1
|
Liu KZ, Tian G, Ko ACT, Geissler M, Malic L, Moon BU, Clime L, Veres T. Microfluidic methods for the diagnosis of acute respiratory tract infections. Analyst 2024; 150:9-33. [PMID: 39440426 DOI: 10.1039/d4an00957f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Acute respiratory tract infections (ARTIs) are caused by sporadic or pandemic outbreaks of viral or bacterial pathogens, and continue to be a considerable socioeconomic burden for both developing and industrialized countries alike. Diagnostic methods and technologies serving as the cornerstone for disease management, epidemiological tracking, and public health interventions are evolving continuously to keep up with the demand for higher sensitivity, specificity and analytical throughput. Microfluidics is becoming a key technology in these developments as it allows for integrating, miniaturizing and automating bioanalytical assays at an unprecedented scale, reducing sample and reagent consumption and improving diagnostic performance in terms of sensitivity, throughput and response time. In this article, we describe relevant ARTIs-pneumonia, influenza, severe acute respiratory syndrome, and coronavirus disease 2019-along with their pathogenesis. We provide a summary of established methods for disease diagnosis, involving nucleic acid amplification techniques, antigen detection, serological testing as well as microbial culture. This is followed by a short introduction to microfluidics and how flow is governed at low volume and reduced scale using centrifugation, pneumatic pumping, electrowetting, capillary action, and propagation in porous media through wicking, for each of these principles impacts the design, functioning and performance of diagnostic tools in a particular way. We briefly cover commercial instruments that employ microfluidics for use in both laboratory and point-of-care settings. The main part of the article is dedicated to emerging methods deriving from the use of miniaturized, microfluidic systems for ARTI diagnosis. Finally, we share our thoughts on future perspectives and the challenges associated with validation, approval, and adaptation of microfluidic-based systems.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Ganghong Tian
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Alex C-T Ko
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, MB, R3B 1Y6, Canada
| | - Matthias Geissler
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Byeong-Ui Moon
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Liviu Clime
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, Medical Devices Research Centre, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
2
|
Malic L, Clime L, Moon BU, Nassif C, Da Fonte D, Brassard D, Lukic L, Geissler M, Morton K, Charlebois D, Veres T. Sample-to-answer centrifugal microfluidic droplet PCR platform for quantitation of viral load. LAB ON A CHIP 2024; 24:4755-4765. [PMID: 39301752 DOI: 10.1039/d4lc00533c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Droplet digital polymerase chain reaction (ddPCR) stands out as a highly sensitive diagnostic technique that is gaining traction in infectious disease diagnostics due to its ability to quantitate very low numbers of viral gene copies. By partitioning the sample into thousands of droplets, ddPCR enables precise and absolute quantification without relying on a standard curve. However, current ddPCR systems often exhibit relatively low levels of integration, and the analytical process remains dependent on elaborate workflows for up-front sample preparation. Here, we introduce a fully-integrated system seamlessly combining viral lysis, RNA extraction, emulsification, reverse transcription (RT) ddPCR, and fluorescence readout in a sample-to-answer format. The system comprises a disposable microfluidic cartridge housing buffers and reagents required for the assay, and a centrifugal platform that allows for pneumatic actuation of liquids during rotation, enabling automation of the workflow. Highly monodisperse droplets (∼50 μm in diameter) are produced using centrifugal step emulsification and automatically transferred to an integrated heating module for target amplification. The platform is equipped with a miniature fluorescence imaging system enabling on-chip read-out of droplets after RT-ddPCR. We demonstrate sample-to-answer detection of SARS-CoV-2 N and E genes, along with RNase P endogenous reference, using hydrolysis probes and multiplexed amplification within single droplets for concentrations as low as 0.1 copy per μL. We also tested 14 nasopharyngeal swab specimens from patients and were able to distinguish positive and negative SARS-CoV-2 samples with 100% accuracy, surpassing results obtained by conventional real-time amplification.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Biomedical Engineering, McGill University, 775 Rue University, Suite 316, Montreal, QC, H3A 2B4, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Byeong-Ui Moon
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Keith Morton
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC, J3Y 8Y9, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada (NRC), 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
- Center for Research and Applications of Fluidic Technologies (CRAFT) @ NRC and University of Toronto, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| |
Collapse
|
3
|
Rasekh M, Harrison S, Schobesberger S, Ertl P, Balachandran W. Reagent storage and delivery on integrated microfluidic chips for point-of-care diagnostics. Biomed Microdevices 2024; 26:28. [PMID: 38825594 DOI: 10.1007/s10544-024-00709-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 06/04/2024]
Abstract
Microfluidic-based point-of-care diagnostics offer several unique advantages over existing bioanalytical solutions, such as automation, miniaturisation, and integration of sensors to rapidly detect on-site specific biomarkers. It is important to highlight that a microfluidic POC system needs to perform a number of steps, including sample preparation, nucleic acid extraction, amplification, and detection. Each of these stages involves mixing and elution to go from sample to result. To address these complex sample preparation procedures, a vast number of different approaches have been developed to solve the problem of reagent storage and delivery. However, to date, no universal method has been proposed that can be applied as a working solution for all cases. Herein, both current self-contained (stored within the chip) and off-chip (stored in a separate device and brought together at the point of use) are reviewed, and their merits and limitations are discussed. This review focuses on reagent storage devices that could be integrated with microfluidic devices, discussing further issues or merits of these storage solutions in two different sections: direct on-chip storage and external storage with their application devices. Furthermore, the different microvalves and micropumps are considered to provide guidelines for designing appropriate integrated microfluidic point-of-care devices.
Collapse
Affiliation(s)
- Manoochehr Rasekh
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| | - Sam Harrison
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Silvia Schobesberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9, 1060, Vienna, Austria
| | - Wamadeva Balachandran
- College of Engineering, Design and Physical Sciences, Brunel University London, Uxbridge, UB8 3PH, UK.
| |
Collapse
|
4
|
Futami M, Naito H, Ninomiya S, Chen LC, Iwano T, Yoshimura K, Ukita Y. Automated sample preparation for electrospray ionization mass spectrometry based on CLOCK-controlled autonomous centrifugal microfluidics. Biomed Microdevices 2024; 26:22. [PMID: 38592604 PMCID: PMC11003918 DOI: 10.1007/s10544-024-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
We report a centrifugal microfluidic device that automatically performs sample preparation under steady-state rotation for clinical applications using mass spectrometry. The autonomous microfluidic device was designed for the control of liquid operation on centrifugal hydrokinetics (CLOCK) paradigm. The reported device was highly stable, with less than 7% variation with respect to the time of each unit operation (sample extraction, mixing, and supernatant extraction) in the preparation process. An agitation mechanism with bubbling was used to mix the sample and organic solvent in this device. We confirmed that the device effectively removed the protein aggregates from the sample, and the performance was comparable to those of conventional manual sample preparation procedures that use high-speed centrifugation. In addition, probe electrospray ionization mass spectrometry (PESI-MS) was performed to compare the device-treated and manually treated samples. The obtained PESI-MS spectra were analyzed by partial least squares discriminant analysis, and the preparation capability of the device was found to be equivalent to that of the conventional method.
Collapse
Affiliation(s)
- Masahiro Futami
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, Graduate School of University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Hiroki Naito
- Department of Engineering, Integrated Graduate School of Medicine, Engineering, and Agricultural Sciences, Graduate School of University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Satoshi Ninomiya
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Lee Chuin Chen
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan
| | - Tomohiko Iwano
- Department of Anatomy and Cell Biology, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Kentaro Yoshimura
- Division of Molecular Biology, Center for Medical Education and Sciences, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, 409-3898, Japan
| | - Yoshiaki Ukita
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, 400-8510, Japan.
| |
Collapse
|
5
|
Niebling L, Nitzsche R, Sieksmeyer T, Haskamp V, Kissenkötter J, Abd El Wahed A, Teufel T, Hermann H, Paust N, Homann AR. Fast and on-site animal species identification in processed meat via centrifugal microfluidics and isothermal amplification. LAB ON A CHIP 2024; 24:975-984. [PMID: 38284233 DOI: 10.1039/d3lc01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We present a novel centrifugal microfluidic approach to rapidly identify animal species in meat products. The workflow requires a centrifugal cartridge for DNA extraction and for preparation of a recombinant polymerase amplification (RPA) reaction, a programmable centrifuge for processing the cartridge and an isothermal reader to perform the RPA. Liquid reagents are pre-stored on the cartridge and the meat sample can be added directly without any pre-treatment. With this system, we are able to identify six different animal species in a single run within one hour. In pork salami containing horse, turkey, sheep, chicken and beef meat, it was possible to identify species levels as low as 0.01%. In beef salami and cooked pork sausages 0.1% of foreign meat could be detected. This novel workflow enables rapid and sensitive species identification in processed meat at the point of need.
