1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
George J, Salcedo R, Greenberg R, Elshendidi H, McGregor D, Burton-Pye B, Francesconi LC, Paulenova A, Gelis AV, Poineau F. Speciation of Technetium Dibutylphosphate in the Third Phase Formed in the TBP/HNO 3 Solvent Extraction System. ACS OMEGA 2024; 9:15527-15534. [PMID: 38585070 PMCID: PMC10993392 DOI: 10.1021/acsomega.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/09/2024]
Abstract
The speciation of technetium in the nitric acid/dibutylphosphoric acid (HDBP)-n-dodecane system was studied by extended X-ray absorption fine structure (EXAFS) spectroscopy and theoretical methods. Tetravalent technetium, produced by the hydrazine reduction of TcO4- in 3 M HNO3, was extracted by HDBP in n-dodecane (30% by volume). During extraction, the splitting of the organic phase into a heavy phase and a light phase was observed. EXAFS analysis is consistent with the presence of Tc(NO3)3(DBP)(HDBP)2 in the light phase and Tc(NO3)2(DBP)2(HDBP)2 in the heavy phase. Density functional theory calculations at the B3LYP/6-31G* level confirm the stability of the proposed species and indicate that stereoisomers -mer- and fac-Tc(NO3)3(DBP)(HDBP)2 for the light phase and cis- and trans-Tc(NO3)2(DBP)2(HDBP)2 for the heavy phase] could coexist in the system (in the n-dodecane solution). Mechanisms of formation of Tc(NO3)3(DBP)(HDBP)2 and Tc(NO3)2(DBP)2(HDBP)2 are proposed.
Collapse
Affiliation(s)
- Jonathan George
- Radiochemistry
Program, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Ramsey Salcedo
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Hunter
College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman
College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Rachel Greenberg
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Hunter
College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman
College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Hossam Elshendidi
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Hunter
College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
- Lehman
College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Donna McGregor
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Lehman
College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Benjamin Burton-Pye
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Lehman
College of the City University of New York, 250 Bedford Park Boulevard West, Bronx, New York 10468, United States
| | - Lynn C. Francesconi
- Ph.D.
Program in Chemistry, Graduate Center of
the City University of New York, New York, New York 10016, United States
- Hunter
College of the City University of New York, 695 Park Avenue, New York, New York 10065, United States
| | - Alena Paulenova
- School
of Nuclear Science and Engineering, 100 Radiation Center, Oregon State University, Corvallis, Oregon 97331-5903, United States
| | - Artem V. Gelis
- Radiochemistry
Program, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| | - Frederic Poineau
- Radiochemistry
Program, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, United States
| |
Collapse
|
3
|
Porębska D, Orzeł Ł, Rutkowska-Żbik D, Stochel G, van Eldik R. Synthesis and characterization of cyanocobalamin conjugates with Pt(II) complexes towards potential therapeutic applications. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
A potential novel and general route for bromide replacement in diimine ReI tricarbonyl complexes leading to carboxylates: The effect in luminescence. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Macedo LJA, Rodrigues FP, Hassan A, Máximo LNC, Zobi F, da Silva RS, Crespilho FN. Non-destructive molecular FTIR spectromicroscopy for real time assessment of redox metallodrugs. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1094-1102. [PMID: 34935794 DOI: 10.1039/d1ay01198g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent emergence of FTIR spectromicroscopy (micro-FTIR) as a dynamic spectroscopy for imaging to study biological chemistry has opened new possibilities for investigating in situ drug release, redox chemistry effects on biological molecules, DNA and drug interactions, membrane dynamics, and redox reactions with proteins at the single cell level. Micro-FTIR applied to metallodrugs has been playing an important role since the last decade because of its great potential to achieve more robust and controlled pharmacological effects against several diseases, including cancer. An important aspect in the development of these drugs is to understand their cellular properties, such as uptake, accumulation, activity, and toxicity. In this review, we present the potential application of micro-FTIR and its importance for studying metal-based drugs, highlighting the perspectives of chemistry of living cells. We also emphasise bioimaging, which is of high importance to localize the cellular processes, for a proper understanding of the mechanism of action.
