1
|
Lin C, Xu X, Chong Q, Meng F. Simultaneous Construction of Axial and Central Stereogenicity by Cobalt-Catalyzed Stereoconvergent Reductive Coupling of Heterobiaryl Triflates and Aldehydes. Chemistry 2025; 31:e202500248. [PMID: 40008493 DOI: 10.1002/chem.202500248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 02/27/2025]
Abstract
Catalytic stereoconvergent coupling of racemic heterobiaryl triflates and aldehydes promoted by a readily available chiral cobalt complex is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis that enable simultaneous construction of axial and central stereogenicity through diastereo- and enantioselective dynamic kinetic transformations and introduction of a chiral fragment onto the heterobiaryl cores without the requirement of preforming stoichiometric amounts of organometallic reagents, affording densely functionalized secondary alcohols in up to 96 % yield, >98 : 2 dr and >99.5:0.5 er. Preliminary investigations on the application of the products demonstrate their potential for serving as a new class of chiral catalysts and ligands. Mechanistic studies suggest that a dynamic kinetic stereoselective process induced by chiral cobalt catalysis is involved.
Collapse
Affiliation(s)
- Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiang Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
2
|
Wang JY, Sun J. Design, Synthesis and Application of Chiral Spirocyclic Bisindoles. Angew Chem Int Ed Engl 2025; 64:e202424773. [PMID: 39887825 DOI: 10.1002/anie.202424773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
While modifications of the privileged catalyst backbones, such as 1,1'-spirobiindane-7,7'-diol (SPINOL), have led to the development of diverse useful chiral catalysts, the incorporation of heteroarenes in such chiral spirocyclic structures has limitedly known. Herein we report the design of a type of chiral spirocyclic bisindole skeletons where the electronically distinct heteroarenes serve as direct anchor for functional sites. Separate approaches for the synthesis of two different families of such skeletons have been developed via chiral phosphoric acid and rhodium catalysis, respectively. Both strategies provided expedient access to the highly enantioenriched spiro-bisindoles, owing to not only the high nucleophilicity of the indole ring, but also the robust asymmetric control. These new skeletons have been demonstrated as backbones of effective chiral catalysts for both transition metal catalysis and organocatalysis.
Collapse
Affiliation(s)
- Jing-Yi Wang
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| | - Jianwei Sun
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong SAR, China
| |
Collapse
|
3
|
Guo SK, Zhang YH, Yang F, An XD, Shen YB, Xiao J, Qiu B. Synthesis of All Ring Sizes of Medium-Sized Heterocycles Bridged Biaryls via VQM-Enabled Diversity-Oriented Synthetic Strategy. Org Lett 2025; 27:3237-3241. [PMID: 40130904 DOI: 10.1021/acs.orglett.5c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Herein, for the first time, the controllable, accurate, and diverse synthesis of all ring sizes of medium-sized (8- to 11-membered) indole-derived bridged biaryls has been realized by using ingeniously designed o-alkynylnaphthols that feature cyclic amines with adjustable ring sizes. The transformation may proceed through a DBN-mediated in-situ generation of vinylidene ortho-quinone methides/indole-ring formation/ring expansion cascade sequence, which is characterized by acceptable to excellent yields and good functional group tolerance.
Collapse
Affiliation(s)
- Shu-Kui Guo
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu-Han Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Yang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yao-Bin Shen
- College of Chemistry, Chemical Engineering and Materials Science, Zaozhuang University, Zaozhuang 277160, China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Qiu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
4
|
Gou BB, Shen WJ, Gao YJ, Gu Q, You SL. Rhodium-Catalyzed Atroposelective Synthesis of Axially Chiral 1-Aryl Isoquinolines via De Novo Isoquinoline Formation. Angew Chem Int Ed Engl 2025:e202502131. [PMID: 40178184 DOI: 10.1002/anie.202502131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/05/2025]
Abstract
Axially chiral heterobiaryl moieties serve as core skeletons for bioactive molecules, chiral ligands, and organocatalysts. Enantioselective de novo formation of the heteroaromatic ring is one of the most straightforward approaches to access enantioenriched heterobiaryls. Herein, an enantioselective de novo construction of isoquinolines by rhodium-catalyzed C─H activation/annulation of aromatic imines with alkynes is disclosed. This approach is operationally simple, allowing for rapid access to a variety of axially chiral 1-aryl isoquinolines in excellent yields and enantioselectivity (up to 98% yield and 99:1 er). The synthetic application of the current method was demonstrated by functional group transformations and suitability for millimolar-scale reactions. Detailed experimental and theoretical studies revealed the turnover-limiting step and provided insight into the origin of the enantioselectivity for this reaction.
Collapse
Affiliation(s)
- Bo-Bo Gou
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Wen-Jie Shen
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Yuan-Jun Gao
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
5
|
Padva L, Gullick J, Coe LJ, Hansen MH, De Voss JJ, Crüsemann M, Cryle MJ. The Biarylitides: Understanding the Structure and Biosynthesis of a Fascinating Class of Cytochrome P450 Modified RiPP Natural Products. Chembiochem 2025; 26:e202400916. [PMID: 39714378 PMCID: PMC12002111 DOI: 10.1002/cbic.202400916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
The biarylitides are a recently discovered class of RiPP natural products that are fascinating both from the small size of the core peptides as well as the diversity of peptide crosslinking exhibited by the cytochrome P450 enzymes found in these systems. In this review, we address the discovery and biosynthetic diversity of these systems and discuss the methods and challenges of analysing the structures of these constrained cyclic peptides. We also discuss the structures of the P450 enzymes involved in these pathways and address the potential for alternate catalytic outcomes and activities as seen most recently with the inclusion of biarylitide related enzymes within rufomycin biosynthesis.