Collapse
Affiliation(s)
- Laura Niebling
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Ramona Nitzsche
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | | | - Vera Haskamp
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | - Jonas Kissenkötter
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Ahmed Abd El Wahed
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | | | | | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
6
|
Geissler M, Brassard D, Adam N, Nasheri N, Pilar AVC, Tapp K, Clime L, Miville-Godin C, Mounier M, Nassif C, Lukic L, Malic L, Corneau N, Veres T. Centrifugal microfluidic system for colorimetric sample-to-answer detection of viral pathogens. LAB ON A CHIP 2024; 24:668-679. [PMID: 38226743 DOI: 10.1039/d3lc00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per μL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nadine Adam
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Neda Nasheri
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ana Victoria C Pilar
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Kyle Tapp
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Caroline Miville-Godin
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nathalie Corneau
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
7
|
Julius L, Saeed MM, Kuijpers T, Sandu S, Henihan G, Dreo T, Schoen CD, Mishra R, Dunne NJ, Carthy E, Ducrée J, Kinahan DJ. Low-High-Low Rotationally Pulse-Actuated Serial Dissolvable Film Valves Applied to Solid Phase Extraction and LAMP Isothermal Amplification for Plant Pathogen Detection on a Lab-on-a-Disc. ACS OMEGA 2024; 9:3262-3275. [PMID: 38284094 PMCID: PMC10809376 DOI: 10.1021/acsomega.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The ability of the centrifugal Lab-on-a-Disc (LoaD) platform to closely mimic the "on bench" liquid handling steps (laboratory unit operations (LUOs)) such as metering, mixing, and aliquoting supports on-disc automation of bioassay without the need for extensive biological optimization. Thus, well-established bioassays, normally conducted manually using pipettes or using liquid handling robots, can be relatively easily automated in self-contained microfluidic chips suitable for use in point-of-care or point-of-use settings. The LoaD's ease of automation is largely dependent on valves that can control liquid movement on the rotating disc. The optimum valving strategy for a true low-cost and portable device is rotationally actuated valves, which are actuated by changes in the disc spin-speed. However, due to tolerances in disc manufacturing and variations in reagent properties, most of these valving technologies have inherent variation in their actuation spin-speed. Most valves are actuated through stepped increases in disc spin-speed until the motor reaches its maximum speed (rarely more than 6000 rpm). These manufacturing tolerances combined with this "analogue" mechanism of valve actuation limits the number of LUOs that can be placed on-disc. In this work, we present a novel valving mechanism called low-high-low serial dissolvable film (DF) valves. In these valves, a DF membrane is placed in a dead-end pneumatic chamber. Below an actuation spin-speed, the trapped air prevents liquid wetting and dissolving the membrane. Above this spin-speed, the liquid will enter and wet the DF and open the valve. However, as DFs take ∼40 s to dissolve, the membrane can be wetted, and the disc spin-speed reduced before the film opens. Thus, by placing valves in a series, we can govern on which "digital pulse" in spin-speeding a reagent is released; a reservoir with one serial valve will open on the first pulse, a reservoir with two serial valves on the second, and so on. This "digital" flow control mechanism allows the automation of complex assays with high reliability. In this work, we first describe the operation of the valves, outline the theoretical basis for their operation, and support this analysis with an experiment. Next, we demonstrate how these valves can be used to automate the solid-phase extraction of DNA on on-disc LAMP amplification for applications in plant pathogen detection. The disc was successfully used to extract and detect, from a sample lysed off-disc, DNA indicating the presence of thermally inactivated Clavibacter michiganensis ssp. michiganensis (Cmm), a bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Lourdes
AN Julius
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Muhammad Mubashar Saeed
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- SFI Centre
for Research Training in Machine Learning (ML-Laboratories), Dublin City University, Dublin D09 V209, Ireland
| | - Tim Kuijpers
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Sergei Sandu
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Tanja Dreo
- National
Institute of Biology, 1000 Ljubljana, Slovenia
| | - Cor D Schoen
- Wageningen
University and Research, 6708 PB Wageningen, The Netherlands
| | - Rohit Mishra
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Nicholas J Dunne
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Eadaoin Carthy
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Jens Ducrée
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
| | - David J Kinahan
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| |
Collapse
|
8
|
Guo J, Brassard D, Adam N, Verster AJ, Shay JA, Miville-Godin C, Janta-Polczynski M, Ferreira J, Mounier M, Pilar AV, Tapp K, Classen A, Shiu M, Charlebois D, Petronella N, Weedmark K, Corneau N, Veres T. Automated centrifugal microfluidic system for the preparation of adaptor-ligated sequencing libraries. LAB ON A CHIP 2024; 24:182-196. [PMID: 38044704 DOI: 10.1039/d3lc00781b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The intensive workload associated with the preparation of high-quality DNA libraries remains a key obstacle toward widespread deployment of sequencing technologies in remote and resource-limited areas. We describe the development of single-use microfluidic devices driven by an advanced pneumatic centrifugal microfluidic platform, the PowerBlade, to automate the preparation of Illumina-compatible libraries based on adaptor ligation methodology. The developed on-chip workflow includes enzymatic DNA fragmentation coupled to end-repair, adaptor ligation, first DNA cleanup, PCR amplification, and second DNA cleanup. This complex workflow was successfully integrated into simple thermoplastic microfluidic devices that are amenable to mass production with injection molding. The system was validated by preparing, on chip, libraries from a mixture of genomic DNA extracted from three common foodborne pathogens (Listeria monocytogenes, Escherichia coli and Salmonella enterica serovar Typhimurium) and comparing them with libraries made via a manual procedure. The two types of libraries were found to exhibit similar quality control metrics (including genome coverage, assembly, and relative abundances) and led to nearly uniform coverage independent of GC content. This microfluidic technology offers a time-saving and cost-effective alternative to manual procedures and robotic-based automation, making it suitable for deployment in remote environments where technical expertise and resources might be scarce. Specifically, it facilitates field practices that involve mid- to low-throughput sequencing, such as tasks related to foodborne pathogen detection, characterization, and microbial profiling.
Collapse
Affiliation(s)
- Jimin Guo
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nadine Adam
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Adrian J Verster
- Bureau of Food Surveillance and Science Integration, Bioinformatics High-Capacity Computing Laboratory, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Julie A Shay
- Bureau of Food Surveillance and Science Integration, Bioinformatics High-Capacity Computing Laboratory, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Caroline Miville-Godin
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Mojra Janta-Polczynski
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Jason Ferreira
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Ana V Pilar
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Kyle Tapp
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Adam Classen
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Matthew Shiu
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada
| | - Nicholas Petronella
- Bureau of Food Surveillance and Science Integration, Bioinformatics High-Capacity Computing Laboratory, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Nathalie Corneau
- Bureau of Microbial Hazards, Microbiology Research Division, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Teodor Veres
- Medical Devices Research Center, Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
9
|
Kabir ME, Kim SJ. Method to fabricate round cross-sectional channel using thermal expansion of air for passive flow regulators. Electrophoresis 2023; 44:1698-1703. [PMID: 37650251 DOI: 10.1002/elps.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
We present a novel method for fabricating round cross-sectional channels for autoregulatory pressure regulators. The application of previously reported methods in multilayered soft lithography using three-dimensional printed molds is challenging. Herein, we used a thermal expansion technique to create round cross-sectional channels in replica layers using air in the cavity space of a master mold. The width and height of the round channel in the replica could be adjusted in the range of 80-300 and 3-57 µm, respectively, by varying the precuring time of the replica in the gel state and adjusting the cavity size of the master mold. We successfully fabricated a pressure regulator with a round cross-sectional channel, achieving a constant output pressure at a low threshold input pressure. Our device exhibited superior performance, with a constant output pressure at a threshold input pressure of less than 77%, compared to a device with a rectangular cross-sectional channel. Our method has significant potential for application in the fabrication of integrated microfluidic systems with round cross-sectional channels.
Collapse
Affiliation(s)
- Md Emamul Kabir
- Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Early PL, Kilcawley NA, McArdle NA, Renou M, Kearney SM, Mishra R, Dimov N, Glynn MT, Ducrée J, Kinahan DJ. Digital process control of multi-step assays on centrifugal platforms using high-low-high rotational-pulse triggered valving. PLoS One 2023; 18:e0291165. [PMID: 37682949 PMCID: PMC10490917 DOI: 10.1371/journal.pone.0291165] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Due to their capability for comprehensive sample-to-answer automation, the interest in centrifugal microfluidic systems has greatly increased in industry and academia over the last quarter century. The main applications of these "Lab-on-a-Disc" (LoaD) platforms are in decentralised bioanalytical point-of-use / point-of-care testing. Due to the unidirectional and omnipresent nature of the centrifugal force, advanced flow control is key to coordinate multi-step / multi-reagent assay formats on the LoaD. Formerly, flow control was often achieved by capillary burst valves which require gradual increments of the spin speed of the system-innate spindle motor. Recent advanced introduced a flow control scheme called 'rotational pulse actuated valves'. In these valves the sequence of valve actuation is determined by the architecture of the disc while actuation is triggered by freely programmable upward spike (i.e. Low-High-Low (LHL)) in the rotational frequency. This paradigm shift from conventional 'analogue' burst valves to 'digital' pulsing significantly increases the number of sequential while also improving the overall robustness of flow control. In this work, we expand on these LHL valves by introducing High-Low-High (HLH) pulse-actuated (PA) valving which are actuated by 'downward' spike in the disc spin-rate. These HLH valves are particularly useful for high spin-rate operations such as centrifugation of blood. We introduce two different HLH architectures and then combine the most promising with LHL valves to implement the time-dependent liquid handling protocol underlying a common liver function test panel.
Collapse
Affiliation(s)
- Philip L. Early
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. Kilcawley
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Niamh A. McArdle
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Marine Renou
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
- Telecom Physique Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Sinéad M. Kearney
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Rohit Mishra
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Nikolay Dimov
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Macdara T. Glynn
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin, Ireland
| | - David J. Kinahan
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| |
Collapse
|
11
|
Mendis BL, He Z, Li X, Wang J, Li C, Li P. Acoustic Atomization-Induced Pumping Based on a Vibrating Sharp-Tip Capillary. MICROMACHINES 2023; 14:1212. [PMID: 37374797 DOI: 10.3390/mi14061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice.
Collapse
Affiliation(s)
| | - Ziyi He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
12
|
Lee EH, Kim TW, Byun S, Seo DW, Hwang HJ, Yoon HC, Kim H, Ryi SK. Effect of air bubbling on electroless Pd plating for the practical application of hydrogen selective membranes. RSC Adv 2023; 13:14281-14290. [PMID: 37180008 PMCID: PMC10170241 DOI: 10.1039/d3ra01596c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In this study, an air bubbling electroless plating (ELP) method was newly developed for the production of Pd composite membranes. The air bubble ELP alleviated the concentration polarization of Pd ions, making it possible to achieve a plating yield of 99.9% in 1 h and form very fine Pd grains with a uniform layer of ∼4.7 μm. A membrane with a diameter of 25.4 mm and a length of 450 mm was produced by the air bubbling ELP, achieving a hydrogen permeation flux of 4.0 × 10-1 mol m-2 s-1 and selectivity of ∼10 000 at 723 K with a pressure difference of 100 kPa. To confirm the reproducibility, six membranes were produced by the same method and assembled in a membrane reactor module to produce high-purity hydrogen by ammonia decomposition. Hydrogen permeation flux and selectivity of the six membranes at 723 K with a pressure difference of 100 kPa were 3.6 × 10-1 mol m-2 s-1 and ∼8900, respectively. An ammonia decomposition test with an ammonia feed rate of 12 000 mL min-1 showed that the membrane reactor produced hydrogen with >99.999% purity and a production rate of 1.01 Nm3 h-1 at 748 K with a retentate stream gauge pressure of 150 kPa and a permeation stream vacuum of -10 kPa. The ammonia decomposition tests confirmed that the newly developed air bubbling ELP method affords several advantages, such as rapid production, high ELP efficiency, reproducibility, and practical applicability.
