1
|
Lamarre M, Boudreau D. Lipopolysaccharide Detection with Glycan-Specific Lectins-a Nonspecific Binding Approach Applied to Surface Plasmon Resonance. ACS OMEGA 2025; 10:15610-15620. [PMID: 40290997 PMCID: PMC12019741 DOI: 10.1021/acsomega.5c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
The detection and classification of lipopolysaccharides (LPS), pivotal constituents of Gram-negative bacteria, are fundamental to the progression of biosensing technologies in fields such as healthcare, environmental monitoring, and food safety. This study presents an innovative approach utilizing a panel of glycan-selective lectins in conjunction with surface plasmon resonance (SPR) providing a novel perspective on the evolution of biosensors within the context of the ongoing tension between the highly selective, one-probe-one-target methodology and the broader, resource-intensive approach that integrates complex and costly technological tools into the biosensing discipline. Guided by the principles of lean development, we employed a panel of lectins to construct multiprobe detection profiles, thereby facilitating the precise classification of LPS variants while minimizing both variability and resource expenditure. Advanced machine learning techniques were applied to optimize feature selection and enhance classification accuracy, demonstrating that a minimal set of four lectins sustains exceptional predictive performance. This synergy between traditional affinity techniques and data science enhances assay engineering efficiency, scalability, and integration into routine workflows, supporting frontline pathogen monitoring. This innovative approach holds promise for addressing global health challenges, providing more profound insights into biosensing methodologies, and expanding pathogen screening networks closer to the public and health safety management bodies.
Collapse
Affiliation(s)
- Mathieu Lamarre
- Department
of Chemistry, Pavillon Alexandre-Vachon, 1045, avenue de la Médecine, Université Laval, Quebec City, Quebec G1 V0A6, Canada
- Centre
d’optique, photonique et lasers (COPL), Pavillon d’Optique-Photonique,
2375 rue de la Terrasse, Université
Laval, Quebec City, Quebec G1 V0A6, Canada
| | - Denis Boudreau
- Department
of Chemistry, Pavillon Alexandre-Vachon, 1045, avenue de la Médecine, Université Laval, Quebec City, Quebec G1 V0A6, Canada
- Centre
d’optique, photonique et lasers (COPL), Pavillon d’Optique-Photonique,
2375 rue de la Terrasse, Université
Laval, Quebec City, Quebec G1 V0A6, Canada
| |
Collapse
|
2
|
Masuda R, Ohira N, Kitaguchi K, Yabe T. Novel role of homogalacturonan region of pectin in disrupting the interaction between fibronectin and integrin β1. Carbohydr Polym 2024; 336:122122. [PMID: 38670769 DOI: 10.1016/j.carbpol.2024.122122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Pectin interacts with fibronectin (FN), a modular protein in the extracellular matrix. This interaction is significant as FN plays a pivotal role by binding to the receptor integrin α5β1. However, the molecular mechanism underlying the pectin-FN interaction and its impact on integrin binding remains unknown. In this study, water-soluble pectins (WSPs) were extracted from three different pectin sources and subsequently characterized. These included Citrus WSP, which primarily comprises the homogalacturonan region, and Kaki and Yuzu WSPs, both of which are rich in rhamnogalacturonan regions. We investigated the molecular interactions between these WSPs and two FN fragments, Anastellin and RetroNectin, using surface plasmon resonance analysis. Citrus WSP exhibited a notable binding affinity to FN, with a dissociation constant (KD) of approximately 10-7 M. In contrast, Kaki and Yuzu WSPs displayed comparatively weaker or negligible binding affinities. The binding reactivity of Citrus WSP with FN was notably diminished following the enzymatic removal of its methyl-ester groups. Additionally, Citrus WSP disrupted the binding of integrin β1 to RetroNectin without altering the affinity, despite its minimal direct binding to integrin itself. This study furthers our understanding of the intricate pectin-FN interaction and sheds light on their potential physiological relevance and impact on cellular responses.