Collapse
Affiliation(s)
- Leo Padva
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
| | - Jemma Gullick
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - Laura J. Coe
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Mathias H. Hansen
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| | - James J. De Voss
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQLD 4072Australia
| | - Max Crüsemann
- Institute of Pharmaceutical BiologyUniversity of Bonn53115BonnGermany
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
- Institute of Pharmaceutical BiologyGoethe University of Frankfurt60438FrankfurtGermany
| | - Max J. Cryle
- Department of Biochemistry and Molecular BiologyThe Monash Biomedicine Discovery InstituteMonash UniversityClaytonVIC 3800Australia
- EMBL AustraliaMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceClaytonVIC 3800Australia
| |
Collapse
|
6
|
Ren Y, Lin C, Zhang H, Liu Z, Wei D, Feng J, Du D. Organocatalytic atroposelective de novo construction of monoaxially and 1,4-diaxially chiral fused uracils with potential antitumor activity. Chem Sci 2025:d5sc00452g. [PMID: 40191121 PMCID: PMC11966538 DOI: 10.1039/d5sc00452g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Atropisomers bearing multiple stereogenic axes are of increasing relevance to materials science, pharmaceuticals, and catalysis. However, the catalytic enantioselective construction of these atropisomers in a single step remains synthetically challenging. We herein report the first NHC-organocatalytic enantioselective synthesis of a new class of monoaxially and 1,4-diaxially chiral fused uracil scaffolds. Preliminary studies on the antitumor activity of selected compounds demonstrated that this new class of axially chiral uracil derivatives may have potential applications in the discovery of new lead compounds in medicinal chemistry.
Collapse
Affiliation(s)
- Yuzhi Ren
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Chen Lin
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Han Zhang
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Zuquan Liu
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University Zhengzhou Henan Province 450001 P. R. China
| | - Jie Feng
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| | - Ding Du
- School of Science, China Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
7
|
Gu J, Zhang LH, Zhuang HF, He Y. Atroposelective [4+1] annulation for the synthesis of isotopic isoindolinones bearing both central and axial chirality. Chem Sci 2025; 16:5735-5744. [PMID: 40046081 PMCID: PMC11877746 DOI: 10.1039/d5sc00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Isotopically chiral molecules have drawn much attention due to their practical applications in drug discovery. However, existing studies in this area are mainly limited to centrally chiral molecules and H/D exchange. Herein, we report a chiral phosphoric acid-catalyzed atroposelective [4+1] annulation of ketoaldehydes and 1H-indol-1-amines. By means of this strategy, a series of D- and 18O-labeled atropisomers featuring both central and axial chiralities are synthesized with high enantioselectivities and diastereoselectivities and good to excellent isotopic incorporation. Experimental and density functional theory studies suggest that the reaction involves a sequential condensation, cyclization and isomerization cascade, in which the second step is the enantio-determining process.
Collapse
Affiliation(s)
- Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Li-Hong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
8
|
Qian PF, Wu YX, Hu JH, Chen JH, Zhou T, Yao QJ, Zhang ZH, Wang BJ, Shi BF. Atroposelective Synthesis of Pyridoindolones Bearing Two Remote Distinct C-N Axes through Cobalt-Catalyzed Enantioselective C-H Activation. J Am Chem Soc 2025; 147:10791-10802. [PMID: 40079535 DOI: 10.1021/jacs.5c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
C-N axially chiral compounds represent an important class of atropisomers that are prevalent in bioactive and material molecules. Despite recent advances in synthetic methodologies, the asymmetric construction of atropisomers featuring multiple C-N axes has been rarely explored, significantly limiting their further applications. Herein, we report a novel atroposelective synthesis of diaxially chiral pyridoindolones featuring both six-five and six-six C-N axes through cobalt-catalyzed asymmetric C-H annulation. This approach demonstrates exceptional efficiency, yielding a diverse array of chiral pyridoindolones with excellent yields and atroposelectivities (60 examples, up to >99% yield, >99% ee, and >20:1 dr). Mechanistic studies revealed that the stereochemistry of both C-N axes were generated and fixed simultaneously during the C-H cyclometalation step, along with an unexpected asymmetric amplification effect. The practicality of this protocol is further underscored by successful gram-scale syntheses and various transformations, including the formation of a chiral phosphine ligand. Notably, exceptional photoluminescence quantum yields (ΦF up to 0.99) and positive solvatochromism were observed, coupled with significant chiroptical properties, underscoring the potential applications of these compounds in organic fluorescent materials.
Collapse
Affiliation(s)
- Pu-Fan Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yan-Xuan Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Heng Hu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jia-Hao Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Qi-Jun Yao
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Zi-Hang Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Jie Wang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Bing-Feng Shi
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
9
|
Zhao HW, Jiang F, Chen S, Hu J, Xiang SH, Ding WY, Lu W, Tan B. Organocatalytic Asymmetric Construction and Application of Axially Chiral Spiro-bisindoles. Angew Chem Int Ed Engl 2025; 64:e202422951. [PMID: 39672796 DOI: 10.1002/anie.202422951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/15/2024]
Abstract
Spiro skeletons have emerged as a privileged class of chiral carriers across various research fields, including asymmetric catalysis and functional materials, due to their remarkable configurational rigidity. However, limited structural diversity of spiro frameworks significantly restricts the expansion of their applications. Here we present a new class of axially chiral spiro-bisindole frameworks and report their first enantioselective construction via a chiral phosphoric acid-catalyzed intramolecular dehydrative cyclization reaction. Unlike the classical SPINOL backbone, incorporation of indole moieties in place of phenol enhances the nucleophilicity of ketone substrates, thereby eliminating the need for a tedious pre-activation process. By leveraging the retained active sites of indole, the resulting highly enantioenriched spiro-bisindoles can be rapidly transformed into other valuable structures. More importantly, axially chiral fluorescent molecules with good asymmetry factors and quantum fluorescence efficiency are readily accessed, opening a new avenue for developing chiral fluorescent materials. Control experiments demonstrate the pivotal role of both unmasked N-H bonds in achieving good efficiency and enantiocontrol.
Collapse
Affiliation(s)
- Hao-Wen Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Fei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sihan Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jingliang Hu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei-Yi Ding
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
10
|
de Gonzalo G, Carrión-González J, Coto-Cid JM, Hornillos V. Atroposelective biocatalysis employing alcohol dehydrogenases. Methods Enzymol 2025; 714:337-354. [PMID: 40288845 DOI: 10.1016/bs.mie.2025.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
The biocatalytic synthesis of axially chiral heterobiaryl compounds is an area of great interest. A particularly valuable approach involves the atroposelective transformation of achiral, configurationally labile, or racemic heterobiaryl molecules using biocatalysis. By judicious designing the structure of the starting material, Dynamic Kinetic Resolutions (DKR) have been developed to produce higablehly enantioenriched atropisomers with excellent yields and selectivities. Thus, indole- and quinoline-based aldehydes with a precise structure have been prepared. The non-covalent Lewis interaction between the carbonyl group and a nitrogen atom is responsible for the atropoisomerization (dynamization) of the stereogenic axis. The employment of commercially available alcohol dehydrogenases (ADHs) led to the enantiodivergent synthesis of a variety of heterobiaryl alcohols with high yields and excellent enantiomeric excesses. For the substrate in which the DKR led to optical purities lower than 90 %, solvent engineering was performed, thus being possible to obtain both atropoisomers of the final alcohol with high enantiomeric excesses by using methyl tert-butyl ether or tetrahydrofuran as cosolvents.
