplet can controllably regulate the self-assembly three-dimensional hotspot model of gold nanoparticles in the evaporation process of a droplet, during which the most enhancement effect can be easily captured. The dynamically changing images of nanoparticles in the process were graphically described based on the internal interaction forces of a droplet. Two stronger areas in the changes of SERS intensity were achieved with a high concentration of halogen ions, while only one maximum intensity area was obtained with a low concentration of halogen ions added. This method can effectively avoid complex and unpredictable microenvironments of SERS substrates in the liquid drop, further improving the reproducibility of SERS detection as well as broadening it to biological applications.
Collapse
Affiliation(s)
- De Zhang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Lisha Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | - Zhexiang Tang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| | | | | | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
- China Inspection Laboratory Technologies Co. Ltd. (CILT), No. A 3, Gaobeidian Road, Chaoyang District, Beijing 100123, China
| | | | | | | | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, 310018 Hangzhou, China
| |
Collapse
|
39
|
Droplet array for open-channel high-throughput SERS biosensing. Talanta 2020; 218:121206. [PMID: 32797932 DOI: 10.1016/j.talanta.2020.121206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022]
Abstract
Open-channel and high throughput are two important aspects of clinical diagnosis, correlation biochemical analysis, cell culture techniques and food safety. Here, we propose the mini-pillar based array for open-channel and high-throughput SERS detection of miRNA. The polydimethylsiloxane (PDMS) mini-pillars are used as a high-throughput platform, which have good anchoring and aggregation effects on microdroplets, greatly reducing the amount of analytical solution and facilitate the homogeneous sample distribution after evaporation. The deposited gold nanorods (Au NRs) on the pillars with optimized diameter served as SERS-active substrate, can greatly improve the sensitivity of SERS signal compared to other planar substrates. On the open-channel biological chip, sensitive, simultaneous, and specific detection of breast cancer marker miRNA-1246 can be performed. In this mini-pillar array SERS system, the limit of detection (LOD) is 10-12 M. The mini-pillar array shows enormous potential for open channel, high-throughput biomolecular detection, providing an opportunity for biomedical point-of-care testing (POCT) and drug screening.
Collapse
|
40
|
Muneer S, Sarfo DK, Ayoko GA, Islam N, Izake EL. Gold-Deposited Nickel Foam as Recyclable Plasmonic Sensor for Therapeutic Drug Monitoring in Blood by Surface-Enhanced Raman Spectroscopy. NANOMATERIALS 2020; 10:nano10091756. [PMID: 32899949 PMCID: PMC7558188 DOI: 10.3390/nano10091756] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
A sensitive and recyclable plasmonic nickel foam sensor has been developed for surface-enhanced Raman spectroscopy (SERS). A simple electrochemical method was used to deposit flower-shaped gold nanostructures onto nickel foam substrate. The high packing of the gold nanoflowers onto the nickel foam led to a high enhancement factor (EF) of 1.6 × 1011. The new SERS sensor was utilized for the direct determination of the broad-spectrum β-lactam carbapenem antibiotic meropenem in human blood plasma down to one pM. The sensor was also used in High Performance Liquid Chromatography (HPLC)-SERS assembly to provide fingerprint identification of meropenem in human blood plasma. Moreover, the SERS measurements were reproducible in aqueous solution and human blood plasma (RSD = 5.5%) and (RSD = 2.86%), respectively at 200 µg/mL (n = 3), and successfully recycled using a simple method, and hence, used for the repeated determination of the drug by SERS. Therefore, the new sensor has a strong potential to be applied for the therapeutic drug monitoring of meropenem at points of care and intensive care units.
Collapse
Affiliation(s)
- Saiqa Muneer
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Daniel K. Sarfo
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Godwin A. Ayoko
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
| | - Nazrul Islam
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George St., Brisbane, QLD 4000, Australia;
| | - Emad L. Izake
- School of Chemistry and Physics, Science and Engineering Faculty, Queensland University of Technology, 2 George St., Brisbane QLD 4000, Australia; (S.M.); (D.K.S.); (G.A.A.)