Collapse
Affiliation(s)
- Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Fernando P Rodrigues
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Ayaz Hassan
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| | - Leandro N C Máximo
- Department of Chemistry, Federal Institute of Education, Science and Technology, Goiano, Urutuai, GO 75790-000, Brazil
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, CH-1700, Switzerland
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
6
|
Schindler K, Zobi F. Anticancer and Antibiotic Rhenium Tri- and Dicarbonyl Complexes: Current Research and Future Perspectives. Molecules 2022; 27:539. [PMID: 35056856 PMCID: PMC8777860 DOI: 10.3390/molecules27020539] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Organometallic compounds are increasingly recognized as promising anticancer and antibiotic drug candidates. Among the transition metal ions investigated for these purposes, rhenium occupies a special role. Its tri- and dicarbonyl complexes, in particular, attract continuous attention due to their relative ease of preparation, stability and unique photophysical and luminescent properties that allow the combination of diagnostic and therapeutic purposes, thereby permitting, e.g., molecules to be tracked within cells. In this review, we discuss the anticancer and antibiotic properties of rhenium tri- and dicarbonyl complexes described in the last seven years, mainly in terms of their structural variations and in vitro efficacy. Given the abundant literature available, the focus is initially directed on tricarbonyl complexes of rhenium. Dicarbonyl species of the metal ion, which are slowly gaining momentum, are discussed in the second part in terms of future perspective for the possible developments in the field.
Collapse
Affiliation(s)
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin du Musée 9, 1700 Fribourg, Switzerland;
| |
Collapse
|
7
|
Sharma S. A, N. V, Kar B, Das U, Paira P. Target-specific mononuclear and binuclear rhenium( i) tricarbonyl complexes as upcoming anticancer drugs. RSC Adv 2022; 12:20264-20295. [PMID: 35919594 PMCID: PMC9281374 DOI: 10.1039/d2ra03434d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Metal complexes have gradually been attracting interest from researchers worldwide as potential cancer therapeutics. Driven by the many side effects of the popular platinum-based anticancer drug cisplatin, the tireless endeavours of researchers have afforded strategies for the design of appropriate metal complexes with minimal side effects compared to cisplatin and its congeners to limit the unrestricted propagation of cancer. In this regard, transition metal complexes, especially rhenium-based complexes are being identified and highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body. This is attributed the amazing photophysical properties of rhenium complexes together with their ability to selectively attack different organelles in cancer cells. Therefore, this review presents the properties of different rhenium-based complexes to highlight their recent advances as anticancer agents based on their cytotoxicity results. In this review, rhenium-based complexes are highlighted as promising cancer theranostics, which are endowed with the ability to detect and annihilate cancer cells in the body.![]()
Collapse
Affiliation(s)
- Ajay Sharma S.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Vaibhavi N.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamil Nadu, India
| |
Collapse
|
8
|
Karges J, Seo H, Cohen SM. Synthesis of tetranuclear rhenium(I) tricarbonyl metallacycles. Dalton Trans 2021; 50:16147-16155. [PMID: 34679156 DOI: 10.1039/d1dt02435c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Re(I) tricarbonyl complexes have received much attention due to their attractive photochemical, electrochemical, and biological properties. Beyond simple mononuclear complexes, multinuclear assemblies offer greater structural diversity and properties. Despite previous reports on the preparation of di-, tri-, or tetranuclear Re(I) tricarbonyl assemblies, the synthesis of these supramolecular structures remains challenging due to overall low yields or tedious purification protocols. Herein, the facile preparation and characterization of tetranuclear Re(I) tricarbonyl metallacycles with a square geometry is reported using a tetrazole-based ligand. The synthesis of the metallacycle was optimized using different metal precursors, solvents, temperatures, and reagent concentrations. Finally, the scope of suitable tetrazole-based ligands was explored to produce several tetranuclear Re(I) tricarbonyl-based metallacycles.
Collapse
Affiliation(s)
- Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Hyeonglim Seo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Nasiri Sovari S, Kolly I, Schindler K, Cortat Y, Liu SC, Crochet A, Pavic A, Zobi F. Efficient Direct Nitrosylation of α-Diimine Rhenium Tricarbonyl Complexes to Structurally Nearly Identical Higher Charge Congeners Activable towards Photo-CO Release. Molecules 2021; 26:5302. [PMID: 34500734 PMCID: PMC8434269 DOI: 10.3390/molecules26175302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022] Open
Abstract
The reaction of rhenium α-diimine (N-N) tricarbonyl complexes with nitrosonium tetrafluoroborate yields the corresponding dicarbonyl-nitrosyl [Re(CO)2(NO)(N-N)X]+ species (where X = halide). The complexes, accessible in a single step in good yield, are structurally nearly identical higher charge congeners of the tricarbonyl molecules. Substitution chemistry aimed at the realization of equivalent dicationic species (intended for applications as potential antimicrobial agents), revealed that the reactivity of metal ion in [Re(CO)2(NO)(N-N)X]+ is that of a hard Re acid, probably due to the stronger π-acceptor properties of NO+ as compared to those of CO. The metal ion thus shows great affinity for π-basic ligands, which are consequently difficult to replace by, e.g., σ-donor or weak π-acids like pyridine. Attempts of direct nitrosylation of α-diimine fac-[Re(CO)3]+ complexes bearing π-basic OR-type ligands gave the [Re(CO)2(NO)(N-N)(BF4)][BF4] salt as the only product in good yield, featuring a stable Re-FBF3 bond. The solid state crystal structure of nearly all molecules presented could be elucidated. A fundamental consequence of the chemistry of [Re(CO)2(NO)(N-N)X]+ complexes, it that the same can be photo-activated towards CO release and represent an entirely new class of photoCORMs.