Collapse
Affiliation(s)
- Eun-Han Lee
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Tae-Woo Kim
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Segi Byun
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Doo-Won Seo
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Hyo-Jung Hwang
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| | - Hyung-Chul Yoon
- Clean Fuel Research Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea
| | - Hansung Kim
- Department of Chemical and Biological Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu Seoul 03722 Republic of Korea +82-2-2123-5753
| | - Shin-Kun Ryi
- High Temperature Energy Conversion Laboratory, Korea Institute of Energy Research (KIER) 152 Gajeong-ro, Yuseong-gu Daejeon 34129 Republic of Korea +82-42-860-3133 +82-42-860-3155
| |
Collapse
|
13
|
Cai G, Huang Y, Chen B, Shen Y, Shi X, Peng B, Mi S, Huang J. Modular design of centrifugal microfluidic system and its application in nucleic acid screening. Talanta 2023; 259:124486. [PMID: 37060723 DOI: 10.1016/j.talanta.2023.124486] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/17/2023]
Abstract
Modular integration of functional components on the chip and increasement in control accuracy through real-time alteration in the force direction of droplets is an effective way to optimize centrifugal microfluidic systems and realize passive components, compact modules, and high-throughput control. Conventional centrifugal microfluidic chips are mainly driven and controlled by centrifugal force and Euler force. The control valves are easily affected by machining precision, making the control unstable. In this study, a novel centrifugal microfluidic system is introduced to improve the freedom and accuracy of chip control while facilitating the design and addition of passive functional components. Furthermore, we modularize the centrifugal microfluidic chip to greatly shorten the period of design and optimization cycle and achieve chip reusability and multi-threaded control. Finally, to verify the feasibility of the modular centrifugal microfluidic chip applied to high-throughput nucleic acid screening, we test the nucleic acid purification and detection colorimetric reactions based on the modular centrifugal microfluidic chip. Among them, Chelex-100 is used to realize the purification of nucleic acid in cell lysate, and the purified solution can realize amplification in the PCR instrument, and the nucleic acid detection results are consistent with the off-chip kit by experimental testing. The system has great flexibility and stability under the acceptable purity of nucleic acid, which indicates that the platform has great potential for large-scale rapid screening applications.
Collapse
Affiliation(s)
- Gangpei Cai
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China; Shenzhen Disiontech Bio-Meditech Co., Ltd., Shenzhen, 518055, Guangdong, China
| | - Yuxin Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Bailiang Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Yuemin Shen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiaolu Shi
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Bo Peng
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Nanshan District, Shenzhen, 518055, Guangdong, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China; Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China.
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China; Research Institute of Tsinghua University in Shenzhen, Nanshan District, Shenzhen, China; Shenzhen Disiontech Bio-Meditech Co., Ltd., Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
14
|
Mishra R, Julius LA, Condon J, Pavelskopfa P, Early PL, Dorrian M, Mrvova K, Henihan G, Mangwanya F, Dreo T, Ducrée J, Macdonald NP, Schoen C, Kinahan DJ. Plant pathogen detection on a lab-on-a-disc using solid-phase extraction and isothermal nucleic acid amplification enabled by digital pulse-actuated dissolvable film valves. Anal Chim Acta 2023; 1258:341070. [PMID: 37087288 DOI: 10.1016/j.aca.2023.341070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
By virtue of its ruggedness, portability, rapid processing times, and ease-of-use, academic and commercial interest in centrifugal microfluidic systems has soared over the last decade. A key advantage of the LoaD platform is the ability to automate laboratory unit operations (LUOs) (mixing, metering, washing etc.) to support direct translation of 'on-bench' assays to 'on-chip'. Additionally, the LoaD requires just a low-cost spindle motor rather than specialized and expensive microfluidic pumps. Furthermore, when flow control (valves) is implemented through purely rotational changes in this same spindle motor (rather than using additional support instrumentation), the LoaD offers the potential to be a truly portable, low-cost and accessible platform. Current rotationally controlled valves are typically opened by sequentially increasing the disc spin-rate to a specific opening frequency. However, due lack of manufacturing fidelity these specific opening frequencies are better described as spin frequency 'bands'. With low-cost motors typically having a maximum spin-rate of 6000 rpm (100 Hz), using this 'analogue' approach places a limitation on the number of valves, which can be serially actuated thus limiting the number of LUOs that can be automated. In this work, a novel flow control scheme is presented where the sequence of valve actuation is determined by architecture of the disc while its timing is governed by freely programmable 'digital' pulses in its spin profile. This paradigm shift to 'digital' flow control enables automation of multi-step assays with high reliability, with full temporal control, and with the number of LUOs theoretically only limited by available space on the disc. We first describe the operational principle of these valves followed by a demonstration of the capability of these valves to automate complex assays by screening tomato leaf samples against plant pathogens. Reagents and lysed sample are loaded on-disc and then, in a fully autonomous fashion using only spindle-motor control, the complete assay is automated. Amplification and fluorescent acquisition take place on a custom spin-stand enabling the generation of real-time LAMP amplification curves using custom software. To prevent environmental contamination, the entire discs are sealed from atmosphere following loading with internal venting channels permitting easy movement of liquids about the disc. The disc was successfully used to detect the presence of thermally inactivated Clavibacter michiganensis. Michiganensis (CMM) bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Rohit Mishra
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland.
| | - Lourdes An Julius
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jack Condon
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Patricija Pavelskopfa
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip L Early
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| | - Matthew Dorrian
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Katarina Mrvova
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Faith Mangwanya
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tanya Dreo
- National Institute of Biology, Ljubljana, Slovenia
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| | - Niall P Macdonald
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Cor Schoen
- Wageningen University Research, Wageningen, the Netherlands
| | - David J Kinahan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
15
|
Hassanzadeh P, Atyabi F, Dinarvand R. Technical and engineering considerations for designing therapeutics and delivery systems. J Control Release 2023; 353:411-422. [PMID: 36470331 DOI: 10.1016/j.jconrel.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The newly-emerged pathological conditions and increased rates of drug resistance necessitate application of the state-of-the-art technologies for accelerated discovery of the therapeutic candidates and obtaining comprehensive knowledge about their targets, action mechanisms, and interactions within the body including those between the receptors and drugs. Using the physics- and chemistry-based modern techniques for theranostic purposes, preparing smart carriers, local delivery of genes or drugs, and enhancing pharmaceutical bioavailability could be of great value against the hard-to-treat diseases and growing drug resistance. Besides the artificial intelligence- and quantum-based techniques, crystal engineering capable of designing new molecules with appropriate characteristics, improving the stability and bioavailability of poorly soluble drugs, and efficient carrier development could play a crucial role in manufacturing efficient pharmaceuticals and reducing the adverse events. In this context, identifying the structures and behaviors of crystals and predicting their characteristics are of great value. Electron diffraction by accelerated analysis of the chemicals and sensitivity to charge alterations, electromechanical tools for controlled delivery of therapeutics, mechatronics via fabrication of multi-functional smart products including the organ-on-chip devices for healthcare applications, and optomechatronics by overcoming the limitations of conventional biomedical techniques could address the unmet biomedical requirements and facilitate development of more effective theranostics with improved outcomes.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran; Sasan Hospital, Tehran 14159-83391, Iran.
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran
| |
Collapse
|
16
|
Malic L, Brassard D, Da Fonte D, Nassif C, Mounier M, Ponton A, Geissler M, Shiu M, Morton KJ, Veres T. Automated sample-to-answer centrifugal microfluidic system for rapid molecular diagnostics of SARS-CoV-2. LAB ON A CHIP 2022; 22:3157-3171. [PMID: 35670202 DOI: 10.1039/d2lc00242f] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Testing for SARS-CoV-2 is one of the most important assets in COVID-19 management and mitigation. At the onset of the pandemic, SARS-CoV-2 testing was uniquely performed in central laboratories using RT-qPCR. RT-qPCR relies on trained personnel operating complex instrumentation, while time-to-result can be lengthy (e.g., 24 to 72 h). Now, two years into the pandemic, with the surge in cases driven by the highly transmissible Omicron variant, COVID-19 testing capabilities have been stretched to their limit worldwide. Rapid antigen tests are playing an increasingly important role in quelling outbreaks by expanding testing capacity outside the realm of clinical laboratories. These tests can be deployed in settings where repeat and rapid testing is essential, but they often come at the expense of limited accuracy and sensitivity. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) provides a number of advantages to SARS-CoV-2 testing in standard laboratories and at the point-of-need. In contrast to RT-qPCR, RT-LAMP is performed at a constant temperature, which circumvents the need for thermal cycling and translates into a shorter analysis time (e.g., <1 h). In addition, RT-LAMP is compatible with colorimetric detection, facilitating visualization and read-out. However, even with these benefits, RT-LAMP is not yet clinically deployed at its full capacity. Lack of automation and integration of sample preparation, such as RNA extraction, limits the sensitivity and specificity of the method. Furthermore, the need for cold storage of reagents complicates its use at the point of need. The developments presented in this work address these limitations: We describe a fully automated SARS-CoV-2 detection method using RT-LAMP, which also includes up-front lysis and extraction of viral RNA, performed on a centrifugal platform with active pneumatic pumping, a disposable, all-polymer-based microfluidic cartridge and lyophilized reagents. We demonstrate that the limit of detection of the RT-LAMP assay itself is 0.2 copies per μL using N and E genes as target sequences. When combined with integrated RNA extraction, the assay sensitivity is 0.5 copies per μL, which is highly competitive to RT-qPCR. We tested the automated assay using 12 clinical swab specimens from patients and were able to distinguish positive and negative samples for SARS-CoV-2 within 60 min, thereby obtaining 100% agreement with RT-qPCR results.