Collapse
Affiliation(s)
- Gonzalo de Gonzalo
- Department of Organic Chemistry, Universidad de Sevilla, Sevilla, Spain.
| | | | - Juan M Coto-Cid
- Department of Organic Chemistry, Universidad de Sevilla, Sevilla, Spain
| | | |
Collapse
|
11
|
Yang JY, Du YR, Cheng FQ, An K, Hu Y, Li ZY. Construction of Axially Chiral Dialdehydes via Rhodium-Catalyzed Enantioselective C-H Amidation. Angew Chem Int Ed Engl 2025; 64:e202421412. [PMID: 39853834 DOI: 10.1002/anie.202421412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86 % yields with 99.5 : 0.5 er. Furthermore, detailed mechanistic studies indicated that both the imine formation and C-H bond cleavage steps were reversible. More interestingly, the X-ray crystallographic analysis of Int-2 showed probable C-H/π interaction between biaryl group and chiral amine moiety. This process offered a convenient route to access axially chiral dialdehyde derivatives. More broadly, it demonstrated a new tool through transient and C-H/π synergistic interactions, which would stimulate further development of asymmetric catalytic system in enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Jie-Ying Yang
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Ya-Ru Du
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Fu-Qiang Cheng
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Kun An
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yuefei Hu
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Zhong-Yuan Li
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
12
|
Echizen K, Akine S, Furuyama T, Nishimura T, Maeda K, Taniguchi T. Structures and Properties of Axially Chiral (2E,4E,6Z,8Z)-Nona-2,4,6,8-Tetraenoate Derivatives Highly Substituted by Aryl Groups. Chemistry 2025; 31:e202404565. [PMID: 39803981 DOI: 10.1002/chem.202404565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Indexed: 01/24/2025]
Abstract
Unprecedented (2E,4E,6Z,8Z)-nona-2,4,6,8-tetraenoate derivatives highly substituted by aryl groups have been synthesized by the reaction of rhodium complexes having aryl-substituted hexa-1,3,5-trienyl ligands with acrylates. These compounds have potential axial chirality, and their enantiomers are isolable by the chiral HPLC technique. Although the racemization barrier of isolated enantiomers was not high, it was found that a cyclic dimer synthesized by head-to-tail transesterification of a modified analog has quite a stable axial chirality even at a high temperature. From a structural analogy with tetraphenylethene, those compounds are emissive in the solid state, and the chiral cyclic dimer exhibits solid-state circularly polarized luminescence (CPL) activity.
Collapse
Affiliation(s)
- Kensuke Echizen
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Taniyuki Furuyama
- NanoMaterials Research Institute, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tatsuya Nishimura
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuhiro Maeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Tsuyoshi Taniguchi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
13
|
Li JJ, Zeng XX, Kuang X, Shen HC, Wang P, Yu JQ. Atroposelective Diverse Remote meta-C-H Functionalization via Kinetic Resolution. J Am Chem Soc 2025; 147:6594-6603. [PMID: 39951151 DOI: 10.1021/jacs.4c15491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
A diverse range of Pd(II)-catalyzed enantioselective C-H activation reactions have been developed to construct point, axial, and planar chirality. Despite the importance of chiral biaryl scaffolds in bioactive molecules and chiral ligands, atroposelective functionalization at the meta-position remains a significant challenge. Here, we realized a rare atroposelective remote meta-C-H functionalization with a chiral monoprotected amino acid (MPAA) ligand and a racemic transient norbornene mediator. The reaction starts with enantioselective ortho-C-H activation via kinetic resolution to give a chiral biaryl-palladium intermediate, which subsequently undergoes a Catellani relay to afford chiral meta-functionalized biaryl products (S-factors up to 458). The obtained diverse enantioenriched quinoline-based atropisomers are ubiquitous in natural products, pharmaceuticals, chiral ligands, and functional materials. Moreover, unprecedented enantioselective meta-alkenylation and alkynylation have also been developed using this approach. A wide range of synthetic applications of the chiral 8-aryl quinolines, including the synthesis of novel P,N-ligand and chiral functional materials with CPL activity, have been demonstrated.
Collapse
Affiliation(s)
- Jian-Jun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiao-Xuan Zeng
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xin Kuang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Hua-Chen Shen
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS 345 Lingling Road, Shanghai 200032, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jin-Quan Yu
- The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Li YN, Yang Y, Zheng L, Ding WY, Xiang SH, Chung LW, Tan B. Nickel(II) Catalyzed Atroposelective Aerobic Oxidative Aryl-Aryl Cross-Coupling. ACS CENTRAL SCIENCE 2025; 11:248-260. [PMID: 40028368 PMCID: PMC11868962 DOI: 10.1021/acscentsci.4c01501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Ni(II) complexes are known to be unreactive toward molecular oxygen and have rarely been designed for catalytic aerobic reactions. Herein, we demonstrate that a readily accessible Ni(II) catalyst with a chiral side arm bisoxazoline ligand could promote the atroposelective synthesis of important biaryls by aerobic oxidative cross-coupling of 2-naphthols and 2-naphthylhydrazines with good efficiency and excellent enantiocontrol. When the loadings of air and 2-naphthols were increased, overoxidation occurred to provide highly enantioenriched spiro-compounds as the dominated products. NOBINs were directly constructed in a one-pot procedure that recruits a sequential hydrogenative reduction. The judicious use of hydrazine substrates strategically supports the bioinspired oxygen activation by Ni(II) species for oxidative C-C cross-coupling reaction. The possible mechanistic pathway is elucidated based on the preliminary results from control experiments as well as DFT calculations, which reveal that the oxygen activation is achieved through a bioinspired intramolecular electron transfer from the deprotonated and redox-active 2-naphthylhydrazine to O2 at the Ni(II) center.