Collapse
Affiliation(s)
- Ryoya Masuda
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Natsuho Ohira
- Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kohji Kitaguchi
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomio Yabe
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Preemptive Food Research Center (PFRC), Gifu University Institute for Advanced Study, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Nonne F, Iacono LD, Bertuzzi S, Unione L, Proietti D, Norais N, Margarit I, Adamo R, Jiménez-Barbero J, Carboni F, Romano MR. A Multidisciplinary Structural Approach to the Identification of the Haemophilus influenzae Type b Capsular Polysaccharide Protective Epitope. ACS CENTRAL SCIENCE 2024; 10:978-987. [PMID: 38799664 PMCID: PMC11117310 DOI: 10.1021/acscentsci.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 05/29/2024]
Abstract
Glycoconjugate vaccines so far licensed are generally composed of a native or size-reduced capsular polysaccharide conjugated to carrier proteins. Detailed information on the structural requirements necessary for CPS recognition is becoming the key to accelerating the development of next-generation improved glycoconjugate vaccines. Structural glycobiology studies using oligosaccharides (OS) complexed with functional monoclonal antibodies represent a powerful tool for gaining information on CPS immunological determinants at the atomic level. Herein, the minimal structural epitope of Haemophilus influenzae type b (Hib) CPS recognized by a functional human monoclonal antibody (hmAb) is reported. Short and well-defined Hib oligosaccharides originating from the depolymerization of the native CPS have been used to elucidate saccharide-mAb interactions by using a multidisciplinary approach combining surface plasmon resonance (SPR), saturation transfer difference-nanomagnetic resonance (STD-NMR), and X-ray crystallography. Our study demonstrates that the minimal structural epitope of Hib is comprised within two repeating units (RUs) where ribose and ribitol are directly engaged in the hmAb interaction, and the binding pocket fully accommodates two RUs without any additional involvement of a third one. Understanding saccharide antigen structural characteristics can provide the basis for the design of innovative glycoconjugate vaccines based on alternative technologies, such as synthetic or enzymatic approaches.
Collapse
Affiliation(s)
- Francesca Nonne
- GSK
Vaccines Institute for Global Health, 53100 Siena, Italy
| | | | - Sara Bertuzzi
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
| | - Luca Unione
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
| | | | | | | | | | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research
Technology Alliance, BRTA, Bizkaia Technology Park, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science and Technology, Euskadi Plaza 5, 48009 Bilbao, Spain
- Department
of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, 48940 Leioa, Spain
- Centro de
Investigación Biomédica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | | | | |
Collapse
|
4
|
State of the art in epitope mapping and opportunities in COVID-19. Future Sci OA 2023; 16:FSO832. [PMID: 36897962 PMCID: PMC9987558 DOI: 10.2144/fsoa-2022-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
The understanding of any disease calls for studying specific biological structures called epitopes. One important tool recently drawing attention and proving efficiency in both diagnosis and vaccine development is epitope mapping. Several techniques have been developed with the urge to provide precise epitope mapping for use in designing sensitive diagnostic tools and developing rpitope-based vaccines (EBVs) as well as therapeutics. In this review, we will discuss the state of the art in epitope mapping with a special emphasis on accomplishments and opportunities in combating COVID-19. These comprise SARS-CoV-2 variant analysis versus the currently available immune-based diagnostic tools and vaccines, immunological profile-based patient stratification, and finally, exploring novel epitope targets for potential prophylactic, therapeutic or diagnostic agents for COVID-19.
Collapse
|
5
|
Anand U, Chandel AKS, Oleksak P, Mishra A, Krejcar O, Raval IH, Dey A, Kuca K. Recent advances in the potential applications of luminescence-based, SPR-based, and carbon-based biosensors. Appl Microbiol Biotechnol 2022; 106:2827-2853. [PMID: 35384450 PMCID: PMC8984675 DOI: 10.1007/s00253-022-11901-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/23/2022] [Accepted: 03/26/2022] [Indexed: 12/20/2022]
Abstract
Abstract The need for biosensors has evolved in the detection of molecules, diseases, and pollution from various sources. This requirement has headed to the development of accurate and powerful equipment for analysis using biological sensing component as a biosensor. Biosensors have the advantage of rapid detection that can beat the conventional methods for the detection of the same molecules. Bio-chemiluminescence-based sensors are very sensitive during use in biological immune assay systems. Optical biosensors are emerging with time as they have the advantage that they act with a change in the refractive index. Carbon nanotube-based sensors are another area that has an important role in the biosensor field. Bioluminescence gives much higher quantum yields than classical chemiluminescence. Electro-generated bioluminescence has the advantage of miniature size and can produce a high signal-to-noise ratio and the controlled emission. Recent advances in biological techniques and instrumentation involving fluorescence tag to nanomaterials have increased the sensitivity limit of biosensors. Integrated approaches provided a better perspective for developing specific and sensitive biosensors with high regenerative potentials. This paper mainly focuses on sensors that are important for the detection of multiple molecules related to clinical and environmental applications. Key points • The review focusses on the applications of luminescence-based, surface plasmon resonance-based, carbon nanotube-based, and graphene-based biosensors • Potential clinical, environmental, agricultural, and food industry applications/uses of biosensors have been critically reviewed • The current limitations in this field are discussed, as well as the prospects for future advancement
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel
| | - Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Amarnath Mishra
- Faculty of Science and Technology, Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201313, India.