Collapse
Affiliation(s)
- Sara Nasiri Sovari
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Isabelle Kolly
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Kevin Schindler
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Youri Cortat
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Shing-Chi Liu
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aurelien Crochet
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| | - Aleksandar Pavic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia;
| | - Fabio Zobi
- Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland; (S.N.S.); (I.K.); (K.S.); (Y.C.); (S.-C.L.); (A.C.)
| |
Collapse
|
10
|
Hernández-Romero D, Rosete-Luna S, López-Monteon A, Chávez-Piña A, Pérez-Hernández N, Marroquín-Flores J, Cruz-Navarro A, Pesado-Gómez G, Morales-Morales D, Colorado-Peralta R. First-row transition metal compounds containing benzimidazole ligands: An overview of their anticancer and antitumor activity. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213930] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Wang M, Murata K, Ishii K. Distorted Porphyrins with High Stability: Synthesis and Characteristic Electronic Properties of Mono- and Di-Nuclear Tricarbonyl Rhenium Tetraazaporphyrin Complexes. Chemistry 2021; 27:8994-9002. [PMID: 33913188 DOI: 10.1002/chem.202005042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/07/2022]
Abstract
Mono- and di-nuclear tricarbonyl Re(I) tetraazaporphyrin complexes (Re1 TAP and Re2 TAP) are investigated and compared with Re(I) phthalocyanine complexes (Re1 Pc and Re2 Pc). Although Re2 Pc is unstable in polar solvents, and easily undergoes demetallation reaction, the coordination of the TAP ligand significantly improves the tolerance toward polar solvents, affording more stability to Re2 TAP. Additionally, the incorporation of [Re(CO)3 ]+ unit(s) and the TAP ligand results in remarkable positive shifts in both oxidation and reduction potentials. Consequently, the more positive oxidation potentials of the ReTAP complexes significantly increase the tolerance toward oxidation, while the reduction potential indicates that Re2 TAP is suitable for a soluble electron acceptor. In contrast to Re1 Pc and Re2 Pc, Re1 TAP and Re2 TAP show unique broad Q bands, which can be attributed to the admixture of the π-π* and metal-to-ligand charge transfer characters, owing to the lowered π orbital energy in the TAP complexes. This study is useful for controlling electronic properties and realizing high stability in Pc analogues.
Collapse
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| |
Collapse
|
12
|
Huang Z, Wilson JJ. Therapeutic and Diagnostic Applications of Multimetallic Rhenium(I) Tricarbonyl Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhouyang Huang
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
13
|
Schindler K, Crochet A, Zobi F. Aerobically stable and substitutionally labile α-diimine rhenium dicarbonyl complexes. RSC Adv 2021; 11:7511-7520. [PMID: 35423250 PMCID: PMC8694950 DOI: 10.1039/d1ra00514f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes are described. The molecules are prepared in high yield from the cis–cis–trans-[Re(CO)2(tBu2bpy)Br2]− anion (2, where tBu2bpy is 4,4′-di-tert-butyl-2,2′-bipyridine), which can be isolated from the one electron reduction of the corresponding 17-electron complex (1). Compound 2 is stable in the solid state, but in solution it is oxidized by molecular oxygen back to 1. Replacement of a single bromide of 2 by σ-donor monodentate ligands (Ls) yields stable neutral 18-electron cis–cis–trans-[Re(CO)2(tBu2bpy)Br(L)] species. In coordinating solvents like methanol the halide is replaced giving the corresponding solvated cations. [Re(CO)2(tBu2bpy)Br(L)] species can be further reacted with Ls to prepare stable cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes in good yield. Ligand substitution of Re(i) complexes proceeds via pentacoordinate intermediates capable of Berry pseudorotation. In addition to the cis–cis–trans-complexes, cis–cis–cis- (all cis) isomers are also formed. In particular, cis–cis–trans-[Re(CO)2(tBu2bpy)(L)2]+ complexes establish an equilibrium with all cis isomers in solution. The solid state crystal structure of nearly all molecules presented could be elucidated. The molecules adopt a slightly distorted octahedral geometry. In comparison to similar fac-[Re(CO)3]+complexes, Re(i) diacarbonyl species are characterized by a bend (ca. 7°) of the axial ligands towards the α-diimine unit. [Re(CO)2(tBu2bpy)Br2]− and [Re(CO)2(tBu2bpy)Br(L)] complexes may be considered as synthons for the preparation of a variety of new stable diamagnetic dicarbonyl rhenium cis-[Re(CO)2]+ complexes, offering a convenient entry in the chemistry of the core. New synthetic routes to aerobically stable and substitutionally labile α-diimine rhenium(i) dicarbonyl complexes offer a convenient entry in the chemistry of the cis-[Re(CO)2]+ core.![]()
