1
|
Trave E, Back M, Pollon D, Ambrosi E, Puppulin L. Light Conversion upon Photoexcitation of NaBiF 4:Yb 3+/Ho 3+/Ce 3+ Nanocrystalline Particles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:672. [PMID: 36839040 PMCID: PMC9963621 DOI: 10.3390/nano13040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning.
Collapse
Affiliation(s)
- Enrico Trave
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy
| | - Michele Back
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy
| | - Davide Pollon
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy
| | - Emmanuele Ambrosi
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy
| | - Leonardo Puppulin
- Department of Molecular Sciences and Nanosystems, Università Ca’ Foscari Venezia, Via Torino 155, 30172 Venice, Italy
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| |
Collapse
|
2
|
Nhu Van H, Dinh Tam P, Pham VH, Nguyen DH, Xuan Thang C, Quoc Minh L. Control of red upconversion emission in Er3+–Yb3+– Fe3+ tri–doped biphasic calcium phosphate. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Chen W, Song Y, Zhang W, Deng R, Zhuang Y, Xie RJ. Time-Gated Imaging of Latent Fingerprints with Level 3 Details Achieved by Persistent Luminescent Fluoride Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28230-28238. [PMID: 35687348 DOI: 10.1021/acsami.2c06097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of X-ray-charged persistent luminescence (PersL) in fluoride nanoparticles enables these materials to emit photons without real-time excitation, which provides a great possibility for the development of new luminescent nanotechnologies. In this work, we developed NaLuF4:Mn nanoparticles with intense green PersL and functionalized surfaces and accordingly achieved time-gated imaging of latent fingerprints (LFPs) with Level 3 details. These surface-modified NaLuF4:Mn nanoparticles exhibited near-spherical morphology, long-lasting emission for several hours, appropriate trap depth distribution, and tight chemical bonding with amino acids from fingerprints, thus greatly improving the accuracy of LFP imaging in a variety of environments. The developed NaLuF4:Mn PersL nanoparticles are expected to find broad applications in the fields of LFP imaging and in vivo biological imaging.
Collapse
Affiliation(s)
- Wenjing Chen
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
| | - Yifan Song
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
| | - Wenxing Zhang
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Renren Deng
- State Key Laboratory of Silicon Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yixi Zhuang
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
- Baotou Research Institute of Rare Earths, Huanghe-Avenue 36, Baotou 014060, China
| | - Rong-Jun Xie
- State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Provincial Key Laboratory of Materials Genome and College of Materials, Xiamen University, Simingnan-Road 422, Xiamen 361005, China
- Baotou Research Institute of Rare Earths, Huanghe-Avenue 36, Baotou 014060, China
| |
Collapse
|
4
|
Zhang Y, Li Y, Li Q, Wu Z, Qiu J, Song Z. Intense single-band red upconversion luminescence of Er3+/Yb3+ codoped BiOCl nanocrystals via a facile solvothermal strategy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
|
6
|
Lanthanide-semiconductor probes for precise imaging-guided phototherapy and immunotherapy. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Yuan M, Wang R, Zhang C, Yang Z, Yang X, Han K, Ye J, Wang H, Xu X. Revisiting the Enhanced Red Upconversion Emission from a Single β-NaYF 4:Yb/Er Microcrystal By Doping with Mn 2+ Ions. NANOSCALE RESEARCH LETTERS 2019; 14:103. [PMID: 30888568 PMCID: PMC6424991 DOI: 10.1186/s11671-019-2931-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
The presence of manganese ions (Mn2+) in Yb/Er-co-doped nanomaterials results in suppressing green (545 nm) and enhancing red (650 nm) upconversion (UC) emission, which can achieve single-red-band emission to enable applications in bioimaging and drug delivery. Here, we revisit the tunable multicolor UC emission in a single Mn2+-doped β-NaYF4:Yb/Er microcrystal which is synthesized by a simple one-pot hydrothermal method. Excited by a 980 nm continuous wave (CW) laser, the color of the single β-NaYF4:Yb/Er/Mn microrod can be tuned from green to red as the doping Mn2+ ions increase from 0 to 30 mol%. Notably, under a relatively high excitation intensity, a newly emerged emission band at 560 nm (2H9/2 → 4I13/2) becomes significant and further exceeds the traditional green (545 nm) emission. Therefore, the red-to-green (R/G) emission intensity ratio is subdivided into traditional (650 to 545 nm) and new (650 to 560 nm) R/G ones. As the doped Mn2+ ions increase, these two R/G ratios are in lockstep with the same tunable trends at low excitation intensity, but the tunable regions become different at high excitation intensity. Moreover, we demonstrate that the energy transfer (ET) between Mn2+ and Er3+ contributes to the adjustment of R/G ratio and leads to tunable multicolor of the single microrod. The spectroscopic properties and tunable color from the single microrod can be potentially utilized in color display and micro-optoelectronic devices.