| | - Ondrej Krejcar
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic
| | - Ishan H Raval
- Council of Scientific and Industrial Research - Central Salt and Marine Chemicals Institute, Gijubhai Badheka Marg, Bhavnagar, Gujarat, 364002, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Center for Basic and Applied Science, Faculty of Informatics and Management, University of Hradec Kralove, 50003, Hradec Kralove, Czech Republic.
- Biomedical Research Center, University Hospital Hradec Kralove, 50005, Hradec Kralove, Czech Republic.
| |
Collapse
|
6
|
Sensitivity Analysis of Single- and Bimetallic Surface Plasmon Resonance Biosensors. SENSORS 2021; 21:s21134348. [PMID: 34202104 PMCID: PMC8271734 DOI: 10.3390/s21134348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Comparative analysis of the sensitivity of two surface plasmon resonance (SPR) biosensors was conducted on a single-metallic Au sensor and bimetallic Ag–Au sensor, using a cathepsin S sensor as an example. Numerically modeled resonance curves of Au and Ag–Au layers, with parameters verified by the results of experimental reflectance measurement of real-life systems, were used for the analysis of these sensors. Mutual relationships were determined between ∂Y/∂n components of sensitivity of the Y signal in the SPR measurement to change the refractive index n of the near-surface sensing layer and ∂n/∂c sensitivity of refractive index n to change the analyte’s concentration, c, for both types of sensors. Obtained results were related to experimentally determined calibration curves of both sensors. A characteristic feature arising from the comparison of calibration curves is the similar level of Au and Ag–Au biosensors’ sensitivity in the linear range, where the signal of the AgAu sensor is at a level several times greater. It was shown that the influence of sensing surface morphology on the ∂n/∂c sensitivity component had to be incorporated to explain the features of calibration curves of sensors. The shape of the sensory surface relief was proposed to increase the sensor sensitivity at low analyte concentrations.
Collapse
|
7
|
Akib TBA, Mou SF, Rahman MM, Rana MM, Islam MR, Mehedi IM, Mahmud MAP, Kouzani AZ. Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus. SENSORS (BASEL, SWITZERLAND) 2021; 21:3491. [PMID: 34067769 PMCID: PMC8156410 DOI: 10.3390/s21103491] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/28/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
In this paper, a highly sensitive graphene-based multiple-layer (BK7/Au/PtSe2/Graphene) coated surface plasmon resonance (SPR) biosensor is proposed for the rapid detection of the novel Coronavirus (COVID-19). The proposed sensor was modeled on the basis of the total internal reflection (TIR) technique for real-time detection of ligand-analyte immobilization in the sensing region. The refractive index (RI) of the sensing region is changed due to the interaction of different concentrations of the ligand-analyte, thus impacting surface plasmon polaritons (SPPs) excitation of the multi-layer sensor interface. The performance of the proposed sensor was numerically investigated by using the transfer matrix method (TMM) and the finite-difference time-domain (FDTD) method. The proposed SPR biosensor provides fast and accurate early-stage diagnosis of the COVID-19 virus, which is crucial in limiting the spread of the pandemic. In addition, the performance of the proposed sensor was investigated numerically with different ligand-analytes: (i) the monoclonal antibodies (mAbs) as ligand and the COVID-19 virus spike receptor-binding domain (RBD) as analyte, (ii) the virus spike RBD as ligand and the virus anti-spike protein (IgM, IgG) as analyte and (iii) the specific probe as ligand and the COVID-19 virus single-standard ribonucleic acid (RNA) as analyte. After the investigation, the sensitivity of the proposed sensor was found to provide 183.33°/refractive index unit (RIU) in SPR angle (θSPR) and 833.33THz/RIU in SPR frequency (SPRF) for detection of the COVID-19 virus spike RBD; the sensitivity obtained 153.85°/RIU in SPR angle and 726.50THz/RIU in SPRF for detection of the anti-spike protein, and finally, the sensitivity obtained 140.35°/RIU in SPR angle and 500THz/RIU in SPRF for detection of viral RNA. It was observed that whole virus spike RBD detection sensitivity is higher than that of the other two detection processes. Highly sensitive two-dimensional (2D) materials were used to achieve significant enhancement in the Goos-Hänchen (GH) shift detection sensitivity and plasmonic properties of the conventional SPR sensor. The proposed sensor successfully senses the COVID-19 virus and offers additional (1 + 0.55) × L times sensitivity owing to the added graphene layers. Besides, the performance of the proposed sensor was analyzed based on detection accuracy (DA), the figure of merit (FOM), signal-noise ratio (SNR), and quality factor (QF). Based on its performance analysis, it is expected that the proposed sensor may reduce lengthy procedures, false positive results, and clinical costs, compared to traditional sensors. The performance of the proposed sensor model was checked using the TMM algorithm and validated by the FDTD technique.