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Aurélien Crochet
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| | - Fabio Zobi
- Department of Chemistry, Fribourg University Chemin Du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
14
|
Marker SC, King AP, Granja S, Vaughn B, Woods JJ, Boros E, Wilson JJ. Exploring the In Vivo and In Vitro Anticancer Activity of Rhenium Isonitrile Complexes. Inorg Chem 2020; 59:10285-10303. [PMID: 32633531 PMCID: PMC8114230 DOI: 10.1021/acs.inorgchem.0c01442] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The established platinum-based drugs form covalent DNA adducts to elicit their cytotoxic response. Although they are widely employed, these agents cause toxic side-effects and are susceptible to cancer-resistance mechanisms. To overcome these limitations, alternative metal complexes containing the rhenium(I) tricarbonyl core have been explored as anticancer agents. Based on a previous study ( Chem. Eur. J. 2019, 25, 9206), a series of highly active tricarbonyl rhenium isonitrile polypyridyl (TRIP) complexes of the general formula fac-[Re(CO)3(NN)(ICN)]+, where NN is a chelating diimine and ICN is an isonitrile ligand, that induce endoplasmic reticulum (ER) stress via activation of the unfolded protein response (UPR) pathway are investigated. A total of 11 of these TRIP complexes were synthesized, modifying both the equatorial polypyridyl and axial isonitrile ligands. Complexes with more electron-donating equatorial ligands were found to have greater anticancer activity, whereas the axial ICN ligands had a smaller effect on their overall potency. All 11 TRIP derivatives trigger a similar phenotype that is characterized by their abilities to induce ER stress and activate the UPR. Lastly, we explored the in vivo efficacy of one of the most potent complexes, fac-[Re(CO)3(dmphen)(ptolICN)]+ (TRIP-1a), where dmphen = 2,9-dimethyl-1,10-phenanthroline and ptolICN = para-tolyl isonitrile, in mice. The 99mTc congener of TRIP-1a was synthesized, and its biodistribution in BALB/c mice was investigated in comparison to the parent Re complex. The results illustrate that both complexes have similar biodistribution patterns, suggesting that 99mTc analogues of these TRIP complexes can be used as diagnostic partner agents. The in vivo antitumor activity of TRIP-1a was then investigated in NSG mice bearing A2780 ovarian cancer xenografts. When administered at a dose of 20 mg/kg twice weekly, this complex was able to inhibit tumor growth and prolong mouse survival by 150% compared to the vehicle control cohort.
Collapse
Affiliation(s)
- Sierra C. Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - A. Paden King
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Samantha Granja
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Brett Vaughn
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Joshua J. Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell, University, Ithaca, New York 14853, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, Stony Brook, New York, 11794, United States
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
15
|
Rossier J, Delasoie J, Haeni L, Hauser D, Rothen-Rutishauser B, Zobi F. Cytotoxicity of Mn-based photoCORMs of ethynyl-α-diimine ligands against different cancer cell lines: The key role of CO-depleted metal fragments. J Inorg Biochem 2020; 209:111122. [PMID: 32497818 DOI: 10.1016/j.jinorgbio.2020.111122] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022]
Abstract
A series of tricarbonyl manganese complexes bearing 4-ethynyl-2,2'-bipyridine and 5-ethynyl-1,10-phenanthroline α-diimine ligands were synthetized, characterized and conjugated to vitamin B12, previously used as a vector for drug delivery, to take advantage of its water solubility and specificity toward cancer cells. The compounds act as photoactivatable carbon monoxide-releasing molecules rapidly liberating on average ca. 2.3 equivalents of CO upon photo-irradiation. Complexes and conjugates were tested for their anticancer effects, both in the dark and following photo-activation, against breast cancer MCF-7, lung carcinoma A549 and colon adenocarcinoma HT29 cell lines as well as immortalized human bronchial epithelial cells 16HBE14o- as the non-carcinogenic control. Our results indicate that the light-induced cytotoxicity these molecules can be attributed to both their released CO and to their CO-depleted metal fragments including liberated ligands.