Collapse
Affiliation(s)
- Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Dillon Da Fonte
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - André Ponton
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Matthew Shiu
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Keith J Morton
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
17
|
Liang C, Yang Z, Jiang H. A film-lever actuated switch technology for multifunctional, on-demand, and robust manipulation of liquids. Nat Commun 2022; 13:4902. [PMID: 35987906 PMCID: PMC9391643 DOI: 10.1038/s41467-022-32676-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/11/2022] [Indexed: 11/15/2022] Open
Abstract
A lab-on-a-chip system with Point-of-Care testing capability offers rapid and accurate diagnostic potential and is useful in resource-limited settings where biomedical equipment and skilled professionals are not readily available. However, a Point-of-Care testing system that simultaneously possesses all required features of multifunctional dispensing, on-demand release, robust operations, and capability for long-term reagent storage is still a major challenge. Here, we describe a film-lever actuated switch technology that can manipulate liquids in any direction, provide accurate and proportional release response to the applied pneumatic pressure, as well as sustain robustness during abrupt movements and vibrations. Based on the technology, we also describe development of a polymerase chain reaction system that integrates reagent introduction, mixing and reaction functions all in one process, which accomplishes “sample-in-answer-out” performance for all clinical nasal samples from 18 patients with Influenza and 18 individual controls, in good concordance of fluorescence intensity with standard polymerase chain reaction (Pearson coefficients > 0.9). The proposed platform promises robust automation of biomedical analysis, and thus can accelerate the commercialization of a range of Point-of-Care testing devices. Point-of-care testing offers rapid and accurate diagnostic potential being quite useful in resource-limited settings. Here, authors demonstrate a film-lever actuated switch technology for microfluidic manipulation enabling multifunctional dispensing, on-demand release, robust operation, and long-term storage.
Collapse
|
18
|
Electrified lab on disc systems: A comprehensive review on electrokinetic applications. Biosens Bioelectron 2022; 214:114381. [DOI: 10.1016/j.bios.2022.114381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 05/13/2022] [Indexed: 11/21/2022]
|
19
|
Liu Y, Kulinsky L, Shiri R, Madou M. Elastic membrane enabled inward pumping for liquid manipulation on a centrifugal microfluidic platform. BIOMICROFLUIDICS 2022; 16:034105. [PMID: 35607410 PMCID: PMC9123944 DOI: 10.1063/5.0089112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/20/2022] [Indexed: 05/20/2023]
Abstract
Nowadays, centrifugal microfluidic platforms are finding wider acceptance for implementing point-of-care assays due to the simplicity of the controls, the versatility of the fluidic operations, and the ability to create a self-enclosed system, thus minimizing the risk of contamination for either the sample or surroundings. Despite these advantages, one of the inherent weaknesses of CD microfluidics is that all the sequential fluidic chambers and channels must be positioned radially since the centrifugal force acts from the center of the disk outward. Implementation of schemes where the liquid can be rerouted from the disk periphery to the disk center would significantly increase the utility of CD platforms and increase the rational utilization of the real estate on the disk. The present study outlines a novel utilization of elastic membranes covering fluidic chambers to implement inward pumping whereby the fluid is returned from the disk periphery to the center of the disk. When the disk revolves at an angular velocity of 3600 rpm, liquid enters the chamber covered by the elastic membrane. This membrane is deflected upward by liquid, storing energy like a compressed spring. When the angular velocity of the disk is reduced to 180 rpm and thus the centrifugal force is diminished, the elastic membrane pushes the liquid from the chamber inward, closer to the center of the disk. There are two channels leading from the elastic membrane-covered reservoir-one channel has a higher fluidic resistance and the other (wider) has a lower fluidic resistance. The geometry of these two channels determines the fluidic path inward (toward the center of the disk). Most of the liquid travels through the recirculating channel with lower resistance. We demonstrated an inward pumping efficiency in the range of 78%-89%. Elastic membrane-driven inward pumping was demonstrated for the application of enhanced fluid mixing. Additionally, to demonstrate the utility of the proposed pumping mechanism for multi-step assays on the disk, we implemented and tested a disk design that combines plasma separation and inward pumping.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Materials Science and Engineering, University of California, Irvine, California 92707, USA
- Authors to whom correspondence should be addressed: and
| | - Lawrence Kulinsky
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697, USA
| | - Roya Shiri
- Autonomous Medical Devices Inc., Inglewood, California 90304, USA
| | - Marc Madou
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
20
|
Moon BU, Clime L, Hernandez-Castro JA, Brassard D, Nassif C, Malic L, Veres T. On-the-Fly Phase Transition and Density Changes of Aqueous Two-Phase Systems on a Centrifugal Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:79-85. [PMID: 34928624 DOI: 10.1021/acs.langmuir.1c01923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This paper describes on-the-fly physical property changes of aqueous two-phase systems (ATPS) in microfluidic devices. The properties and phases of the ATPS are modulated on-demand by using a centrifugal microfluidic device filled with poly(ethylene glycol) (PEG) and dextran (DEX) solutions. By use of the centrifugal force and active pneumatic controls provided by a centrifugal microfluidic platform (CMP), PEG-DEX mixtures are manipulated and processed inside simple thermoplastic microfluidic devices. First, we experimentally demonstrate an on-chip ATPS transition from two phases to a single phase and vice versa by dynamically changing the concentration of the solution to bring ATPS across the binodal curve. We also demonstrate a density modulation scheme by introducing an ATPS solution mixed with sodium diatrizoate hydrate, which allows to increase the liquid density. By adding precisely metered volumes of water, we spontaneously change the density of the solution on the CMP and show that density marker microbeads fall into the solution according to their corresponding densities. The measured densities of ATPS show a good agreement with densities of microbeads and analytical plots. The results presented in this paper highlight the tremendous potential of CMPs for performing complex on-chip processing of ATPS. We anticipate that this method will be useful in applications such as microparticle-based plasma protein analysis and blood cell fractionation.
Collapse
Affiliation(s)
- Byeong-Ui Moon
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | | | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada
| |
Collapse
|
21
|
Ducrée J. Systematic review of centrifugal valving based on digital twin modeling towards highly integrated lab-on-a-disc systems. MICROSYSTEMS & NANOENGINEERING 2021; 7:104. [PMID: 34987859 PMCID: PMC8677742 DOI: 10.1038/s41378-021-00317-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 05/07/2023]
Abstract
Current, application-driven trends towards larger-scale integration (LSI) of microfluidic systems for comprehensive assay automation and multiplexing pose significant technological and economical challenges to developers. By virtue of their intrinsic capability for powerful sample preparation, centrifugal systems have attracted significant interest in academia and business since the early 1990s. This review models common, rotationally controlled valving schemes at the heart of such "Lab-on-a-Disc" (LoaD) platforms to predict critical spin rates and reliability of flow control which mainly depend on geometries, location and liquid volumes to be processed, and their experimental tolerances. In absence of larger-scale manufacturing facilities during product development, the method presented here facilitates efficient simulation tools for virtual prototyping and characterization and algorithmic design optimization according to key performance metrics. This virtual in silico approach thus significantly accelerates, de-risks and lowers costs along the critical advancement from idea, layout, fluidic testing, bioanalytical validation, and scale-up to commercial mass manufacture.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| |
Collapse
|
22
|
Moon BU, Clime L, Brassard D, Boutin A, Daoud J, Morton K, Veres T. An automated centrifugal microfluidic assay for whole blood fractionation and isolation of multiple cell populations using an aqueous two-phase system. LAB ON A CHIP 2021; 21:4060-4070. [PMID: 34604897 DOI: 10.1039/d1lc00680k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fractionating whole blood and separating its constituent components one from another is an essential step in many clinical applications. Currently blood sample handling and fractionation processes remain a predominantly manual task that require well-trained operators to produce reliable and reproducible results. Herein, we demonstrate an advanced on-chip whole human blood fractionation and cell isolation process combining (i) an aqueous two-phase system (ATPS) to create complex separation layers with (ii) a centrifugal microfluidic platform (PowerBlade) with active pneumatic pumping to control and automate the assay. We use a polyethylene glycol (PEG) and dextran (DEX) mixture as the two-phase density gradient media and our automated centrifugal microfluidic platform to fractionate blood samples. Different densities of precisely tuned PEG-DEX solutions were tested to match each of the cell types typically targeted during blood fractionation applications. By employing specially designed microfluidic devices, we demonstrate the automation of the following steps: loading of a whole blood sample on-chip, layering of the blood on the ATPS solution, blood fractionation, precise radial repositioning of the fractionated layers, and finally extraction of multiple, selected fractionated components. Fractionation of up to six distinct layers is shown: platelet-rich plasma, buffy coat, PEG, DEX with neutrophils, red blood cells (RBCs) and high density gradient media (HDGM). Furthermore, through controlled dispensing of HDGM to the fractionation chamber, we show that each of the fractionated layers can be repositioned radially, on-the-fly, without disturbing the interfaces, allowing precise transfer of target fractions and cell types into external vials via a chip-to-world interface. Cell counting analysis and cell viability studies showed equivalence to traditional, manual methods. An overall cell viability greater than 90% of extracted cells demonstrates that the proposed approach is suitable for cell isolation applications. This proof-of-principle demonstration highlights the utility of the proposed system for automated whole blood fractionation and isolation for blood cell applications. We anticipate that the proposed approach will be a useful tool for many clinical applications such as standard cell isolation procedures and other bioanalytical assays (e.g., circulating tumor cells, and cell and gene therapy).
Collapse
Affiliation(s)
- Byeong-Ui Moon
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Liviu Clime
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Daniel Brassard
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Alex Boutin
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Jamal Daoud
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Keith Morton
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| | - Teodor Veres
- National Research Council of Canada, 75 de Mortagne, Boucherville, Quebec, J4B 6Y4, Canada.
| |
Collapse
|
23
|
Ducrée J. Secure Air Traffic Control at the Hub of Multiplexing on the Centrifugo-Pneumatic Lab-on-a-Disc Platform. MICROMACHINES 2021; 12:700. [PMID: 34203926 PMCID: PMC8232791 DOI: 10.3390/mi12060700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Fluidic larger-scale integration (LSI) resides at the heart of comprehensive sample-to-answer automation and parallelization of assay panels for frequent and ubiquitous bioanalytical testing in decentralized point-of-use/point-of-care settings. This paper develops a novel "digital twin" strategy with an emphasis on rotational, centrifugo-pneumatic flow control. The underlying model systematically connects retention rates of rotationally actuated valves as a key element of LSI to experimental input parameters; for the first time, the concept of band widths in frequency space as the decisive quantity characterizing operational robustness is introduced, a set of quantitative performance metrics guiding algorithmic optimization of disc layouts is defined, and the engineering principles of advanced, logical flow control and timing are elucidated. Overall, the digital twin enables efficient design for automating multiplexed bioassay protocols on such "Lab-on-a-Disc" (LoaD) systems featuring high packing density, reliability, configurability, modularity, and manufacturability to eventually minimize cost, time, and risk of development and production.