Collapse
Affiliation(s)
- Tarik Bin Abdul Akib
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Samia Ferdous Mou
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Motiur Rahman
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Masud Rana
- Department of Electrical and Electronic Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh; (T.B.A.A.); (S.F.M.); (M.M.R.); (M.M.R.)
| | - Md. Rabiul Islam
- Faculty of Engineering and Information Sciences, University of Wollongong, Wollongong, NSW 2522, Australia;
| | - Ibrahim M. Mehedi
- Department of Electrical and Computer Engineering (ECE) and Center of Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | | | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC 3216, Australia;
| |
Collapse
|
8
|
Kunstmann S, Engström O, Wehle M, Widmalm G, Santer M, Barbirz S. Increasing the Affinity of an O-Antigen Polysaccharide Binding Site in Shigella flexneri Bacteriophage Sf6 Tailspike Protein. Chemistry 2020; 26:7263-7273. [PMID: 32189378 PMCID: PMC7463171 DOI: 10.1002/chem.202000495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/09/2020] [Indexed: 12/30/2022]
Abstract
Broad and unspecific use of antibiotics accelerates spread of resistances. Sensitive and robust pathogen detection is thus important for a more targeted application. Bacteriophages contain a large repertoire of pathogen-binding proteins. These tailspike proteins (TSP) often bind surface glycans and represent a promising design platform for specific pathogen sensors. We analysed bacteriophage Sf6 TSP that recognizes the O-polysaccharide of dysentery-causing Shigella flexneri to develop variants with increased sensitivity for sensor applications. Ligand polyrhamnose backbone conformations were obtained from 2D 1 H,1 H-trNOESY NMR utilizing methine-methine and methine-methyl correlations. They agreed well with conformations obtained from molecular dynamics (MD), validating the method for further predictions. In a set of mutants, MD predicted ligand flexibilities that were in good correlation with binding strength as confirmed on immobilized S. flexneri O-polysaccharide (PS) with surface plasmon resonance. In silico approaches combined with rapid screening on PS surfaces hence provide valuable strategies for TSP-based pathogen sensor design.
Collapse
Affiliation(s)
- Sonja Kunstmann
- Physikalische BiochemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
- Current address: Department of Biotechnology and BiomedicineTechnical University of DenmarkSøltofts Plads2800 Kgs.LyngbyDenmark
| | - Olof Engström
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Marko Wehle
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Göran Widmalm
- Department of Organic ChemistryArrhenius LaboratoryStockholm University10691StockholmSweden
| | - Mark Santer
- Theory and BiosystemsMax Planck Institute of Colloids and InterfacesAm Mühlenberg 114476PotsdamGermany
| | - Stefanie Barbirz
- Physikalische BiochemieUniversität PotsdamKarl-Liebknecht-Str. 24–2514476PotsdamGermany
| |
Collapse
|
9
|
Plácido A, Ferreira-da-Silva F, Leite JRSA, de-los-Santos-Álvarez N, Delerue-Matos C. A convenient renewable surface plasmon resonance chip for relative quantification of genetically modified soybean in food and feed. PLoS One 2020; 15:e0229659. [PMID: 32101588 PMCID: PMC7043770 DOI: 10.1371/journal.pone.0229659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/12/2020] [Indexed: 01/09/2023] Open
Abstract
The cultivation of genetically modified organisms (GMO) continues to expand worldwide. Still, many consumers express concerns about the use of GMO in food or feed, and many countries have legislated on labelling systems to indicate the presence of GMO in commercial products. To deal with the increased number of GMO events and to address related regulations, alternative detection methods for GMO inspection are required. In this work, a genosensor based on Surface Plasmon Resonance under continuous flow was developed for the detection and quantification of a genetically modified soybean (event GTS 40-3-2). In a single chip, the simultaneous detection of the event-specific and the taxon-specific samples were achieved, whose detection limits were 20 pM and 16 pM, respectively. The reproducibility was 1.4%, which supports the use of the chip as a reliable and cost-effective alternative to other DNA-based techniques. The results indicate that the proposed method is a versatile tool for GMO quantification in food and feed samples.