Collapse
Affiliation(s)
- Jeremie Rossier
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Joachim Delasoie
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland
| | - Laetitia Haeni
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | - Daniel Hauser
- Adolphe Merkle Institute, Chemin des Verdiers 4, 1700 Fribourg, Switzerland
| | | | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
16
|
Rodrigues FP, Macedo LJA, Máximo LNC, Sales FCPF, da Silva RS, Crespilho FN. Real-time redox monitoring of a nitrosyl ruthenium complex acting as NO-donor agent in a single A549 cancer cell with multiplex Fourier-transform infrared microscopy. Nitric Oxide 2020; 96:29-34. [PMID: 31952991 DOI: 10.1016/j.niox.2020.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 10/25/2022]
Abstract
Multiplex Fourier-transform infrared microscopy (μFT-IR) helped to monitor trans-[Ru(NO) (NH3)4 (isn)]3+(I), uptake by A549 lung carcinoma cell, as well as the generation of its product, nitric oxide (NO), inside the cell. Chronoamperometry with NO-sensor and μFT-IR showed that exogenous NADH and the A549 cell induced the NO release redox mechanism. Chemical imaging confirmed that (I) was taken up by the cell, and that its localization coincided with its consumption in the cellular environment within 15 min of exposure. The Ru-NO absorption band in the IR spectrum shifted from 1932 cm-1, when NO was coordinated to Ru as {RuII-NO+}3+, to 1876 cm-1, due the formation of reduced species {RuII-NO0}2+, a precursor of NO release. Futhermore, the μFT-IR spectral profile demonstrated that, as a result of the NO action on the target, NO interacted with nucleic acids, which provided a biochemical response that is detectable in living cells.
Collapse
Affiliation(s)
| | - Lucyano J A Macedo
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Leandro N C Máximo
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil; Department of Chemistry, Instituto Federal de Educação, Ciência e Tecnologia Goiano, Campus Urutaí, GO, 75790-000, Brazil
| | - Fernanda C P F Sales
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| | - Roberto S da Silva
- Department of Physics and Chemistry, University of São Paulo, Ribeirão Preto, SP, 14040-903, Brazil.
| | - Frank N Crespilho
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13560-970, Brazil
| |
Collapse
|
17
|
Miller NA, Michocki LB, Konar A, Alonso-Mori R, Deb A, Glownia JM, Sofferman DL, Song S, Kozlowski PM, Kubarych KJ, Penner-Hahn JE, Sension RJ. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B 12. J Phys Chem B 2020; 124:199-209. [PMID: 31850761 DOI: 10.1021/acs.jpcb.9b09286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polarized X-ray absorption near-edge structure (XANES) at the Co K-edge and broadband UV-vis transient absorption are used to monitor the sequential evolution of the excited-state structure of coenzyme B12 (adenosylcobalamin) over the first picosecond following excitation. The initial state is characterized by sub-100 fs sequential changes around the central cobalt. These are polarized first in the y-direction orthogonal to the transition dipole and 50 fs later in the x-direction along the transition dipole. Expansion of the axial bonds follows on a ca. 200 fs time scale as the molecule moves out of the Franck-Condon active region of the potential energy surface. On the same 200 fs time scale there are electronic changes that result in the loss of stimulated emission and the appearance of a strong absorption at 340 nm. These measurements provide a cobalt-centered movie of the excited molecule as it evolves to the local excited-state minimum.