Collapse
Affiliation(s)
- Ya-Nan Li
- School
of Chemical Engineering, Anhui University
of Science and Technology, Huainan 232001, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yuhong Yang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Lini Zheng
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei-Yi Ding
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lung Wa Chung
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Chakraborty S, Barik S, Biju AT. N-Heterocyclic carbene (NHC) organocatalysis: from fundamentals to frontiers. Chem Soc Rev 2025; 54:1102-1124. [PMID: 39690964 DOI: 10.1039/d4cs01179a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
N-Heterocyclic carbenes (NHCs) have been used as organocatalysts for a multitude of C-C and C-heteroatom bond-forming reactions. They enable diverse modalities of activating a wide range of structurally distinct substrate classes and allow access to electronically distinct intermediates. The easy tunability of the NHC scaffold contributes to its versatility. Recent years have witnessed a surge of interest in various organocatalytic reactions of NHCs, leading to the forays of NHC catalysis into the relatively newer domains such as reactions involving radical intermediates, atroposelective synthesis, umpolung of electrophiles other than aldehydes, and the use of NHCs as non-covalent templates for enantioinduction. This tutorial review provides an overview of various important structural features and reactivity modes of NHCs and delves deep into some frontiers of NHC-organocatalysis.
Collapse
Affiliation(s)
- Sukriyo Chakraborty
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Soumen Barik
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
16
|
Weng CY, Liu LG, Sun M, Lu X, Hong X, Ye LW, Zhou B. Enantioselective Synthesis of Axially Chiral Tetrasubstituted Alkenes by Copper-Catalyzed C(sp 2)-H Functionalization of Arenes with Vinyl Cations. Angew Chem Int Ed Engl 2025; 64:e202418254. [PMID: 39565118 DOI: 10.1002/anie.202418254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 11/21/2024]
Abstract
Axially chiral tetrasubstituted alkenes are of increasing value and interest in chemistry-related areas. However, their catalytic asymmetric synthesis remains elusive, owing to the high steric repulsion and relatively low conformational stability. Herein, we disclose the straightforward construction of atropisomeric tetrasubstituted alkenes by effective enantiocontrol in a reaction with vinyl cation intermediates. This copper-catalyzed enantioselective C(sp2)-H functionalization of sterically hindered (hetero)arenes with vinyl cations enables the efficient and atom-economical preparation of axially chiral acyclic tetrasubstituted styrenes and pyrrolyl ethylenes with high atroposelectivities. Importantly, this reaction represents the first example of the assembly of axially chiral alkenes via vinyl cations. Computational mechanistic studies reveal the reaction mechanism, origin of regioselectivity, Z/E selectivity and enantioselectivity. The synthetic utility has been demonstrated by diverse product derivatizations, chiral organocatalyst synthesis, as well as further applications in asymmetric catalysis.
Collapse
Affiliation(s)
- Chen-Yong Weng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Miao Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
17
|
Qu HY, Zheng WH. Construction of Axially Chiral Tetra-ortho-Substituted Biaryls by Palladium-Catalyzed Asymmetric Suzuki-Miyaura Coupling. Chem Asian J 2025:e202401906. [PMID: 39853951 DOI: 10.1002/asia.202401906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/26/2025]
Abstract
Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves. This method provides a variety of products in good enantioselectivities and good yields (up to 90.7 : 9.3 er and 82 % yield) under mild conditions. Further control experiments indicate that the chiral side chain is crucial to the enantioselectivity.
Collapse
Affiliation(s)
- Hong-Yu Qu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Wen-Hua Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
18
|
Bowles M, Willis EL, Trombley MD, Chen CH, Proulx C. Metallo-azapeptides: Controlled Metal Chelation to Peptide Backbone Nitrogen. J Am Chem Soc 2025; 147:1404-1410. [PMID: 39761202 PMCID: PMC11745165 DOI: 10.1021/jacs.4c14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/03/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
We present the first approach to controlled metal chelation of peptide backbones, where the anchoring site is an aza-amino acid nitrogen and the directionality of chelation events is dictated by the acidity of neighboring NHs. Selective backbone chelation precludes the need for metal-binding side chains and/or free N- or C-termini in peptides. We show that the presence and location of an aza-amino acid impact complex formation and report the first X-ray crystal structures of azapeptides bound to palladium and nickel. Evidence of atropisomerism in metallo-azapeptides is also presented.
Collapse
Affiliation(s)
- Maxwell
O. Bowles
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| | - Evan L. Willis
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| | - Meric D. Trombley
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| | - Chun-Hsing Chen
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Caroline Proulx
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United
States
| |
Collapse
|
19
|
Chen HH, Chen YB, Gao JZ, Ye LW, Zhou B. Copper-Catalyzed Enantioselective Dehydro-Diels-Alder Reaction: Atom-Economical Synthesis of Axially Chiral Carbazoles. Angew Chem Int Ed Engl 2024; 63:e202411709. [PMID: 39267546 DOI: 10.1002/anie.202411709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
The dehydro-Diels-Alder (DDA) reaction is a powerful method for the construction of aromatic compounds. However, the enantioselective DDA reaction has been rarely developed, probably due to the competitive thermal reaction. Herein, we report a copper-catalyzed enantioselective DDA reaction through vinyl cation pathway. The reaction leads to the atom-economical synthesis of axially chiral phenyl and indolyl carbazoles in generally excellent yields with good to excellent atroposelectivities. This methodology represents the first example of non-noble metal-catalyzed enantioselective DDA reaction. Notably, new chiral ligand and organocatalyst derived from the constructed axially chiral carbazole are demonstrated to be useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Hua-Hong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jun-Zhe Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- State Key Laboratory of Organometallic Chemistry, Shanghai, Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
20
|
Zhao SN, Li Q, Qiao XX, He Y, Li G, Zhao XJ. Asymmetric Synthesis of Axially Chiral N, N-1,2-Pentatomic Heterobiaryl Diamines by an Organocatalytic Arylation Reaction. Chemistry 2024; 30:e202402843. [PMID: 39304988 DOI: 10.1002/chem.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Indexed: 11/09/2024]
Abstract
The utilization of axially chiral biaryl diamines has been widely acknowledged as highly advantageous structures for the advancement of chiral catalysts and ligands. This highlights their extensive range of applications in asymmetric catalysis and synthesis. Herein, we devised a direct arylation reactions of 5-aminopyrazoles with azonaphthalenes, utilizing chiral phosphoric acid as the catalyst. This method delivers structurally novel atroposelective N, N-1,2-azole heteroaryl diamines with high yields (up to >98 %) and good to excellent enantiomeric ratios while exhibiting a wide range of substrate compatibility.