Collapse
Affiliation(s)
- Maohui Yuan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Rui Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Chaofan Zhang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Zining Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Xu Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Kai Han
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Jingfeng Ye
- State Key Laboratory of Laser Interaction with Matter, Northwest Institute of Nuclear Technology, Xi’an, 710024 China
| | - Hongyan Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| | - Xiaojun Xu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073 China
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Changsha, 410073 China
- Hunan Provincial Key Laboratory of High Energy Laser Technology, National University of Defense Technology, Changsha, 410073 China
| |
Collapse
|
8
|
Gu T, Cheng L, Gong F, Xu J, Li X, Han G, Liu Z. Upconversion Composite Nanoparticles for Tumor Hypoxia Modulation and Enhanced Near-Infrared-Triggered Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15494-15503. [PMID: 29682957 DOI: 10.1021/acsami.8b03238] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The efficacy of the conventional photodynamic therapy (PDT) is markedly suppressed by limited penetration depth of light in biological tissues and oxygen depletion in the hypoxic tumor microenvironment. Herein, mesoporous silica nanospheres with fine CaF2:Yb,Er upconversion nanocrystals entrapped in their porous structure are synthesized via a thermal decomposition method. After subsequently coating with a thin MnO2 layer and loading with a photosensitizer, Chlorin e6 (Ce6), a new type of nanoscale PDT platform is obtained. Within such composite nanoparticles, Mn2+ ions doped into the lattice of CaF2 crystals effectively enhance the near-infrared (NIR)-triggered red-light upconversion photoluminescence for exciting the adsorbed Ce6 via resonance energy transfer, enabling the improved photodynamic phenomenon. Meanwhile, the MnO2 coating modulates the hypoxic tumor microenvironment by in situ generating O2 through the reaction with tumor endogenous H2O2. Both mechanisms acting synchronously lead to the superior therapeutic outcome in NIR-triggered photodynamic tumor therapy.
Collapse
Affiliation(s)
- Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Fei Gong
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Jun Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , P. R. China
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , P. R. China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
9
|
Chen X, Sun J, Zhao H, Yang K, Zhu Y, Luo H, Yu K, Fan H, Zhang X. Theranostic system based on NaY(Mn)F4:Yb/Er upconversion nanoparticles with multi-drug resistance reversing ability. J Mater Chem B 2018; 6:3586-3599. [DOI: 10.1039/c8tb00416a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An innovative theranostic system (D-UNT) for MDR tumors diagnosis and therapy based on the red emitter NaY(Mn)F4:Yb/Er with optimized luminescence was developed.
Collapse
Affiliation(s)
- Xiaoqin Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Jing Sun
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Huan Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Ke Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Yuda Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Kui Yu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
10
|
Li D, Lai WY, Shao Q, Huang W. A facile methodology for regulating the size of hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals. NEW J CHEM 2017. [DOI: 10.1039/c7nj02744c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novelty of the work: size adjustment of hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals by varying only the ratio of oleic acid to rare-earth acetates.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Qiyue Shao
- Jiangsu Key Laboratory of Advanced Metallic Materials
- Department of Materials Science and Engineering
- Southeast University
- Nanjing 211189
- China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
11
|
Li D, Lai WY, Shao Q, Huang W. Facile synthesis of ultrasmall hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals through temperature oscillation. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00216e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and efficient temperature oscillation methodology has been successfully developed to synthesize ultrasmall (10.8 nm) and uniform hexagonal NaYF4:Yb3+,Er3+ upconversion nanocrystals.
Collapse
Affiliation(s)
- Dongdong Li
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| | - Qiyue Shao
- Jiangsu Key Laboratory of Advanced Metallic Materials
- Department of Materials Science and Engineering
- Southeast University
- Nanjing 211189
- China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing University of Posts & Telecommunications
- Nanjing 210023
- China
| |
Collapse
|
12
|
Ye S, Song E, Zhang Q. Transition Metal-Involved Photon Upconversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600302. [PMID: 27981015 PMCID: PMC5157181 DOI: 10.1002/advs.201600302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/22/2016] [Indexed: 05/17/2023]
Abstract
Upconversion (UC) luminescence of lanthanide ions (Ln3+) has been extensively investigated for several decades and is a constant research hotspot owing to its fundamental significance and widespread applications. In contrast to the multiple and fixed UC emissions of Ln3+, transition metal (TM) ions, e.g., Mn2+, usually possess a single broadband emission due to its 3d5 electronic configuration. Wavelength-tuneable single UC emission can be achieved in some TM ion-activated systems ascribed to the susceptibility of d electrons to the chemical environment, which is appealing in molecular sensing and lighting. Moreover, the UC emissions of Ln3+ can be modulated by TM ions (specifically d-block element ions with unfilled d orbitals), which benefits from the specific metastable energy levels of Ln3+ owing to the well-shielded 4f electrons and tuneable energy levels of the TM ions. The electric versatility of d0 ion-containing hosts (d0 normally viewed as charged anion groups, such as MoO66- and TiO44-) may also have a strong influence on the electric dipole transition of Ln3+, resulting in multifunctional properties of modulated UC emission and electrical behaviour, such as ferroelectricity and oxide-ion conductivity. This review focuses on recent advances in the room temperature (RT) UC of TM ions, the UC of Ln3+ tuned by TM or d0 ions, and the UC of d0 ion-centred groups, as well as their potential applications in bioimaging, solar cells and multifunctional devices.