Collapse
Affiliation(s)
- Nicholas A Miller
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Lindsay B Michocki
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Arkaprabha Konar
- Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Roberto Alonso-Mori
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Aniruddha Deb
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James M Glownia
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Danielle L Sofferman
- Program in Applied Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States
| | - Sanghoon Song
- Linac Coherent Light Source , SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Pawel M Kozlowski
- Department of Chemistry , University of Louisville , 2320 South Brook Street , Louisville , Kentucky 40292 , United States
| | - Kevin J Kubarych
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - James E Penner-Hahn
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| | - Roseanne J Sension
- Department of Chemistry , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States.,Department of Physics , University of Michigan , 450 Church Street , Ann Arbor , Michigan 48109-1040 , United States.,Department of Biophysics , University of Michigan , 930 N. University Ave. , Ann Arbor , Michigan 48109-1055 , United States
| |
Collapse
|
18
|
A novel and simple route for bromide replacement in pyrazolyl-pyridazine ReI tricarbonyl complexes leads to a zwitterion stabilized by hydrogen bonding. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Do the bridging angle affect the luminescent properties of [(CO)3(phen)Re(µ-OH)Re(phen)(CO)3]+? An experimental and computational study on three polymorphs. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.114150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
20
|
Bauer EB, Haase AA, Reich RM, Crans DC, Kühn FE. Organometallic and coordination rhenium compounds and their potential in cancer therapy. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.04.014] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Fischer-Durand N, Lizinska D, Guérineau V, Rudolf B, Salmain M. ‘Clickable’ cyclopentadienyl iron carbonyl complexes for bioorthogonal conjugation of mid-infrared labels to a model protein and PAMAM dendrimer. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nathalie Fischer-Durand
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| | - Daria Lizinska
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Vincent Guérineau
- Institut de Chimie des Substances Naturelles, CNRS UPR2301; Université Paris-Sud, Université Paris-Saclay; Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex France
| | - Bogna Rudolf
- Department of Organic Chemistry; University of Lodz; Tamka 12 91-403 Lodz Poland
| | - Michèle Salmain
- CNRS, Institut Parisien de Chimie Moléculaire (IPCM); Sorbonne Université; 4 place Jussieu 75005 Paris France
| |
Collapse
|
22
|
Pizarro N, Saldías M, Guzmán N, Sandoval-Altamirano C, Kahlal S, Saillard JY, Hamon JR, Vega A. 1IL and 3MLCT excited states modulated by H+: the structure and photophysical properties of [(2-bromo-5-(1H-pyrazol-1-yl)pyrazine)Re(CO)3Br]. NEW J CHEM 2019. [DOI: 10.1039/c8nj04196b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical characterization of pyrazolyl–pyrazine Re(i) complex, shows a 1IL and 3MLCT excited states, being just the 3MLCT able to react with trifluoroacetic acid to yield the protonated and long-lived 3ILH+ species. These findings make the compound a potential sensor for protons in solution in the presence of light.
Collapse
Affiliation(s)
- Nancy Pizarro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Marianela Saldías
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | - Nicolás Guzmán
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
| | | | - Samia Kahlal
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-Yves Saillard
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Jean-René Hamon
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226
- F-35000 Rennes
- France
| | - Andrés Vega
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas
- Viña del Mar
- Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA
- Chile
| |
Collapse
|
23
|
Affiliation(s)
- Aleksandra J. Wierzba
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Sidra Hassan
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| | - Dorota Gryko
- Institute of Organic ChemistryPolish Academy of Sciences Kasprzaka 44/52 01-224 Warsaw Poland
| |
Collapse
|
24
|
Wang Y, Heinemann F, Top S, Dazzi A, Policar C, Henry L, Lambert F, Jaouen G, Salmain M, Vessieres A. Ferrocifens labelled with an infrared rhenium tricarbonyl tag: synthesis, antiproliferative activity, quantification and nano IR mapping in cancer cells. Dalton Trans 2018; 47:9824-9833. [PMID: 29993046 DOI: 10.1039/c8dt01582a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 μM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 μM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.
Collapse
Affiliation(s)
- Yong Wang
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire (IPCM), F-75005 Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tricarbonylrhenium(I) complexes with the N-methylpyridine-2-carbothioamide ligand – Synthesis, characterization and cytotoxicity studies. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Lyczko K, Lyczko M, Meczynska-Wielgosz S, Kruszewski M, Mieczkowski J. Tricarbonylrhenium(I) complexes with the N,6-dimethylpyridine-2-carbothioamide ligand: combined experimental and calculation studies. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1476686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Monika Lyczko
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | | | - Marcin Kruszewski
- Institute of Nuclear Chemistry and Technology, Warsaw, Poland
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Lublin, Poland
- Faculty of Medicine, University of Information Technology and Management, Rzeszów, Poland
| | | |
Collapse
|
27
|
Henry L, Delsuc N, Laugel C, Lambert F, Sandt C, Hostachy S, Bernard AS, Bertrand HC, Grimaud L, Baillet-Guffroy A, Policar C. Labeling of Hyaluronic Acids with a Rhenium-tricarbonyl Tag and Percutaneous Penetration Studied by Multimodal Imaging. Bioconjug Chem 2018; 29:987-991. [PMID: 29360339 DOI: 10.1021/acs.bioconjchem.7b00825] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hyaluronic acids were labeled with a rhenium-tricarbonyl used as single core multimodal probe for imaging and their penetration into human skin biopsies was studied using IR microscopy and fluorescence imaging (labeled SCoMPI). The penetration was shown to be dependent on the molecular weight of the molecule and limited to the upper layer of the skin.