Collapse
Affiliation(s)
- Alexandra Plácido
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| | - Frederico Ferreira-da-Silva
- Instituto de Investigação e Inovação em Saúde, i3S, Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - José Roberto S. A. Leite
- Área Morfologia, Faculdade de Medicina, Campus Darcy Ribeiro, Universidade de Brasília, Brasília, Federal District, Brazil
| | | | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Porto, Portugal
| |
Collapse
|
10
|
Mobed A, Baradaran B, Guardia MDL, Agazadeh M, Hasanzadeh M, Rezaee MA, Mosafer J, Mokhtarzadeh A, Hamblin MR. Advances in detection of fastidious bacteria: From microscopic observation to molecular biosensors. Trends Analyt Chem 2019; 113:157-171. [DOI: 10.1016/j.trac.2019.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Shi YZ, Xiong S, Zhang Y, Chin LK, Chen YY, Zhang JB, Zhang TH, Ser W, Larrson A, Lim SH, Wu JH, Chen TN, Yang ZC, Hao YL, Liedberg B, Yap PH, Wang K, Tsai DP, Qiu CW, Liu AQ. Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 2018; 9:815. [PMID: 29483548 PMCID: PMC5827716 DOI: 10.1038/s41467-018-03156-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/24/2018] [Indexed: 01/21/2023] Open
Abstract
Particle trapping and binding in optical potential wells provide a versatile platform for various biomedical applications. However, implementation systems to study multi-particle contact interactions in an optical lattice remain rare. By configuring an optofluidic lattice, we demonstrate the precise control of particle interactions and functions such as controlling aggregation and multi-hopping. The mean residence time of a single particle is found considerably reduced from 7 s, as predicted by Kramer’s theory, to 0.6 s, owing to the mechanical interactions among aggregated particles. The optofluidic lattice also enables single-bacteria-level screening of biological binding agents such as antibodies through particle-enabled bacteria hopping. The binding efficiency of antibodies could be determined directly, selectively, quantitatively and efficiently. This work enriches the fundamental mechanisms of particle kinetics and offers new possibilities for probing and utilising unprecedented biomolecule interactions at single-bacteria level. Optical trapping is a versatile tool for biomedical applications. Here, the authors use an optofluidic lattice to achieve controllable multi-particle hopping and demonstrate single-bacteria-level screening and measurement of binding efficiency of biological binding agents through particle-enabled bacteria hopping.
Collapse
Affiliation(s)
- Y Z Shi
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.,School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - S Xiong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | - Y Zhang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - L K Chin
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Y -Y Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - J B Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - T H Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - W Ser
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - A Larrson
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - S H Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - J H Wu
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - T N Chen
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Z C Yang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - Y L Hao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China
| | - B Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - P H Yap
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - K Wang
- College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan.,Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - D P Tsai
- Department of Physics, National Taiwan University, Taipei, 10617, Taiwan
| | - C-W Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore. .,SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen, 518060, China.
| | - A Q Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore. .,National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Dina NE, Colniţă A, Szöke-Nagy T, Porav AS. A Critical Review on Ultrasensitive, Spectroscopic-based Methods for High-throughput Monitoring of Bacteria during Infection Treatment. Crit Rev Anal Chem 2017; 47:499-512. [PMID: 28541711 DOI: 10.1080/10408347.2017.1332974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The world is in the midst of a pre-emptive public health emergency, one that is just as dramatic as the global aggressive viruses-related crises (Ebola, Zika, or SARS), but not as visible. The "superbugs" and their antimicrobial resistance do not cause much public alarm or awareness, but provoke financial losses of $100 trillion annually (WHO, http://www.who.int/mediacentre/commentaries/superbugs-action-now/en/ ). This status quo review offers an overview of ultrasensitive methods for high-throughput monitoring of bacteria during infection treatment, the effects of antibiotics on bacteria at single-cell level and the challenges we will face in their detection due to the extraordinary capability of these "superbugs" to gain and constantly improve multiresistance to antibiotics. A special emphasis is put on the ultrasensitive spectroscopic-based analysis techniques, using nanotechnology or not necessarily, that are more and more promising alternatives to conventional culture-based ones. The particular case of Mycobacteria detection is discussed based on recent reported work.