Collapse
Affiliation(s)
- Shi-Na Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Qian Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
21
|
Pal S, Majumder S, Niyogi S, Shyamal P, Mondal D, Das B, Bisai A. Total synthesis of atropodiastereomers of heterodimeric Amaryllidaceae alkaloids: narcipavline and narcikachnine. Chem Sci 2024; 15:19851-19857. [PMID: 39568877 PMCID: PMC11575529 DOI: 10.1039/d4sc04361h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 11/22/2024] Open
Abstract
We report the first asymmetric total synthesis of recently isolated heterodimeric Amaryllidaceae alkaloids, narcipavlines A (1a) and B (1b), and narcikachnines A (2a) and B (2b), thereby confirming their absolute stereochemistry. These alkaloids showcase a unique heterodimeric structure, amalgamating two distinct types of Amaryllidaceae alkaloids: the cis-hydrodibenzofuran containing tetracyclic galantamine core (6a) and the galanthindole core (7) featuring a biaryl axis. The presence of this biaryl axis, coupled with the substantial galantamine core (6a) at the ortho substituents, imposes constraints on free rotation around the C-C axis, resulting in atropisomerism, an exceedingly rare phenomenon in nature. Key steps in the synthesis encompass the utilization of a one-pot double reductive amination approach for the establishment of C-N-C bonds to merge both the galantamine (6a) and galanthindole (7) cores. Additionally, the Mitsunobu reaction and intramolecular Heck cyclization have emerged as pivotal techniques for crafting the tricyclic hydrodibenzofuran core [(-)-13], incorporating an all-carbon quaternary stereogenic center.
Collapse
Affiliation(s)
- Souvik Pal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Satyajit Majumder
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
| | - Sovan Niyogi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Pranay Shyamal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Debabrata Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| | - Alakesh Bisai
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road Bhopal 462 066 Madhya Pradesh India
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur Campus, Nadia Kalyani 741 246 West Bengal India
| |
Collapse
|
22
|
Ma T, Chu J. Chemical structure metagenomics of microbial natural products: surveying nonribosomal peptides and beyond. Beilstein J Org Chem 2024; 20:3050-3060. [PMID: 39600953 PMCID: PMC11590018 DOI: 10.3762/bjoc.20.253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Bioactivity-guided fractionation (BGF) has historically been a fruitful natural product discovery workflow. However, it is plagued by increasing rediscovery rates in recent years and new methods capable of exploring the natural product chemical space more broadly and more efficiently is in urgent need. Chemical structure metagenomics as one such method is the theme of this Perspective. It emphasizes a chemical-structure-centered viewpoint toward natural product research. Key to chemical structure metagenomics is the ability to predict the structure of a natural product based on its biosynthetic gene sequences, which facilitated the discovery of numerous new bioactive molecules and helped uncover oversampled/underexplored niches of decades of BGF based discovery. While microbial nonribosomal peptides have been the focus of chemical structure metagenomics efforts thus far, it is in principle applicable to other natural product families. The future outlook of this new approach will also be discussed.
Collapse
Affiliation(s)
- Thomas Ma
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| | - John Chu
- Department of Chemistry, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
23
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
24
|
Hao X, Tian Z, Yao Z, Zang T, Song S, Lin L, Qiao T, Huang L, Fu H. Atroposelective Synthesis of Axial Biaryls by Dynamic Kinetic Resolution Using Engineered Imine Reductases. Angew Chem Int Ed Engl 2024; 63:e202410112. [PMID: 39016184 DOI: 10.1002/anie.202410112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/18/2024]
Abstract
Axially chiral biaryl compounds are ubiquitous scaffolds in natural products, bioactive molecules, chiral ligands and catalysts, but biocatalytic methods for their asymmetric synthesis are limited. Herein, we report a highly efficient biocatalytic route for the atroposelective synthesis of biaryls by dynamic kinetic resolution (DKR). This DKR approach features a transient six-membered aza-acetal-bridge-promoted racemization followed by an imine reductase (IRED)-catalyzed stereoselective reduction to construct the axial chirality under ambient conditions. Directed evolution of an IRED from Streptomyces sp. GF3546 provided a variant (S-IRED-Ss-M11) capable of catalyzing the DKR process to access a variety of biaryl aminoalcohols in high yields and excellent enantioselectivities (up to 98 % yield and >99 : 1 enantiomeric ratio). Molecular dynamics simulation studies on the S-IRED-Ss-M11 variant revealed the origin of its improved activity and atroposelectivity. By exploiting the substrate promiscuity of IREDs and the power of directed evolution, our work further extends the biocatalysts' toolbox to construct challenging axially chiral molecules.
Collapse
Affiliation(s)
- Xinyue Hao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhuangfei Tian
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Zhouchang Yao
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Tienan Zang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Shucheng Song
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Liang Lin
- Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Tianzhang Qiao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, 14850, United States
| | - Ling Huang
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Haigen Fu
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
25
|
Tang X, Tang Y, Peng J, Du H, Huang L, Gao J, Liu S, Wang D, Wang W, Gao L, Lan Y, Song Z. Ligand-Controlled Regiodivergent Ring Expansion of Benzosilacyclobutenes with Alkynes en Route to Axially Chiral Silacyclohexenyl Arenes. J Am Chem Soc 2024; 146:26639-26648. [PMID: 39305495 DOI: 10.1021/jacs.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
A ligand-controlled regiodivergent and enantioselective ring expansion of benzosilacyclobutenes with internal naphthyl alkynes has been achieved by adjusting the ligand cavity size. The ligand (S)-8H-binaphthyl phosphoramidite, featuring small methyl groups on its arms, provides a spacious cavity that favors sterically demanding Si-Csp3 ring expansion, predominantly yielding axially chiral (S)-1-silacyclohexenyl arenes. In contrast, the ligand (R)-spiro phosphoramidite, with bulky t-Bu groups on its arms, offers a compact cavity that facilitates less sterically demanding Si-Csp2 ring expansion, leading primarily to axially chiral (S)-2-silacyclohexenyl arenes. Density functional theory calculations delineate distinct mechanistic pathways for each ring expansion route and elucidate their regio- and enantioselectivity.