Collapse
Affiliation(s)
- Lucas Henry
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Nicolas Delsuc
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Cécile Laugel
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - François Lambert
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Christophe Sandt
- SMIS beamline , Synchrotron SOLEIL Saint-Aubin , 91192 Gif-sur-Yvette Cedex , France
| | - Sarah Hostachy
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Anne-Sophie Bernard
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Hélène C Bertrand
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| | - Laurence Grimaud
- PASTEUR, Département de chimie, École normale supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS , 75005 Paris , France
| | - Arlette Baillet-Guffroy
- Laboratory of Analytical Chemistry, Lip(Sys)2, (EA 7357), Faculty of Pharmacy, Paris-Sud , University of Paris-Saclay , 5 Rue Jean-Baptiste Clément , 92296 Chatenay-Malabry , France
| | - Clotilde Policar
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure , PSL University, Sorbonne Université, CNRS , 75005 Paris , France
| |
Collapse
|
28
|
Mede R, Hoffmann P, Neumann C, Görls H, Schmitt M, Popp J, Neugebauer U, Westerhausen M. Acetoxymethyl Concept for Intracellular Administration of Carbon Monoxide with Mn(CO) 3 -Based PhotoCORMs. Chemistry 2018; 24:3321-3329. [PMID: 29314301 DOI: 10.1002/chem.201705686] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Indexed: 12/21/2022]
Abstract
Targeted administration of carbon monoxide with CO releasing molecules (CORMs) inside of cells proved to be very challenging. Consequently, there are only very few reports on intracellular uptake of CORMs requiring high extracellular CORM loading because an equilibrium between extra- and intracellular concentrations can be assumed. Here we present a strategy for a targeted intracellular administration of manganese(I)-based CORMs that are altered inside of cells to trap these complexes. Thereafter, carbon monoxide can be liberated by irradiation (photoCORMs). To achieve this innovative task, acetoxymethyl (AM) groups are attached at the periphery of the hydrophobic manganese(I) carbonyl complexes to not influence the CO release behavior. Inside of cells these AM substituents are cleaved by esterases yielding hydrophilic manganese(I) carbonyl compounds which are captured inside of cells. This objective is realized by using the bidentate bases 4-(acetoxymethoxycarbonyl)phenyl-bis(3,5-dimethylpyrazolyl)methane (1) and 4-(acetoxymethoxy)phenyl-bis(3,5-dimethylpyrazolyl)methane (4) at facial (OC)3 MnBr fragments yielding CORM-AM1 (2) and CORM-AM2 (5), respectively. Besides synthesis, crystal structures and spectroscopic properties we present targeted administration and intracellular accumulation of these AM-containing CORMs.
Collapse
Affiliation(s)
- Ralf Mede
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Clara Neumann
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| | - Michael Schmitt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstraße 8, 07743, Jena, Germany
| |
Collapse
|
29
|
Mede R, Hoffmann P, Klein M, Görls H, Schmitt M, Neugebauer U, Gessner G, Heinemann SH, Popp J, Westerhausen M. A Water-Soluble Mn(CO)3-Based and Non-Toxic PhotoCORM for Administration of Carbon Monoxide Inside of Cells. Z Anorg Allg Chem 2017. [DOI: 10.1002/zaac.201700349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ralf Mede
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University; Humboldtstraße 8 07743 Jena Germany
| | - Patrick Hoffmann
- Center for Sepsis Control and Care (CSCC); Jena University Hospital; Am Klinikum 1 07747 Jena Germany
- Leibniz Institute of Photonic Technology (Leibniz IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
| | - Moritz Klein
- Leibniz Institute of Photonic Technology (Leibniz IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry; Friedrich Schiller University; Helmholtzweg 4 07743 Jena Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University; Humboldtstraße 8 07743 Jena Germany
| | - Michael Schmitt
- Leibniz Institute of Photonic Technology (Leibniz IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry; Friedrich Schiller University; Helmholtzweg 4 07743 Jena Germany
| | - Ute Neugebauer
- Center for Sepsis Control and Care (CSCC); Jena University Hospital; Am Klinikum 1 07747 Jena Germany
- Leibniz Institute of Photonic Technology (Leibniz IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry; Friedrich Schiller University; Helmholtzweg 4 07743 Jena Germany
| | - Guido Gessner
- Center for Molecular Biomedicine (CMB); Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Hans-Knöll-Straße 2 07745 Jena Germany
| | - Stefan H. Heinemann