Collapse
Affiliation(s)
- Jens Ducrée
- School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
24
|
Sun L, K Siddique M, Wang L, Li S. Mixing characteristics of a bubble mixing microfluidic chip for genomic DNA extraction based on magnetophoresis: CFD simulation and experiment. Electrophoresis 2021; 42:2365-2374. [PMID: 33905543 DOI: 10.1002/elps.202000295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Mixing a small amount of magnetic beads and regents with large volume samples evenly in microcavities of a microfluidic chip is always the key step for the application of microfluidic technology in the field of magnetophoresis analysis. This article proposes a microfluidic chip for DNA extraction by magnetophoresis, which relies on bubble rising to generate turbulence and microvortices of various sizes to mix magnetic beads with samples uniformly. The construction and working principle of the microfluidic chip are introduced. CFD simulations are conducted when magnetic beads and samples are irritated by the generation of gas bubbles with the variation of supply pressures. The whole mixing process in the microfluidic chip is observed through a high-speed camera and a microfluidic system when the gas bubbles are generated continuously. The influence of supply pressure on the mixing characteristics of the microfluidic chip is investigated and discussed with both simulation and experiments. Compared with magnetic mixing, bubble mixing can avoid the magnetic beads gather phenomenon caused by magnetic forces and provide a rapid and high efficient solution to realize mixing small amount of regents in large volume samples in a certain order without complex moving structures and operations in a chip. Two applications of mixing with the proposed microfluidic chip are also carried out and discussed.
Collapse
Affiliation(s)
- Lin Sun
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Muhammad K Siddique
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Lei Wang
- School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| | - Songjing Li
- Department of Fluid Control and Automation, School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, P. R. China
| |
Collapse
|
25
|
Obino D, Vassalli M, Franceschi A, Alessandrini A, Facci P, Viti F. An Overview on Microfluidic Systems for Nucleic Acids Extraction from Human Raw Samples. SENSORS 2021; 21:s21093058. [PMID: 33925730 PMCID: PMC8125272 DOI: 10.3390/s21093058] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 02/08/2023]
Abstract
Nucleic acid (NA) extraction is a basic step for genetic analysis, from scientific research to diagnostic and forensic applications. It aims at preparing samples for its application with biomolecular technologies such as isothermal and non-isothermal amplification, hybridization, electrophoresis, Sanger sequencing and next-generation sequencing. Multiple steps are involved in NA collection from raw samples, including cell separation from the rest of the specimen, cell lysis, NA isolation and release. Typically, this process needs molecular biology facilities, specialized instrumentation and labor-intensive operations. Microfluidic devices have been developed to analyze NA samples with high efficacy and sensitivity. In this context, the integration within the chip of the sample preparation phase is crucial to leverage the promise of portable, fast, user-friendly and economic point-of-care solutions. This review presents an overview of existing lab-on-a-chip (LOC) solutions designed to provide automated NA extraction from human raw biological fluids, such as whole blood, excreta (urine and feces), saliva. It mainly focuses on LOC implementation aspects, aiming to describe a detailed panorama of strategies implemented for different human raw sample preparations.
Collapse
Affiliation(s)
- Daniele Obino
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, James Watt South Building, Glasgow G128LT, UK;
| | | | - Andrea Alessandrini
- Nanoscience Institute, National Research Council, 41125 Modena, Italy;
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Paolo Facci
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
- Correspondence:
| | - Federica Viti
- Institute of Biophysics, National Research Council, 16149 Genova, Italy; (D.O.); (F.V.)
| |
Collapse
|
26
|
Wang A, Boroujeni SM, Schneider PJ, Christie LB, Mancuso KA, Andreadis ST, Oh KW. An Integrated Centrifugal Degassed PDMS-Based Microfluidic Device for Serial Dilution. MICROMACHINES 2021; 12:482. [PMID: 33922553 PMCID: PMC8145514 DOI: 10.3390/mi12050482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022]
Abstract
We propose an integrated serial dilution generator utilizing centrifugal force with a degassed polydimethylsiloxane (PDMS) microfluidic device. Using gas-soluble PDMS as a centrifugal microfluidic device material, the sample can be dragged in any arbitrary direction using vacuum-driven force, as opposed to in a single direction, without adding further actuation components. The vacuum-driven force allows the device to avoid the formation of air bubbles and exhibit high tolerance in the surface condition. The device was then used for sample metering and sample transferring. In addition, centrifugal force was used for sample loading and sample mixing. In this study, a series of ten-fold serial dilutions ranging from 100 to 10-4 with about 8 μL in each chamber was achieved, while the serial dilution ratio and chamber volume could easily be altered by changing the geometrical designs of the device. As a proof of concept of our hybrid approach with the centrifugal and vacuum-driven forces, ten-fold serial dilutions of a cDNA (complementary DNA) sample were prepared using the device. Then, the diluted samples were collected by fine needles and subject to a quantitative polymerase chain reaction (qPCR), and the results were found to be in good agreement with those for samples prepared by manual pipetting.
Collapse
Affiliation(s)
- Anyang Wang
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Samaneh Moghadasi Boroujeni
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA; (S.M.B.); (S.T.A.)
| | - Philip J. Schneider
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Liam B. Christie
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Kyle A. Mancuso
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
| | - Stelios T. Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA; (S.M.B.); (S.T.A.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14263, USA
| | - Kwang W. Oh
- Sensors and MicroActuators Learning Lab (SMALL), Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260, USA; (A.W.); (P.J.S.); (L.B.C.); (K.A.M.)
- Department of Biomedical Engineering, University at Buffalo, State University of New York (SUNY-Buffalo), Buffalo, NY 14260, USA
| |
Collapse
|
27
|
Passive controlled flow for Parkinson's disease neuronal cell culture in 3D microfluidic devices. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.ooc.2020.100005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Kang DH, Kim NK, Park SW, Lee W, Kang HW. A microfluidic circuit consisting of individualized components with a 3D slope valve for automation of sequential liquid control. LAB ON A CHIP 2020; 20:4433-4441. [PMID: 32832953 DOI: 10.1039/d0lc00501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A microfluidic circuit on a disk platform, also known as lab-on-a-disk, is an integrated system for automated high-throughput screening for biochemical analysis. The microfluidic circuit on a disk performs biochemical analysis through sequential processes such as filtration, separation, detection, and synthesis of reagents. Sequential processes in microfluidic circuits operate through the systematically linked components, which include channels, valves, and chambers. The microchannels should have micrometer-scale for precise micro-volume liquid control in the microfluidic circuit on a disk. However, it is difficult to also consider productivity in the traditional technology. In addition, as the channel length increases, much effort is required to construct the components of the microfluidic circuit in the limited space of the disk. 3D printing is drawing attention as a microfluidic channel fabrication technique in order to overcome the physical limitations of the traditional methods. A new concept of a 3D slope valve has been developed, which performs precise and sequential micro-volume liquid control through centrifugal and gravitational forces. Micro-volumes of liquids in a slope valve-equipped circuit are controlled over a wide range of angular velocities through the control of the valve geometry, types of liquid and volume. For sequential micro-volume of liquid control, three lines of assembled modules are connected to a microfluidic circuit. In the microfluidic circuit with slope valves, the detection of fluorescent dye tagged-VEGF is possible through sequential mixing and reaction processes. As a result, micro-volume liquid is successfully controlled with high accuracy using the 3D microfluidic circuit with a slope valve.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju 61186, Republic of Korea.
| | | | | | | | | |
Collapse
|
29
|
Ducrée J, Gravitt M, Walshe R, Bartling S, Etzrodt M, Harrington T. Open Platform Concept for Blockchain-Enabled Crowdsourcing of Technology Development and Supply Chains. FRONTIERS IN BLOCKCHAIN 2020. [DOI: 10.3389/fbloc.2020.586525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Abstract
Lab-on-a-Disc (LoaD) biosensors are increasingly a promising solution for many biosensing applications. In the search for a perfect match between point-of-care (PoC) microfluidic devices and biosensors, the LoaD platform has the potential to be reliable, sensitive, low-cost, and easy-to-use. The present global pandemic draws attention to the importance of rapid sample-to-answer PoC devices for minimising manual intervention and sample manipulation, thus increasing the safety of the health professional while minimising the chances of sample contamination. A biosensor is defined by its ability to measure an analyte by converting a biological binding event to tangible analytical data. With evolving manufacturing processes for both LoaDs and biosensors, it is becoming more feasible to embed biosensors within the platform and/or to pair the microfluidic cartridges with low-cost detection systems. This review considers the basics of the centrifugal microfluidics and describes recent developments in common biosensing methods and novel technologies for fluidic control and automation. Finally, an overview of current devices on the market is provided. This review will guide scientists who want to initiate research in LoaD PoC devices as well as providing valuable reference material to researchers active in the field.
Collapse
|
31
|
Clime L, Malic L, Daoud J, Lukic L, Geissler M, Veres T. Buoyancy-driven step emulsification on pneumatic centrifugal microfluidic platforms. LAB ON A CHIP 2020; 20:3091-3095. [PMID: 32588014 DOI: 10.1039/d0lc00333f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present here a new method for controlling the droplet size in step emulsification processes on a centrifugal microfluidic platform, which, in addition to the centrifugal force, uses pneumatic actuation for fluid displacement. We highlight the importance of the interplay between buoyancy effects and the flow rate at the step junction, and provide a simple analytical model relating these two quantities to the size of the droplets. Numerical models as well as experiments with water-in-oil emulsions are performed in support of the proposed model.