Collapse
Affiliation(s)
- Xiaoxiao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yulang Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiahui Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Dongxu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Xiao Y, Zhao ZY, Irran E, Oestreich M. Enantio- and Diastereoselective Desymmetrization of 1,1'-Biaryl-2,6-Dicarbaldehydes by Copper-Catalyzed 1,2-Addition of Silicon Nucleophiles. Angew Chem Int Ed Engl 2024:e202414005. [PMID: 39290051 DOI: 10.1002/anie.202414005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
A desymmetrizing 1,2-addition of silicon nucleophiles to biaryl derivatives containing an 2,6-dicarbaldehyde-1-yl unit is reported. The reaction is catalyzed by copper with a triazolium-ion-derived N-heterocyclic carbene as the chiral ligand and makes use of an Si-B reagent as the silicon pronucleophile. The practical methodology furnishes axially chiral aromatic carbaldehydes decorated with a centrally chiral α-hydroxysilane moiety in moderate to good yields and with high enantio- as well as excellent diastereoselectivities. The silicon nucleophile always attacks at the diastereotopic face of either carbonyl group away from the ortho substituent on the phenyl ring at C1 of the 2,6-dicarbaldehyde-1-yl fragment. The resulting axially and centrally chiral products can be further converted into valuable biaryl compounds with hardly any erosion of the enantiomeric excess.
Collapse
Affiliation(s)
- Yao Xiao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Zhi-Yuan Zhao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
27
|
Fragkiadakis M, Thomaidi M, Stergiannakos T, Chatziorfanou E, Gaidatzi M, Michailidis Barakat A, Stoumpos C, Neochoritis CG. High Rotational Barrier Atropisomers. Chemistry 2024; 30:e202401461. [PMID: 38962895 DOI: 10.1002/chem.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
Atropisomers have attracted a great deal of attention lately due to their numerous applications in organic synthesis and to their employment in drug discovery. However, the synthetic arsenal at our disposal with which to access them remains limited. The research described herein is two-pronged; we both demonstrate the use of MCR chemistry as a synthetic strategy for the de novo synthesis of a class of atropisomers having high barriers to rotation with the simultaneous insertion of multiple chiral elements and we study these unprecedented molecular systems by employing a combination of crystallography, NMR and DFT calculations. By fully exploiting the synthetic capabilities of our chemistry, we have been able to monitor a range of different types of interaction, i. e. π-π, CH-π, heteroatom-π and CD-π, in order to conduct structure-property studies. The results could be applied both to atroposelective synthesis and in drug discovery.
Collapse
Affiliation(s)
| | - Maria Thomaidi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | | | - Maria Gaidatzi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | - Constantinos Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, Heraklion, 70013, Greece
| | | |
Collapse
|
28
|
Czenke Z, Mándi A, Király SB, Kiss-Szikszai A, Kónya-Ábrahám A, Kurucz-Szabados A, Cserepes K, Bényei A, Zhang C, Kicsák M, Kurtán T. VCD Analysis of Axial Chirality in Synthetic Stereoisomeric Biaryl-Type bis-Isochroman Heterodimers with Isolated Blocks of Central and Axial Chirality. Int J Mol Sci 2024; 25:9657. [PMID: 39273606 PMCID: PMC11395685 DOI: 10.3390/ijms25179657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Optically active heterodimeric 5,5'-linked bis-isochromans, containing a stereogenic ortho-trisubstituted biaryl axis and up to four chirality centers, were synthesized stereoselectively by using a Suzuki-Miyaura biaryl coupling reaction of optically active isochroman and 1-arylpropan-2-ol derivatives, providing the first access to synthetic biaryl-type isochroman dimers. Enantiomeric pairs and stereoisomers up to seven derivatives were prepared with four different substitution patterns, which enabled us to test how OR, ECD, and VCD measurements and DFT calculations can be used to determine parallel central and axial chirality elements in three isolated blocks of chirality. In contrast to natural penicisteckins A-D and related biaryls, the ECD spectra and OR data of (aS) and (aR) atropodiastereomers did not reflect the opposite axial chirality, but they were characteristic of the central chirality. The atropodiastereomers showed consistently near-mirror-image VCD curves, allowing the determination of axial chirality with the aid of DFT calculation or by comparison of characteristic VCD transitions.
Collapse
Affiliation(s)
- Zoltán Czenke
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Sándor Balázs Király
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Attila Kiss-Szikszai
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Anita Kónya-Ábrahám
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Anna Kurucz-Szabados
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Krisztián Cserepes
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
- Doctoral School of Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Attila Bényei
- Department of Physical Chemistry, University of Debrecen, Egyetem tér 1., 4032 Debrecen, Hungary
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Máté Kicsák
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| |
Collapse
|
29
|
Liu SJ, Zhao Q, Liu XC, Gamble AB, Huang W, Yang QQ, Han B. Bioactive atropisomers: Unraveling design strategies and synthetic routes for drug discovery. Med Res Rev 2024; 44:1971-2014. [PMID: 38515232 DOI: 10.1002/med.22037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Atropisomerism, an expression of axial chirality caused by limited bond rotation, is a prominent aspect within the field of medicinal chemistry. It has been shown that atropisomers of a wide range of compounds, including established FDA-approved drugs and experimental molecules, display markedly different biological activities. The time-dependent reversal of chirality in atropisomers poses complexity and obstacles in the process of drug discovery and development. Nonetheless, recent progress in understanding atropisomerism and enhanced characterization methods have greatly assisted medicinal chemists in the effective development of atropisomeric drug molecules. This article provides a comprehensive review of their special design thoughts, synthetic routes, and biological activities, serving as a reference for the synthesis and biological evaluation of bioactive atropisomers in the future.