- Correspondence: ; Tel.: +61-7-3138-2501
| |
Collapse
|
41
|
Dutra MAL, Marques NDN, Fernandes RDS, de Souza Filho MDSM, Balaban RDC. ECO-FRIENDLY hybrid hydrogels for detection of phenolic RESIDUES in water using SERS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 200:110771. [PMID: 32464443 DOI: 10.1016/j.ecoenv.2020.110771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Herein is presented a simple and sensible method to determine organic pollutants in water, based on the utilization of silver nanoparticles (AgNPs) loaded in Polyacrylamide (PAAm)/starch hybrid hydrogels combined with surface-enhanced Raman scattering (SERS) spectroscopy. The materials were characterized by swelling degree studies, UV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and scanning electron microscopy (SEM). PAAm/starch hydrogels showed variable swelling capacity, according to the synthetic molar composition. The most promising results were attributed to lower concentrations of starch and crosslink agent (N,N'-methylenebisacrylamide - MBA). Spectroscopic analysis confirmed the formation of AgNPs, by noticing the peak at around 420 nm, due to its surface plasmon resonance (SPR) effect. The results showed that AgNPs were stabilized by hydrogels networks. The average size of the AgNPs was smaller than 100 nm and the size and quantity of nanoparticles were influenced by the molar composition of the hydrogel matrix. The SERS substrate based on the AgNPs-PAAm/starch exhibited reproducibility, stability, and limit of detection (LOD) of phenol in water of 1 × 10-8 M. The average mass of AgNPs-PAAm/starch hydrogels used for each detection analysis was around 10 mg. The spectra with enhanced intensities were possible due to a large number of hot spots generated on the AgNPs-PAAm/starch hydrogel substrate, which leads to potential use for organic pollutant detection. In addition, there is also the possibility of reusing the hydrogel matrix substrate in other analyzes.
Collapse
|
42
|
Rheological profile in mixer torque rheometer of samples containing furazolidone and different binders. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Cys-functionalized AuNP substrates for improved sensing of the marine toxin STX by dynamic surface-enhanced Raman spectroscopy. Anal Bioanal Chem 2020; 412:4609-4617. [PMID: 32548768 DOI: 10.1007/s00216-020-02710-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 10/24/2022]
Abstract
Saxitoxin (STX) as one of the most harmful and typical paralytic shellfish toxins, is posing a serious threat to environmental and human health, thus it is essential to develop a sensitive and reliable analytical method for STX detection. Herein, we proposed a strategy for rapid and sensitive detection of STX with surface-enhanced Raman spectroscopy (SERS), by employing cysteine modified gold nanoparticles (Cys-AuNPs) as SERS probe to capture STX molecules through electrostatic interactions and multiple hydrogen bonds between Cys and STX molecules. Moreover, the XPS and zeta potential results indicated that Cys could bond to AuNPs through Au-S bonds and the addition of STX could induce the efficient aggregation of Cys-AuNPs owing to the presence of electrostatic interactions and multiple hydrogen bonds between Cys and STX molecules. Furthermore, considering the high sensitivity and stability of the dynamic surface-enhanced Raman spectroscopy (D-SERS) strategy with the formation of a 3D hotspot matrix, the highly sensitive detection of STX was realized to a level of 1 × 10-7 M by using the D-SERS strategy. Consequently, Cys-AuNPs as high affinity substrates can provide high sensitivity for the detection of STX through the D-SERS strategy. Graphical abstract.
Collapse
|
44
|
Li S, Li P, Ge M, Wang H, Cheng Y, Li G, Huang Q, He H, Cao C, Lin D, Yang L. Elucidation of leak-resistance DNA hybridization chain reaction with universality and extensibility. Nucleic Acids Res 2020; 48:2220-2231. [PMID: 32020194 PMCID: PMC7049695 DOI: 10.1093/nar/gkaa016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/30/2019] [Accepted: 01/23/2020] [Indexed: 12/14/2022] Open
Abstract
Hybridization chain reaction (HCR) was a significant discovery for the development of nanoscale materials and devices. One key challenge for HCR is the vulnerability to background leakage in the absence of the initiator. Here, we systematically analyze the sources of leakage and refine leak-resistant rule by using molecular thermodynamics and dynamics, biochemical and biophysical methods. Transient melting of DNA hairpin is revealed to be the underlying cause of leakage and that this can be mitigated through careful consideration of the sequence thermodynamics. The transition threshold of the energy barrier is proposed as a testing benchmark of leak-resistance DNA hairpins. The universal design of DNA hairpins is illustrated by the analysis of hsa-miR-21-5p as biomarker when used in conjunction with surface-enhanced Raman spectroscopy. We further extend the strategy for specific signal amplification of miRNA homologs. Significantly, it possibly provides a practical route to improve the accuracy of DNA self-assembly for signal amplification, and that could facilitate the development of sensors for the sensitive detection of interest molecules in biotechnology and clinical medicine.