Collapse
Affiliation(s)
- Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Jamal Daoud
- Galenvs Sciences, Inc., 24 Gabrielle-Roy Street, Montreal, QC H3E 1M3, Canada
| | - Luke Lukic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| |
Collapse
|
32
|
Liu KZ, Tian G, Ko ACT, Geissler M, Brassard D, Veres T. Detection of renal biomarkers in chronic kidney disease using microfluidics: progress, challenges and opportunities. Biomed Microdevices 2020; 22:29. [PMID: 32318839 DOI: 10.1007/s10544-020-00484-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) typically evolves over many years in a latent period without clinical signs, posing key challenges to detection at relatively early stages of the disease. Accurate and timely diagnosis of CKD enable effective management of the disease and may prevent further progression. However, long turn-around times of current testing methods combined with their relatively high cost due to the need for established laboratory infrastructure, specialized instrumentation and trained personnel are drawbacks for efficient assessment and monitoring of CKD, especially in underserved and resource-poor locations. Among the emerging clinical laboratory approaches, microfluidic technology has gained increasing attention over the last two decades due to the possibility of miniaturizing bioanalytical assays and instrumentation, thus potentially improving diagnostic performance. In this article, we review current developments related to the detection of CKD biomarkers using microfluidics. A general trend in this emerging area is the search for novel, sensitive biomarkers for early detection of CKD using technology that is improved by means of microfluidics. It is anticipated that these innovative approaches will be soon adopted and utilized in both clinical and point-of-care settings, leading to improvements in life quality of patients.
Collapse
Affiliation(s)
- Kan-Zhi Liu
- Medical Devices Research Centre, National Research Council Canada, 435 Ellice Avenue, Winnipeg, MB, R3B1Y6, Canada.
| | - Ganghong Tian
- Medical Devices Research Centre, National Research Council Canada, 435 Ellice Avenue, Winnipeg, MB, R3B1Y6, Canada
| | - Alex C-T Ko
- Medical Devices Research Centre, National Research Council Canada, 435 Ellice Avenue, Winnipeg, MB, R3B1Y6, Canada
| | - Matthias Geissler
- Medical Devices Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B6Y4, Canada
| | - Daniel Brassard
- Medical Devices Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B6Y4, Canada
| | - Teodor Veres
- Medical Devices Research Centre, National Research Council Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B6Y4, Canada
| |
Collapse
|
33
|
Karami M, Yamini Y. On-disc electromembrane extraction-dispersive liquid-liquid microextraction: A fast and effective method for extraction and determination of ionic target analytes from complex biofluids by GC/MS. Anal Chim Acta 2020; 1105:95-104. [DOI: 10.1016/j.aca.2020.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/05/2023]
|
34
|
Geissler M, Brassard D, Clime L, Pilar AVC, Malic L, Daoud J, Barrère V, Luebbert C, Blais BW, Corneau N, Veres T. Centrifugal microfluidic lab-on-a-chip system with automated sample lysis, DNA amplification and microarray hybridization for identification of enterohemorrhagic Escherichia coli culture isolates. Analyst 2020; 145:6831-6845. [DOI: 10.1039/d0an01232g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Automated workflow that starts with a colony isolate and ends with a fluorescence signal on a DNA microarray.
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Daniel Brassard
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Liviu Clime
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | | | - Lidija Malic
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | - Jamal Daoud
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| | | | | | - Burton W. Blais
- Ontario Laboratory Network
- Canadian Food Inspection Agency
- Ottawa
- Canada
| | | | - Teodor Veres
- Life Sciences Division
- National Research Council of Canada
- Boucherville
- Canada
| |
Collapse
|
35
|
Abstract
We present a powerful and compact batch-mode mixing and dilution technique for centrifugal microfluidic platforms. Siphon structures are designed to discretize continuous flows into a sequence of droplets of volumes as low as 100 nL. Using a passive, self-regulating 4-step mechanism, discrete volumes of two fluids are alternatingly issued into a common intermediate chamber. At its base, a capillary valve acts as a fluidic shift register; a single droplet is held in place while two or more droplets merge and pass through the capillary stop. These merged droplets are advectively mixed as they pass through the capillary valve and into the receiving chamber. Mixing is demonstrated for various combinations of liquids such as aqueous solutions as well as saline solutions and human plasma. The mixing quality is assessed on a quantitative scale by using a colorimetric method based on the mixing of potassium thiocyanate and iron(III) chloride, and in the case of human plasma using a spectroscopic method. For instance, volumes of 5 µL have been mixed in less than 20 s. Single-step dilutions up to 1:5 of plasma in a standard phosphate buffer solution are also demonstrated. This work describes the preliminary development of the mixing method which has since been integrated into a commercially available microfluidic cartridge.
Collapse
|
36
|
Ducrée J. Efficient Development of Integrated Lab-On-A-Chip Systems Featuring Operational Robustness and Manufacturability. MICROMACHINES 2019; 10:mi10120886. [PMID: 31861126 PMCID: PMC6953106 DOI: 10.3390/mi10120886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/28/2022]
Abstract
The majority of commercially oriented microfluidic technologies provide novel point-of-use solutions for laboratory automation with important areas in the context of the life sciences such as health care, biopharma, veterinary medicine and agrifood as well as for monitoring of the environment, infrastructures and industrial processes. Such systems are often composed of a modular setup exhibiting an instrument accommodating rather conventional actuation, detection and control units which interfaces with a fluidically integrated "Lab-on-a-Chip" device handling (bio-)sample(s) and reagents. As the complex network of tiny channels, chambers and surface-functionalised zones can typically not be properly cleaned and regenerated, these microfluidic chips are mostly devised as single-use disposables. The availability of cost-efficient materials and associated structuring, functionalisation and assembly schemes thus represents a key ingredient along the commercialisation pipeline and will be a first focus of this work. Furthermore, and owing to their innate variability, investigations on biosamples mostly require the acquisition of statistically relevant datasets. Consequently, intermediate numbers of consistently performing chips are already needed during application development; to mitigate the potential pitfalls of technology migration and to facilitate regulatory compliance of the end products, manufacture of such pilot series should widely follow larger-scale production schemes. To expedite and de-risk the development of commercially relevant microfluidic systems towards high Technology Readiness Levels (TRLs), we illustrate a streamlined, manufacturing-centric platform approach employing the paradigms of tolerance-forgiving Design-for-Manufacture (DfM) and Readiness for Scale-up (RfS) from prototyping to intermediate pilot series and eventual mass fabrication. Learning from mature industries, we further propose pursuing a platform approach incorporating aspects of standardisation in terms of specification, design rules and testing methods for materials, components, interfaces, and operational procedures; this coherent strategy will foster the emergence of dedicated commercial supply chains and also improve the economic viability of Lab-on-a-Chip systems often targeting smaller niche markets by synergistically bundling technology development.
Collapse
Affiliation(s)
- Jens Ducrée
- FPC@DCU-Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
37
|
Hess JF, Zehnle S, Juelg P, Hutzenlaub T, Zengerle R, Paust N. Review on pneumatic operations in centrifugal microfluidics. LAB ON A CHIP 2019; 19:3745-3770. [PMID: 31596297 DOI: 10.1039/c9lc00441f] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Centrifugal microfluidics allows for miniaturization, automation and parallelization of laboratory workflows. The fact that centrifugal forces are always directed radially outwards has been considered a main drawback for the implementation of complex workflows leading to the requirement of additional actuation forces for pumping, valving and switching. In this work, we review and discuss the combination of centrifugal with pneumatic forces which enables transport of even complex liquids in any direction on centrifugal systems, provides actuation for valving and switching, offers alternatives for mixing and enables accurate and precise metering and aliquoting. In addition, pneumatics can be employed for timing to carry out any of the above listed unit operations in a sequential and cascaded manner. Firstly, different methods to generate pneumatic pressures are discussed. Then, unit operations and applications that employ pneumatics are reviewed. Finally, a tutorial section discusses two examples to provide insight into the design process. The first tutorial explains a comparatively simple implementation of a pneumatic siphon valve and provides a workflow to derive optimum design parameters. The second tutorial discusses cascaded pneumatic operations consisting of temperature change rate actuated valving and subsequent pneumatic pumping. In conclusion, combining pneumatic actuation with centrifugal microfluidics allows for the design of robust fluidic networks with simple fluidic structures that are implemented in a monolithic fashion. No coatings are required and the overall demands on manufacturing are comparatively low. We see the combination of centrifugal forces with pneumatic actuation as a key enabling technology to facilitate compact and robust automation of biochemical analysis.
Collapse
Affiliation(s)
- J F Hess
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - S Zehnle
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - P Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - T Hutzenlaub
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - R Zengerle
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - N Paust
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany and Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
38
|
Salva ML, Temiz Y, Rocca M, Arango YC, Niemeyer CM, Delamarche E. Programmable hydraulic resistor for microfluidic chips using electrogate arrays. Sci Rep 2019; 9:17242. [PMID: 31754240 PMCID: PMC6872553 DOI: 10.1038/s41598-019-53885-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 10/27/2019] [Indexed: 12/16/2022] Open
Abstract
Flow rates play an important role in microfluidic devices because they affect the transport of chemicals and determine where and when (bio)chemical reactions occur in these devices. Flow rates can conveniently be determined using external peripherals in active microfluidics. However, setting specific flow rates in passive microfluidics is a significant challenge because they are encoded on a design and fabrication level, leaving little freedom to users for adjusting flow rates for specific applications. Here, we present a programmable hydraulic resistor where an array of "electrogates" routes an incoming liquid through a set of resistors to modulate flow rates in microfluidic chips post-fabrication. This approach combines a battery-powered peripheral device with passive capillary-driven microfluidic chips for advanced flow rate control and measurement. We specifically show a programmable hydraulic resistor composed of 7 parallel resistors and 14 electrogates. A peripheral and smartphone application allow a user to activate selected electrogates and resistors, providing 127 (27-1) flow resistance combinations with values spanning on a 500 fold range. The electrogates feature a capillary pinning site (i.e. trench across the flow path) to stop a solution and an electrode, which can be activated in a few ms using a 3 V bias to resume flow based on electrowetting. The hydraulic resistor and microfluidic chip shown here enable flow rates from ~0.09 nL.s-1 up to ~5.66 nL.s-1 with the resistor occupying a footprint of only 15.8 mm2 on a 1 × 2 cm2 microfluidic chip fabricated in silicon. We illustrate how a programmable hydraulic resistor can be used to set flow rate conditions for laminar co-flow of 2 liquids and the enzymatic conversion of a substrate by stationary enzymes (alkaline phosphatase) downstream of the programmable hydraulic resistor.