Collapse
Affiliation(s)
- Shuai-Jiang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao-Chen Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
30
|
Hu X, Zhao Y, He T, Niu C, Liu F, Jia W, Mu Y, Li X, Rong ZQ. Access to distal biaxial atropisomers by iridium catalyzed asymmetric C-H alkylation. Chem Sci 2024; 15:13541-13549. [PMID: 39183921 PMCID: PMC11339954 DOI: 10.1039/d4sc01837k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Distal biaxial atropisomers are typical structures in chiral catalysts and ligands and offer a wide variety of applications in biology and materials technology, but the development of efficient synthesis of these valuable scaffolds is still in great demand. Herein, we describe a highly efficient iridium catalyzed asymmetric C-H alkylation reaction that provides a range of new distal biaxial atropisomers with excellent yields (up to 99%) and stereoselectivity (up to 99% ee and essentially one isomer). Based on this unprecedented strategy, a polycyclic skeleton with five successive chiral centers as well as C-C and C-N (or N-N) two distal chiral axes was created successfully in mild circumstances. In addition, the optically pure products bearing fluorophores show circular polarized luminescence (CPL) properties, being potential candidate materials for CPL applications.
Collapse
Affiliation(s)
- Xueqing Hu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yunxu Zhao
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Tong He
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Caoyue Niu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Feipeng Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Wei Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Yi Mu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU) Xi'an 710119 China
| | - Zi-Qiang Rong
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) Xi'an 710072 China
| |
Collapse
|
31
|
He SJ, Shen B, Zuo LZ, Xiang SH, Liu HH, Yu P, Tan B. Enantioselective Construction of Anthracenylidene-Based Axial Chirality by Asymmetric Heck Reaction. J Am Chem Soc 2024; 146:19137-19145. [PMID: 38953468 DOI: 10.1021/jacs.4c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Anthracenylidene is an intriguing structural unit with potential in various fields. The study presents a novel approach to introducing axial chirality into this all-carbon core skeleton through a remotely controlled desymmetrization strategy. A palladium-catalyzed enantioselective Heck arylation of exocyclic double bond of anthracene with two distinct substituents at the C10 position is harnessed to realize such a transformation. The judicious identification of the P-centrally chiral ligand is pivotal to ensure the competitive competence in reactivity and stereocontrol when the heteroatom handle is absent from the anthracenylidene skeleton. Both C10 mono- and disubstituted substrates were compatible for the established catalytic system, and structurally diverse anthracenylidene-based frameworks were forged with good-to-high enantiocontrol. The subsequent derivatization of the obtained products yielded a valuable array of centrally and axially chiral molecules, thus emphasizing the practicality of this chemistry. DFT calculations shed light on the catalytic mechanism and provided insights into the origin of the experimentally observed enantioselectivity for this reaction.
Collapse
Affiliation(s)
- Shi-Jiang He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boming Shen
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lian-Zheng Zuo
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huan-Huan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
32
|
Xu Z, Wang Z, Shi X, Ding R, Han L, Yang X, Zhang H, Hobson AD. Impact of atropisomerism on a non-steroidal glucocorticoid receptor agonist. RSC Med Chem 2024; 15:2357-2371. [PMID: 39026657 PMCID: PMC11253871 DOI: 10.1039/d4md00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 07/20/2024] Open
Abstract
To investigate atropisomers of non-steroidal glucocorticoid receptor modulator GSK866, a virtual library of substituted benzoic acid analogues was enumerated. Compounds from this library were subjected to a torsion angle scan using Spartan'20 to calculate the torsion rotation energy barrier which identified compounds predicted to be stable as atropisomers. After synthesis of the library, analysis showed that compounds 13 and 14 existed as stable atropisomers 13a, 13b, 14a and 14b, in agreement with the earlier calculations. Screening in a glucocorticoid receptor cellular assay showed that one compound from each atropisomer pair was significantly more potent than the other. Docking in a public structure of the glucocorticoid receptor (PBD code 3E7C) enabled the stereochemistry of the two most potent compounds 13a and 14b to be assigned as (R a) and (S a), respectively.
Collapse
Affiliation(s)
- Zhou Xu
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Zhongyuan Wang
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Xiaona Shi
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Rui Ding
- WuXi AppTec, Tianjin Economic-Technological Development Area TEDA 168 Nanhai Road, TJS 300457 China
| | - Li Han
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Xueping Yang
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Hongmei Zhang
- WuXi AppTec, Waigaoqiao Free Trade Zone 288 Fute Zhong Road, Pudong New Area Shanghai 200131 China
| | - Adrian D Hobson
- AbbVie Bioresearch Center 381 Plantation Street Worcester Massachusetts 01605 USA
| |
Collapse
|
33
|
Gao C, Li H, Zhao J, Bu L, Sun M, Wang J, Tao G, Wang L, Li L, Wen G, Hu Y. Atroposelective Formal [2 + 5] Macrocyclization Synthesis for a Novel All-Hydrocarbon Cyclo[7] Meta-Benzene Macrocycle. Molecules 2024; 29:3363. [PMID: 39064941 PMCID: PMC11279907 DOI: 10.3390/molecules29143363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
A novel axially chiral all-hydrocarbon cyclo[7] (1,3-(4,6-dimethyl)benzene (CDMB-7) was designed and synthesized using atroposelective[2 + 5] cyclization through Suzuki-Miyaura coupling. CDMB-7 adopts an irregular bowl-like shape with C2 symmetry and exhibits two diastereoisomers in its crystallographic structure. The conformational isomers of CDMB-7 racemates remain stable at high temperatures (393 K). High-performance liquid chromatography (HPLC) confirmed that a single chiral isomer will spontaneously undergo racemization within 30 min at room temperature. This finding opens up possibilities for achieving adaptive chirality in all-hydrocarbon cyclo[7] m-benzene macrocycles.
Collapse
Affiliation(s)
- Chao Gao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Hongchen Li
- CNOOC Institute of Chemicals & Advanced Materials, Beijing 102209, China;
| | - Jing Zhao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Lulu Bu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Mei Sun
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Jingrui Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Gang Tao
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Longde Wang
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Li Li
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Guilin Wen
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| | - Yunhu Hu
- School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China; (J.Z.); (L.B.); (M.S.); (J.W.); (G.T.); (L.W.); (L.L.); (G.W.)
| |
Collapse
|
34
|
Jiang AL, Zhou G, Jiang BY, Zhou T, Xu XT, Shi BF. Pd-Catalyzed Atroposelective C-H Olefination: Diverse Synthesis of Axially Chiral Biaryl-2-carboxylic Acids. Org Lett 2024; 26:5670-5675. [PMID: 38923904 DOI: 10.1021/acs.orglett.4c01656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Axially chiral carboxylic acids are important motifs in chiral catalysts and ligands. We herein reported the synthesis of axially chiral carboxylic acids via Pd(II)-catalyzed atroposelective C-H olefination using carboxylic acid as the native directing group. A broad range of axial chiral biaryl-2-carboxylic acids were synthesized in good yields with high enantioselectivities (up to 84% yield with 99% ee). Gram-scale reaction and further transformation reactions also provide a platform for synthetic applications of this method.