Collapse
Affiliation(s)
- Nicoleta Elena Dina
- a Department of Molecular and Biomolecular Physics , National Institute of R&D of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Alia Colniţă
- a Department of Molecular and Biomolecular Physics , National Institute of R&D of Isotopic and Molecular Technologies , Cluj-Napoca , Romania
| | - Tiberiu Szöke-Nagy
- a Department of Molecular and Biomolecular Physics , National Institute of R&D of Isotopic and Molecular Technologies , Cluj-Napoca , Romania.,b Faculty of Biology and Geology , Babeş-Bolyai University , Cluj-Napoca , Romania
| | - Alin Sebastian Porav
- a Department of Molecular and Biomolecular Physics , National Institute of R&D of Isotopic and Molecular Technologies , Cluj-Napoca , Romania.,b Faculty of Biology and Geology , Babeş-Bolyai University , Cluj-Napoca , Romania
| |
Collapse
|
13
|
Tamigney Kenfack M, Mazur M, Nualnoi T, Shaffer TL, Ngassimou A, Blériot Y, Marrot J, Marchetti R, Sintiprungrat K, Chantratita N, Silipo A, Molinaro A, AuCoin DP, Burtnick MN, Brett PJ, Gauthier C. Deciphering minimal antigenic epitopes associated with Burkholderia pseudomallei and Burkholderia mallei lipopolysaccharide O-antigens. Nat Commun 2017; 8:115. [PMID: 28740137 PMCID: PMC5524647 DOI: 10.1038/s41467-017-00173-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 06/06/2017] [Indexed: 01/09/2023] Open
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the etiologic agents of melioidosis and glanders, respectively, cause severe disease in both humans and animals. Studies have highlighted the importance of Bp and Bm lipopolysaccharides (LPS) as vaccine candidates. Here we describe the synthesis of seven oligosaccharides as the minimal structures featuring all of the reported acetylation/methylation patterns associated with Bp and Bm LPS O-antigens (OAgs). Our approach is based on the conversion of an L-rhamnose into a 6-deoxy-L-talose residue at a late stage of the synthetic sequence. Using biochemical and biophysical methods, we demonstrate the binding of several Bp and Bm LPS-specific monoclonal antibodies with terminal OAg residues. Mice immunized with terminal disaccharide-CRM197 constructs produced high-titer antibody responses that crossreacted with Bm-like OAgs. Collectively, these studies serve as foundation for the development of novel therapeutics, diagnostics, and vaccine candidates to combat diseases caused by Bp and Bm.Melioidosis and glanders are multifaceted infections caused by gram-negative bacteria. Here, the authors synthesize a series of oligosaccharides that mimic the lipopolysaccharides present on the pathogens' surface and use them to develop novel glycoconjugates for vaccine development.
Collapse
Affiliation(s)
- Marielle Tamigney Kenfack
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Marcelina Mazur
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, C. K. Norwida 25, Wroclaw, 50-375, Poland
| | - Teerapat Nualnoi
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, 15, Kanjanavanit Road, 90112, Songkhla, Thailand
| | - Teresa L Shaffer
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Abba Ngassimou
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Yves Blériot
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France
| | - Jérôme Marrot
- Institut Lavoisier de Versailles, CNRS-UMR 8180, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, 45, Avenue des États-Unis, Versailles, 78035, France
| | - Roberta Marchetti
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Kitisak Sintiprungrat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Alba Silipo
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, Naples, I-80126, Italy
| | - David P AuCoin
- Department of Microbiology and Immunology, University of Nevada School of Medicine, 1664, N. Virginia Street, Reno, Nevada, 89557, USA
| | - Mary N Burtnick
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA
| | - Paul J Brett
- Department of Microbiology and Immunology, University of South Alabama, 610, Clinic Drive, Mobile, Alabama, 36688, USA.
| | - Charles Gauthier
- Institut de Chimie IC2MP, CNRS-UMR 7285, Équipe Synthèse Organique, Groupe Glycochimie, Université de Poitiers, 4, rue Michel Brunet, Poitiers, 86073, France.
- INRS-Institut Armand-Frappier, Université du Québec, 531, Boulevard des Prairies, Laval (Québec), Canada, H7V 1B7.
| |
Collapse
|
14
|
|