Collapse
Affiliation(s)
- Shaofei Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,School of Life Science, Anhui University, Hefei, Anhui 230601, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pan Li
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Meihong Ge
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongzhi Wang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yizhuang Cheng
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Gan Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Huan He
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chentai Cao
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongyue Lin
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liangbao Yang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
45
|
A novel SERS selective detection sensor for trace trinitrotoluene based on meisenheimer complex of monoethanolamine molecule. Talanta 2020; 218:121157. [PMID: 32797911 DOI: 10.1016/j.talanta.2020.121157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/06/2020] [Accepted: 05/10/2020] [Indexed: 11/21/2022]
Abstract
Trinitrotoluene (TNT) is a primary component in chemical explosives, making them a common focus in public safety detection. However, it is very difficult to achieve selective and sensitive detection of the TNT molecule in practical application. In the present study, a simple surface enhanced Raman scattering (SERS) sensing based on monoethanolamine (MEA) - modified gold nanoparticles (Au NPs) was expanded for high selectivity and sensitive detecting of TNT in an envelope, luggage, lake water, and clothing through a quickly sampling and detection process. The monoethanolamine molecule based on Meisenheimer complex lights up ultra-high Raman scattering of a nonresonant molecule on the superficial coat of gold nanoparticles. Using this detection sensor, a molecular bridge can be established to selectively detect trinitrotoluene with a detection limit of 21.47 pM. We were able to rapidly identification trinitrotoluene molecule with a powerful selective over the familiar interfering substances nitrophenol, picric acid, 2,4-dinitrophenol, and 2,4-dinitrotoluene. The outcome in this work supply an efficient solution to the test of trinitrotoluene and to establishing a SERS sensor analytical strategy. The studies have demonstrated that the MEA-Au NPs based SERS sensing can be potentially used in field detection the trace amount of chemical explosives for public security.
Collapse
|
46
|
Guo Y, Li D, Zheng S, Xu N, Deng W. Utilizing Ag-Au core-satellite structures for colorimetric and surface-enhanced Raman scattering dual-sensing of Cu (II). Biosens Bioelectron 2020; 159:112192. [PMID: 32291247 DOI: 10.1016/j.bios.2020.112192] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
This study develops a dual-channel colorimetric and surface-enhanced Raman scattering (SERS) strategy for detection of Cu2+ utilizing Ag-Au core-satellite nanostructures. 4-mercaptobenzoic acid (MBA) modified Ag nanoparticles (AgNPs@MBA) and 4-mercaptopyridine (Mpy) capped AuNPs (GNPs@Mpy) are first designed via metal-sulfur bonds, respectively. Benefiting from the Cu2+-triggered NPs self-aggregation, the dispersion of AgNPs-GNPs (AgNPs@MBA + GNPs@Mpy) is turned into AgNPs-Cu2+-GNPs core-satellite structures. Because of the presence of pyridyl nitrogen and carboxy group which have specific coordination ability towards Cu2+, induces a certain aggregation of NPs. As well it can be obviously discerned by the visual assay and easily captured by SERS analysis. The UV-Vis method exhibits good linearity in the ranging from 0.1 μM-200 μM for Cu2+, while SERS method displays good linear response from 1 pM to 100 μM. The detection limit of Cu2+ is 0.032 μM by colorimetry and 0.6 pM by SERS method, which is significantly lower than the acceptable limit of Cu2+ in drinking water (20 μM) set by the US EPA. Furthermore, colorimetric and SERS assay based on AgNPs-Cu2+-GNPs core-satellite structures is used to determine Cu2+ in various waters and soils, and the detection results are consistent with the traditional atomic analysis methods. This work offers a new method for detecting Cu2+ in environmental samples, and the plasmonic nanostructure provides new entry point for development of multiplexed sensing platform for in-field application.