- Center for Molecular Biomedicine (CMB); Department of Biophysics; Friedrich Schiller University Jena and Jena University Hospital; Hans-Knöll-Straße 2 07745 Jena Germany
| | - Jürgen Popp
- Center for Sepsis Control and Care (CSCC); Jena University Hospital; Am Klinikum 1 07747 Jena Germany
- Leibniz Institute of Photonic Technology (Leibniz IPHT); Albert-Einstein-Straße 9 07745 Jena Germany
- Institute of Physical Chemistry; Friedrich Schiller University; Helmholtzweg 4 07743 Jena Germany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical Chemistry; Friedrich Schiller University; Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
30
|
Karthikeyan M, Govindarajan R, Duraisamy E, Veena V, Sakthivel N, Manimaran B. Self-Assembly of Chalcogenolato-Bridged Ester and Amide Functionalized Dinuclear Re(I) Metallacycles: Synthesis, Structural Characterization and Preliminary Cytotoxicity Studies. ChemistrySelect 2017. [DOI: 10.1002/slct.201700646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | | | | | - Vijayakumar Veena
- Department of Biotechnology; Pondicherry University; Puducherry 605014 India
| | - Natarajan Sakthivel
- Department of Biotechnology; Pondicherry University; Puducherry 605014 India
| | - Bala. Manimaran
- Department of Chemistry; Pondicherry University; Puducherry 605014 India
| |
Collapse
|
31
|
Pettenuzzo A, Pigot R, Ronconi L. Vitamin B12-Metal Conjugates for Targeted Chemotherapy and Diagnosis: Current Status and Future Prospects. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201601217] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Andrea Pettenuzzo
- School of Chemistry; National University of Ireland Galway; University Road H91 CF50 Galway Ireland
| | - Rebecca Pigot
- School of Chemistry; National University of Ireland Galway; University Road H91 CF50 Galway Ireland
| | - Luca Ronconi
- School of Chemistry; National University of Ireland Galway; University Road H91 CF50 Galway Ireland
| |
Collapse
|
32
|
Clède S, Cowan N, Lambert F, Bertrand HC, Rubbiani R, Patra M, Hess J, Sandt C, Trcera N, Gasser G, Keiser J, Policar C. Bimodal X-ray and Infrared Imaging of an Organometallic Derivative of Praziquantel inSchistosoma mansoni. Chembiochem 2016; 17:1004-7. [DOI: 10.1002/cbic.201500688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Sylvain Clède
- École Normale Supérieure; PSL Research University; Département de Chimie; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; LBM; 4 place Jussieu 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 7203 LBM; 75005 Paris France
| | - Noemi Cowan
- Department of Medical Parasitology and Infection Biology; Swiss Tropical and Public Health Institute Basel, Switzerland; University of Basel; P. O. Box 4003 Basel Switzerland
| | - François Lambert
- École Normale Supérieure; PSL Research University; Département de Chimie; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; LBM; 4 place Jussieu 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 7203 LBM; 75005 Paris France
| | - Hélène C. Bertrand
- École Normale Supérieure; PSL Research University; Département de Chimie; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; LBM; 4 place Jussieu 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 7203 LBM; 75005 Paris France
| | - Riccardo Rubbiani
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Malay Patra
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Jeannine Hess
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Christophe Sandt
- Synchrotron SOLEIL; L'Orme des Merisiers, Saint Aubin B. P. 48 91192 Gif-sur-Yvette France
| | - Nicolas Trcera
- Synchrotron SOLEIL; L'Orme des Merisiers, Saint Aubin B. P. 48 91192 Gif-sur-Yvette France
| | - Gilles Gasser
- Department of Chemistry; University of Zürich; Winterthurerstrasse 190 8057 Zürich Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology; Swiss Tropical and Public Health Institute Basel, Switzerland; University of Basel; P. O. Box 4003 Basel Switzerland
| | - Clotilde Policar
- École Normale Supérieure; PSL Research University; Département de Chimie; 24 rue Lhomond 75005 Paris France
- Sorbonne Universités; UPMC Univ Paris 06; LBM; 4 place Jussieu 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS); UMR 7203 LBM; 75005 Paris France
| |
Collapse
|
33
|
Klemens T, Świtlicka-Olszewska A, Machura B, Grucela M, Janeczek H, Schab-Balcerzak E, Szlapa A, Kula S, Krompiec S, Smolarek K, Kowalska D, Mackowski S, Erfurt K, Lodowski P. Synthesis, photophysical properties and application in organic light emitting devices of rhenium(i) carbonyls incorporating functionalized 2,2′:6′,2′′-terpyridines. RSC Adv 2016. [DOI: 10.1039/c6ra08981j] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Photophysics of [ReCl(CO)3(4′-R-terpy-κ2N)].
Collapse
|