Collapse
Affiliation(s)
- Shi Ye
- State Key Lab of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Fiber Laser Materials and Applied TechniquesSouth China University of TechnologyGuangzhou510641China
| | - En‐Hai Song
- State Key Lab of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Fiber Laser Materials and Applied TechniquesSouth China University of TechnologyGuangzhou510641China
| | - Qin‐Yuan Zhang
- State Key Lab of Luminescent Materials and DevicesGuangdong Provincial Key Laboratory of Fiber Laser Materials and Applied TechniquesSouth China University of TechnologyGuangzhou510641China
| |
Collapse
|
13
|
Huang Z, Gao H, Mao Y. Understanding the effect of Mn2+ on Yb3+/Er3+ upconversion and obtaining a maximum upconversion fluorescence enhancement in inert-core/active-shell/inert-shell structures. RSC Adv 2016. [DOI: 10.1039/c6ra10969a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NaYF4@NaYF4:Er3+/Yb3+/Mn2+@NaYF4 (C/Sd/S) nanoparticles were synthesized which show an obvious efficiency enhancement of red upconversion emission.
Collapse
Affiliation(s)
- Zhangyu Huang
- School of Physics and Electronics
- Henan University
- Kaifeng 475004
- China
- Institute for Computational Materials Science
| | - Huiping Gao
- School of Physics and Electronics
- Henan University
- Kaifeng 475004
- China
- Institute for Computational Materials Science
| | - Yanli Mao
- School of Physics and Electronics
- Henan University
- Kaifeng 475004
- China
- Institute for Computational Materials Science
| |
Collapse
|
14
|
Shang Y, Hao S, Yang C, Chen G. Enhancing Solar Cell Efficiency Using Photon Upconversion Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:1782-1809. [PMID: 28347095 PMCID: PMC5304768 DOI: 10.3390/nano5041782] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/10/2015] [Accepted: 10/10/2015] [Indexed: 11/16/2022]
Abstract
Photovoltaic cells are able to convert sunlight into electricity, providing enough of the most abundant and cleanest energy to cover our energy needs. However, the efficiency of current photovoltaics is significantly impeded by the transmission loss of sub-band-gap photons. Photon upconversion is a promising route to circumvent this problem by converting these transmitted sub-band-gap photons into above-band-gap light, where solar cells typically have high quantum efficiency. Here, we summarize recent progress on varying types of efficient upconversion materials as well as their outstanding uses in a series of solar cells, including silicon solar cells (crystalline and amorphous), gallium arsenide (GaAs) solar cells, dye-sensitized solar cells, and other types of solar cells. The challenge and prospect of upconversion materials for photovoltaic applications are also discussed.
Collapse
Affiliation(s)
- Yunfei Shang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.
| | - Shuwei Hao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.
- Harbin Huigong Technology Co., Ltd., Harbin 150001, China.
| | - Chunhui Yang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.
- Harbin Huigong Technology Co., Ltd., Harbin 150001, China.
| | - Guanying Chen
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China.
- Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| |
Collapse
|
15
|
Cheng Q, Li Y, Liu S, Sui J, Cai W. Synthesis of a novel bifunctional nanocomposite with tunable upconversion emission and magnetic properties. RSC Adv 2015. [DOI: 10.1039/c5ra21721k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A method of Co2+ ions codoping for significantly enhancing upconversion emission intensity and simultaneous controlling sparamagnetic properties in β-NaYF4:Yb/Er nanoparticles, with well maintaining their morphology and highly disperse.
Collapse
Affiliation(s)
- Qian Cheng
- School of Materials Science and Engineering
- Northeast Forestry University
- Harbin 150040
- PR China
- National Key Laboratory of Materials Behaviours & Evaluation Technology in Space Environments
| | - Yu Li
- College of Science
- Northeast Forestry University
- Harbin 150040
- P. R. China
| | - Shouxin Liu
- School of Materials Science and Engineering
- Northeast Forestry University
- Harbin 150040
- PR China
| | - Jiehe Sui
- National Key Laboratory of Materials Behaviours & Evaluation Technology in Space Environments
- Harbin Institute of Technology
- Harbin
- PR China
| | - Wei Cai
- National Key Laboratory of Materials Behaviours & Evaluation Technology in Space Environments
- Harbin Institute of Technology
- Harbin
- PR China
| |
Collapse
|