Collapse
Affiliation(s)
- Yanyan Guo
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Dan Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China.
| | - Siqing Zheng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Niwei Xu
- Hunan Taradit Onal Chinese Medical College, 136 Lusong Road, Zhuzhou, Hunan, 412012, PR China
| | - Wei Deng
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| |
Collapse
|
47
|
Wu J, Zhang L, Huang F, Ji X, Dai H, Wu W. Surface enhanced Raman scattering substrate for the detection of explosives: Construction strategy and dimensional effect. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121714. [PMID: 31818672 DOI: 10.1016/j.jhazmat.2019.121714] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/08/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) technology has been reported to be able to quickly and non-destructively identify target analytes. SERS substrate with high sensitivity and selectivity gave SERS technology a broad application prospect. This contribution aims to provide a detailed and systematic review of the current state of research on SERS-based explosive sensors, with particular attention to current research advances. This review mainly focuses on the strategies for improving SERS performance and the SERS substrates with different dimensions including zero-dimensional (0D) nanocolloids, one-dimensional (1D) nanowires and nanorods, two-dimensional (2D) arrays, and three-dimensional (3D) networks. The effects of elemental composition, the shape and size of metal nanoparticles, hot-spot structure and surface modification on the performance of explosive detection are also reviewed. In addition, the future development tendency and application of SERS-based explosive sensors are prospected.
Collapse
Affiliation(s)
- Jingjing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- Key Laboratory for Organic Electronics and Information, National Jiangsu Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China.
| | - Fang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingxiang Ji
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Hongqi Dai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
48
|
Dynamic surface-enhanced Raman spectroscopy for the detection of acephate residue in rice by using gold nanorods modified with cysteamine and multivariant methods. Food Chem 2020; 310:125855. [DOI: 10.1016/j.foodchem.2019.125855] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/14/2019] [Accepted: 11/01/2019] [Indexed: 12/11/2022]
|
49
|
Zhang D, Liang P, Yu Z, Xia J, Ni D, Wang D, Zhou Y, Cao Y, Chen J, Chen J, Jin S. Self-assembled "bridge" substance for organochlorine pesticides detection in solution based on Surface Enhanced Raman Scattering. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121023. [PMID: 31476717 DOI: 10.1016/j.jhazmat.2019.121023] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 05/29/2023]
Abstract
Pesticide residues pose a great threat to human health, and it is an urgent matter to realize fast and accurate detection of pesticide. SERS (Surface Enhanced Raman Scattering), as a nondestructive detection technology, performs a prominent role in fast detection field due to the strong surface plasmon resonance from short range effect between analyte and nanoparticle. Therefore, in order to solve the incompatibility between organochlorine pesticides molecules and noble metal nanoparticles, this paper proposed a concept of "bridge" substances acting as an interconnect function role to achieve a binding model (object-binder-metal (OBM)) and developed a droplet concentration method to enhance Raman signals. Both combination mode of pesticide molecules to bridge molecules and energy transfer of SERS experiment may relate to the compound ring according to the changes of peaks based on surface plasmon resonance. The selectivity and stability of different bridge substances interacting with pesticides molecules were illumined via binding energy of these two substances obtained by DFT calculations. A droplet can capture nanoparticles and analytes, which is conducive to SERS performance. Chloride ions in the solution contribute to rearrangement of nanoparticles and can validly promote surface activation of Ag nanoparticles to improve energy transfer efficiency of plasma resonance, resulting in superior SERS effect.
Collapse
Affiliation(s)
- De Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China.
| | - Zhi Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China.
| | - Jing Xia
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Dejiang Ni
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Dan Wang
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Yongfeng Zhou
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Yu Cao
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| | - Jie Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jinlei Chen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, 430070, Wuhan, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, 310018, Hangzhou, China
| |
Collapse
|
50
|
Zhang W, Qin H, Liu Z, Du H, Li H, Fang L, Chen Z. Quantitative Determination of Auramine O in Bean Curd Sheets by Dispersive Solid Phase Extraction with Dynamic Surfaced-Enhanced Raman Spectroscopy. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1702669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Wenjun Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Hongwei Qin
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Zhen Liu
- Institute for Advanced Interdisciplinary Research (IAIR), School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Hongxia Du
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Huidong Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Liping Fang
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| | - Zilei Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Ji’nan, China
| |
Collapse
|