Collapse
Affiliation(s)
- Marie L Salva
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
- Karlsruhe Institute of Technology (KIT) - Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yuksel Temiz
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Marco Rocca
- Karlsruhe Institute of Technology (KIT) - Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Yulieth C Arango
- IBM Research - Zurich, Säumerstrasse 4, 8803, Rüschlikon, Switzerland
| | - Christof M Niemeyer
- Karlsruhe Institute of Technology (KIT) - Institute for Biological Interfaces (IBG-1), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | | |
Collapse
|
39
|
Juelg P, Specht M, Kipf E, Lehnert M, Eckert C, Keller M, Hutzenlaub T, von Stetten F, Zengerle R, Paust N. Automated serial dilutions for high-dynamic-range assays enabled by fill-level-coupled valving in centrifugal microfluidics. LAB ON A CHIP 2019; 19:2205-2219. [PMID: 31139783 DOI: 10.1039/c9lc00092e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a new concept for centrifugal microfluidics that enables fully automated serial dilution generation without any additional means besides temperature control. The key feature is time-independent, serial valving of mixing chambers by fill-level-coupled temperature change rate (FLC-TCR) actuated valving. The automated dilution is realized under continuous rotation which enables reliable control of wetting liquids without the need for any additional fabrication steps such as hydrophobic coating. All fluidic features are implemented in a monolithic fashion and disks are manufactured by foil thermoforming for scalable manufacturing. The new valving concept is demonstrated to reliably prevent valving if the diluted sample is not added to the mixing chamber (n = 30) and ensure valving if the dilution stage is completed (n = 15). The accuracy and precision of automated serial dilutions are verified by on-disk generation of qPCR standard curve dilutions and compared with manually generated reference dilutions. In a first step, the 5-log-stage standard curves are evaluated in a commercial qPCR thermocycler revealing a linearity of R2 ≥ 99.92% for the proposed LabDisk method vs. R2 ≥ 99.67% in manual reference dilutions. In a second step, the disk automated serial dilutions are combined with on-disk qPCR thermocycling and readout, both inside a LabDisk player. A 4-log-stage linearity of R2 ≥ 99.81% and a sensitivity of one leukemia associated ETV6-RUNX1 mutant DNA copy in a background of 100 000 wild-type DNA copies are achieved.
Collapse
Affiliation(s)
- Peter Juelg
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brassard D, Geissler M, Descarreaux M, Tremblay D, Daoud J, Clime L, Mounier M, Charlebois D, Veres T. Extraction of nucleic acids from blood: unveiling the potential of active pneumatic pumping in centrifugal microfluidics for integration and automation of sample preparation processes. LAB ON A CHIP 2019; 19:1941-1952. [PMID: 30997461 DOI: 10.1039/c9lc00276f] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This paper describes the development of an on-chip nucleic acid (NA) extraction assay from whole blood using a centrifugal microfluidic platform that allows for pneumatic actuation of liquids during rotation. The combination of pneumatic and centrifugal forces makes it possible to perform fluidic operations without the need for integrating active control elements on the microfluidic cartridge. The cartridge is fabricated from thermoplastic polymers (e.g., Zeonor 1060R) and features a simple design that is compatible with injection molding. In addition, the cartridge is interfaced with two external vials for off-chip storage of the blood sample and retrieval of the eluted NA solution, respectively. On-chip capture of NAs is performed using an embedded solid-phase extraction matrix composed of commercial glass microfiber filters (Whatman GF/D and GF/F). The yield of the automated, on-chip extraction protocol, determined by measuring absorbance at 260 nm, is comparable to some of the best manually operated kits (e.g., Qiagen QIAamp DNA Mini Kit) while providing low assay-to-assay variability due to the high level of control provided by the platform for each processing step. The A260/A280 and A260/A230 ratios of the absorbance spectra also reveal that protein contamination of the sample is negligible. The capability of the pneumatic platform to circulate air flux through the microfluidic conduit was used to dry leftover ethanol residues retained in the capture matrix during washing. This method, applied in combination with localized heating, proved effective for reducing ethanol contamination in eluted samples from ∼12% to 1% (v/v).
Collapse
Affiliation(s)
- Daniel Brassard
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Matthias Geissler
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Marianne Descarreaux
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Department of Biology, Université de Sherbrooke, 2500 de l'Université Boulevard, Sherbrooke, QC J1K 2R1, Canada and Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada
| | - Dominic Tremblay
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada and Centre hospitalier universitaire de Sherbrooke and Department of Medicine, Centre de recherche clinique, Université de Sherbrooke, 3001 12th Avenue North, Sherbrooke, QC J1H 5N4, Canada
| | - Jamal Daoud
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Liviu Clime
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Maxence Mounier
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada.
| | - Denis Charlebois
- Canadian Space Agency, 6767 Route de l'Aéroport, Saint-Hubert, QC J3Y 8Y9, Canada
| | - Teodor Veres
- National Research Council of Canada, Life Sciences Division, 75 de Mortagne Boulevard, Boucherville, QC J4B 6Y4, Canada. and Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
41
|
Torres Delgado SM, Korvink JG, Mager D. The eLoaD platform endows centrifugal microfluidics with on-disc power and communication. Biosens Bioelectron 2018; 117:464-473. [DOI: 10.1016/j.bios.2018.05.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 01/18/2023]
|
42
|
Miyazaki CM, Kinahan DJ, Mishra R, Mangwanya F, Kilcawley N, Ferreira M, Ducrée J. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens Bioelectron 2018; 119:86-93. [PMID: 30103158 DOI: 10.1016/j.bios.2018.07.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023]
Abstract
As a direct, label-free method, Surface Plasmon Resonance (SPR) detection significantly reduces the needs for liquid handling and reagent storage compared to common enzyme-linked immunosorbent assays (ELISAs), thus enabling comprehensive multiplexing of bioassays on microfluidic sample-to-answer systems. This paper describes a highly integrated centrifugal Lab-on-a-Disc (LoaD) platform for automating the full process chain extending between plasma extraction and subsequent aliquoting to five parallelized reaction channels for quantitative SPR detection by an inexpensive smartphone camera. The entire, multi-step / multi-reagent operation completes within less than 1 h. While the emphasis of this work is on the fluidic automation and parallelization by previously introduced, very robust event-triggered valving and buoyancy-driven centripetal pumping schemes, we successfully implement an immunoglobulin G (IgG) assay; by specific functionalization of the detection surfaces, the same disc layout can readily be customised for immunoassays panels from whole blood.
Collapse
Affiliation(s)
- Celina M Miyazaki
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland; Federal University of São Carlos, Sorocaba, SP, Brazil.
| | - David J Kinahan
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland
| | - Rohit Mishra
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland
| | - Faith Mangwanya
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland
| | - Niamh Kilcawley
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland
| | | | - Jens Ducrée
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, School of Physical Sciences, Dublin City University, Ireland.
| |
Collapse
|
43
|
Torres Delgado SM, Kinahan DJ, Nirupa Julius LA, Mallette A, Ardila DS, Mishra R, Miyazaki CM, Korvink JG, Ducrée J, Mager D. Wirelessly powered and remotely controlled valve-array for highly multiplexed analytical assay automation on a centrifugal microfluidic platform. Biosens Bioelectron 2018; 109:214-223. [PMID: 29567566 DOI: 10.1016/j.bios.2018.03.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/09/2018] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
In this paper we present a wirelessly powered array of 128 centrifugo-pneumatic valves that can be thermally actuated on demand during spinning. The valves can either be triggered by a predefined protocol, wireless signal transmission via Bluetooth, or in response to a sensor monitoring a parameter like the temperature, or homogeneity of the dispersion. Upon activation of a resistive heater, a low-melting membrane (Parafilm™) is removed to vent an entrapped gas pocket, thus letting the incoming liquid wet an intermediate dissolvable film and thereby open the valve. The proposed system allows up to 12 heaters to be activated in parallel, with a response time below 3 s, potentially resulting in 128 actuated valves in under 30 s. We demonstrate, with three examples of common and standard procedures, how the proposed technology could become a powerful tool for implementing diagnostic assays on Lab-on-a-Disc. First, we implement wireless actuation of 64 valves during rotation in a freely programmable sequence, or upon user input in real time. Then, we show a closed-loop centrifugal flow control sequence for which the state of mixing of reagents, evaluated from stroboscopically recorded images, triggers the opening of the valves. In our last experiment, valving and closed-loop control are used to facilitate centrifugal processing of whole blood.
Collapse
Affiliation(s)
- Saraí M Torres Delgado
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau 79110, Germany; Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - David J Kinahan
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Lourdes Albina Nirupa Julius
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Adam Mallette
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland; Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - David Sáenz Ardila
- Laboratory for Simulation, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, Freiburg im Breisgau 79110, Germany
| | - Rohit Mishra
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Celina M Miyazaki
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland; Science and Technology Centre for Sustainability, Federal University of São Carlos, Campus Sorocaba, SP, Brazil
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Jens Ducrée
- FPC@DCU - Fraunhofer Project Centre for Embedded Bioanalytical Systems at Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Dario Mager
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| |
Collapse
|
44
|
Yeo JC, Kenry, Zhao Z, Zhang P, Wang Z, Lim CT. Label-free extraction of extracellular vesicles using centrifugal microfluidics. BIOMICROFLUIDICS 2018; 12:024103. [PMID: 30867854 PMCID: PMC6404916 DOI: 10.1063/1.5019983] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 08/13/2023]
Abstract
Extracellular vesicles (EVs) play an important role as active messengers in intercellular communication and distant microenvironment modeling. Increasingly, these EVs are recognized as important biomarkers for clinical diagnostics. However, current isolation methods of EVs are time-consuming and ineffective due to the high diffusive characteristics of nanoparticles coupled with fluid flow instability. Here, we develop a microfluidic CEntrifugal Nanoparticles Separation and Extraction (µCENSE) platform for the rapid and label-free isolation of microvesicles. By utilizing centrifugal microhydrodynamics, we subject the nanosuspensions between 100 nm and 1000 nm to a unique fluid flow resulting in a zonal separation into different outlets for easy post-processing. Our centrifugal platform utilizes a gentle and efficient size-based separation without the requirements of syringe pump and other accessories. Based on our results, we report a high separation efficiency of 90% and an extraction purity of 85% within a single platform. Importantly, we demonstrate high EV extraction using a table top centrifuge within a short duration of eight minutes. The simple processes and the small volume requirement further enhance the utility of the platform. With this platform, it serves as a potential for liquid biopsy extraction and point-of-care diagnostics.
Collapse
Affiliation(s)
| | - Kenry
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Zhihai Zhao
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Pan Zhang
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583
| | - Zhiping Wang
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634
| | | |
Collapse
|
45
|
Hin S, Paust N, Keller M, Rombach M, Strohmeier O, Zengerle R, Mitsakakis K. Temperature change rate actuated bubble mixing for homogeneous rehydration of dry pre-stored reagents in centrifugal microfluidics. LAB ON A CHIP 2018; 18:362-370. [PMID: 29297912 DOI: 10.1039/c7lc01249g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In centrifugal microfluidics, dead volumes in valves downstream of mixing chambers can hardly be avoided. These dead volumes are excluded from mixing processes and hence cause a concentration gradient. Here we present a new bubble mixing concept which avoids such dead volumes. The mixing concept employs heating to create a temperature change rate (TCR) induced overpressure in the air volume downstream of mixing chambers. The main feature is an air vent with a high fluidic resistance, representing a low pass filter with respect to pressure changes. Fast temperature increase causes rapid pressure increase in downstream structures pushing the liquid from downstream channels into the mixing chamber. As air further penetrates into the mixing chamber, bubbles form, ascend due to buoyancy and mix the liquid. Slow temperature/pressure changes equilibrate through the high fluidic resistance air vent enabling sequential heating/cooling cycles to repeat the mixing process. After mixing, a complete transfer of the reaction volume into the downstream fluidic structure is possible by a rapid cooling step triggering TCR actuated valving. The new mixing concept is applied to rehydrate reagents for loop-mediated isothermal amplification (LAMP). After mixing, the reaction mix is aliquoted into several reaction chambers for geometric multiplexing. As a measure for mixing efficiency, the mean coefficient of variation (C[combining macron]V[combining macron], n = 4 LabDisks) of the time to positivity (tp) of the LAMP reactions (n = 11 replicates per LabDisk) is taken. The C[combining macron]V[combining macron] of the tp is reduced from 18.5% (when using standard shake mode mixing) to 3.3% (when applying TCR actuated bubble mixing). The bubble mixer has been implemented in a monolithic fashion without the need for any additional actuation besides rotation and temperature control, which are needed anyhow for the assay workflow.
Collapse
Affiliation(s)
- S Hin
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Zhu Y, Chen Y, Meng X, Wang J, Lu Y, Xu Y, Cheng J. Comprehensive Study of the Flow Control Strategy in a Wirelessly Charged Centrifugal Microfluidic Platform with Two Rotation Axes. Anal Chem 2017; 89:9315-9321. [PMID: 28764326 DOI: 10.1021/acs.analchem.7b02080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Centrifugal microfluidics has been widely applied in the sample-in-answer-out systems for the analyses of nucleic acids, proteins, and small molecules. However, the inherent characteristic of unidirectional fluid propulsion limits the flexibility of these fluidic chips. Providing an extra degree of freedom to allow the unconstrained and reversible pumping of liquid is an effective strategy to address this limitation. In this study, a wirelessly charged centrifugal microfluidic platform with two rotation axes has been constructed and the flow control strategy in such platform with two degrees of freedom was comprehensively studied for the first time. Inductively coupled coils are installed on the platform to achieve wireless power transfer to the spinning stage. A micro servo motor is mounted on both sides of the stage to alter the orientation of the device around a secondary rotation axis on demand during stage rotation. The basic liquid operations on this platform, including directional transport of liquid, valving, metering, and mixing, are comprehensively studied and realized. Finally, a chip for the simultaneous determination of hexavalent chromium [Cr(VI)] and methanal in water samples is designed and tested based on the strategy presented in this paper, demonstrating the potential use of this platform for on-site environmental monitoring, food safety testing, and other life science applications.
Collapse
Affiliation(s)
- Yunzeng Zhu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Yiqi Chen
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Xiangrui Meng
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Jing Wang
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Ying Lu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Youchun Xu
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China
| | - Jing Cheng
- Department of Biomedical Engineering, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University School of Medicine , Beijing 100084, China.,National Engineering Research Center for Beijing Biochip Technology , Beijing 102206, China
| |
Collapse
|
47
|
Affiliation(s)
- Cong Xu
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tingliang Xie
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
48
|
Tang M, Loo J, Wang Y, Zhang X, Kwok HC, Hui M, Leung CCH, Kong SK, Wang G, Ho HP. Motor-assisted chip-in-a-tube (MACT): a new 2- and 3-dimensional centrifugal microfluidic platform for biomedical applications. LAB ON A CHIP 2017; 17:474-483. [PMID: 28009878 DOI: 10.1039/c6lc01169a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Currently, centrifuge apparatus is primarily an end-point sample processing piece of equipment. The lack of real-time active control has imposed an inherent limitation such that many delicate sample processing steps requiring immediate and accurate intervention have never been possible. We report herein a motor-assisted chip-in-a-tube (MACT) platform in which a microfluidic chip placed inside a common centrifuge canister can be rotated through wireless control in order to manipulate the centrifugal force vector in a 3-dimensional (3D) manner. As a demonstration experiment, we have used our MACT prototype to perform the operation for two common biomedical procedures, namely human blood plasma separation and E. coli plasmid DNA extraction. This simple, yet highly effective and versatile approach may serve as a generic one-for-all platform for a wide range of common laboratory experiments and bioassay applications.
Collapse
Affiliation(s)
- Minghui Tang
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Jacky Loo
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yuye Wang
- Institute of Optical Communication Engineering, Nanjing University, Jiangsu 210009, China.
| | - Xuping Zhang
- Institute of Optical Communication Engineering, Nanjing University, Jiangsu 210009, China.
| | - Ho-Chin Kwok
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Mamie Hui
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Czarina Chi-Hung Leung
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Siu-Kai Kong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Guanghui Wang
- Institute of Optical Communication Engineering, Nanjing University, Jiangsu 210009, China.
| | - Ho-Pui Ho
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
49
|
Aeinehvand MM, Magaña P, Aeinehvand MS, Aguilar O, Madou MJ, Martinez-Chapa SO. Ultra-rapid and low-cost fabrication of centrifugal microfluidic platforms with active mechanical valves. RSC Adv 2017. [DOI: 10.1039/c7ra11532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fabrication of microfluidic discs with mechanical active valves by a cutter plotter.
Collapse
Affiliation(s)
- M. M. Aeinehvand
- School of Engineering and Sciences
- Instituto Tecnologico y de Estudios Superiores de Monterrey
- Monterrey
- Mexico
| | - P. Magaña
- School of Engineering and Sciences
- Instituto Tecnologico y de Estudios Superiores de Monterrey
- Monterrey
- Mexico
| | | | - O. Aguilar
- School of Engineering and Sciences
- Instituto Tecnologico y de Estudios Superiores de Monterrey
- Monterrey
- Mexico
| | - M. J. Madou
- School of Engineering and Sciences
- Instituto Tecnologico y de Estudios Superiores de Monterrey
- Monterrey
- Mexico
- Department of Mechanical and Aerospace Engineering
| | - S. O. Martinez-Chapa
- School of Engineering and Sciences
- Instituto Tecnologico y de Estudios Superiores de Monterrey
- Monterrey
- Mexico
- Department of Mechanical and Aerospace Engineering
| |
Collapse
|
50
|
Pishbin E, Eghbal M, Fakhari S, Kazemzadeh A, Navidbakhsh M. The Effect of Moment of Inertia on the Liquids in Centrifugal Microfluidics. MICROMACHINES 2016; 7:E215. [PMID: 30404391 PMCID: PMC6189857 DOI: 10.3390/mi7120215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/23/2022]
Abstract
The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions). Developing mechanisms and discovering efficient techniques to propel liquids in any direction other than the direction of the centrifugal force has been the subject of a large number of studies. The capillary force attained by specific surface treatments, pneumatic energy, active and passive flow reciprocation and Euler force have been previously introduced in order to manipulate the liquid flow and push it against the centrifugal force. Here, as a new method, the moment of inertia of the liquid inside a chamber in a centrifugal microfluidic platform is employed to manipulate the flow and propel the liquid passively towards the disc center. Furthermore, the effect of the moment of inertia on the liquid in a rectangular chamber is evaluated, both in theory and experiments, and the optimum geometry is defined. As an application of the introduced method, the moment of inertia of the liquid is used in order to mix two different dyed deionized (DI) waters; the mixing efficiency is evaluated and compared to similar mixing techniques. The results show the potential of the presented method for pumping liquids radially inward with relatively high flow rates (up to 23 mm³/s) and also efficient mixing in centrifugal microfluidic platforms.
Collapse
Affiliation(s)
- Esmail Pishbin
- Mechanical Engineering Department, Iran University of Science and Technology, 1684613114 Tehran, Iran.
- Lab-on-a-disc Technology Center (LTC), Iranian Research Organization for Science and Technology (IROST), Ahmadabad Mostoufi, Azadegan Highway, 3353136846 Tehran, Iran.
| | - Manouchehr Eghbal
- Lab-on-a-disc Technology Center (LTC), Iranian Research Organization for Science and Technology (IROST), Ahmadabad Mostoufi, Azadegan Highway, 3353136846 Tehran, Iran.
| | - Sepideh Fakhari
- Mechanical Engineering Department, Iran University of Science and Technology, 1684613114 Tehran, Iran.
| | - Amin Kazemzadeh
- Science for Life Laboratory, Division of Nanobiotechnology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
| | - Mehdi Navidbakhsh
- Mechanical Engineering Department, Iran University of Science and Technology, 1684613114 Tehran, Iran.
| |
Collapse
|