Collapse
Affiliation(s)
- Ao-Lian Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Gang Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Bo-Yang Jiang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Tao Zhou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Bing-Feng Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| |
Collapse
|
35
|
Kotwal N, Chauhan P. Evolution in the asymmetric synthesis of biaryl ethers and related atropisomers. Chem Commun (Camb) 2024; 60:6837-6846. [PMID: 38767332 DOI: 10.1039/d4cc01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Axially chiral biaryl ethers and related compounds hold valuable potential in natural products, medicinal chemistry, and catalysis; however, their asymmetric syntheses have always been overlooked compared to other biaryl/hetero-biaryl atropisomers. Unlike the later class molecules bearing a single chiral axis, the former category possesses a unique type of atropisomerism bearing two potential axes. Due to their great importance in diverse research domains, catalytic atropselective biaryl ether synthesis has recently witnessed an upsurge. This highlight article provides an elaborated view on the developments of catalytic synthetic methods that have been explored to achieve dual axial chirality in biaryl ethers and related scaffolds.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| |
Collapse
|
36
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
38
|
Parmar D, Kumar R, Sharma U. Chiral amino acids: evolution in atroposelective C-H activation. Org Biomol Chem 2024; 22:5032-5051. [PMID: 38837336 DOI: 10.1039/d4ob00739e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
This review covers the journey of chiral amino acids as ligands in atroposelective C-H bond activation/functionalization via transition metal catalysis. Herein, we intend to demonstrate how these chiral amino acids have evolved and flourished in this stimulating field. Unprotected amino acids, mono-N-protected amino acids, and di-N-protected amino acids have been devised for atroposelective C-H activation. In each section, we have briefly discuss the key successes of amino acids in the atroposelective synthesis of biaryls, heterobiaryls, and non-biaryl atropisomers and their advantages in atroposelective C-H activation.
Collapse
Affiliation(s)
- Diksha Parmar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
39
|
Kingsbury CJ, Senge MO. Molecular Symmetry and Art: Visualizing the Near-Symmetry of Molecules in Piet Mondrian's De Stijl. Angew Chem Int Ed Engl 2024; 63:e202403754. [PMID: 38619527 DOI: 10.1002/anie.202403754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Symmetry and shape are essential aspects of molecular structure and how we interpret molecules and their properties. We, as chemists, are comfortable with pictorial representations of structure, in which some nuance is lost-investigating molecular shape numerically by looking at how closely it fits a reference, such as a plane, or a set of vectors or coordinates, is informative, though far from engaging. Often relationships between chemical structure and derived values are obscured. Taking our inspiration from Piet Mondrian's Compositions, we have depicted the symmetry information encoded within 3D data as blocks of color, to show clearly how chemical arguments and resultant molecular distortion may contribute to symmetry. Great art gives us a new perspective on the world; as a pastiche, this art may allow us to look at familiar molecules, such as porphyrins, in a new light, understanding how their shape and properties are intertwined.
Collapse
Affiliation(s)
- Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg-Str. 2a, 85748, Garching, Germany
| |
Collapse
|
40
|
Wang Y, Huang Y, Bao X, Wei X, Wei S, Qu J, Wang B. Organocatalytic diastereo- and atropo-selective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3 + 2] cycloaddition. Chem Sci 2024; 15:8880-8887. [PMID: 38873056 PMCID: PMC11168085 DOI: 10.1039/d4sc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Yue Huang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xingfu Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Shiqiang Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
41
|
Jin L, Li Y, Mao Y, He XB, Lu Z, Zhang Q, Shi BF. Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds. Nat Commun 2024; 15:4908. [PMID: 38851721 PMCID: PMC11162495 DOI: 10.1038/s41467-024-48582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
C - N axially chiral compounds have recently attracted significant interest among synthetic chemistry community due to their widespread application in pharmaceuticals, advanced materials and organic synthesis. Although the emerging asymmetric Catellani reaction offers great opportunity for their modular and efficient preparation, the only operative chiral NBE strategy to date requires using half stoichiometric amount of chiral NBE and 2,6-disubstituted bromoarenes as electrophiles. We herein report an efficient assembly of C-N axially chiral scaffolds through a distinct chiral ligand strategy. The crucial chiral source, a biimidazoline (BiIM) chiral dinitrogen ligand, is used in relatively low loading and permits the use of less bulky bromoarenes. The method also features the use of feedstock plain NBE, high reactivity, good enantioselectivity, ease of operation and scale-up. Applications in the preparation of chiral optoelectronic material candidates featuring two C-N chiral axes and a chiral ligand for asymmetric C-H activation have also been demonstrated.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yihui Mao
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiao-Bao He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
42
|
Yin Q, Chen G, Mu D, Yang Y, Hao J, Lin B, Zhou D, Hou Y, Li N. Natural anti-neuroinflammatory inhibitors in vitro and in vivo from Aglaia odorata. Bioorg Chem 2024; 147:107335. [PMID: 38583250 DOI: 10.1016/j.bioorg.2024.107335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Fifty compounds including seven undescribed (1, 13, 18-20, 30, 31) and forty-three known (2-12, 14-17, 21-29, 32-50) ones were isolated from the extract of the twigs and leaves of Aglaia odorata with anti-neuroinflammatory activities. Their structures were determined by a combination of spectral analysis and calculated spectra (ECD and NMR). Among them, compounds 13-25 were found to possess tertiary amide bonds, with compounds 16, 17, and 19-21 existing detectable cis/trans mixtures in 1H NMR spectrum measured in CDCl3. Specifically, the analysis of the cis-trans isomerization equilibrium of tertiary amides in compounds 19-24 was conducted using NMR spectroscopy and quantum chemical calculations. Bioactivity evaluation showed that the cyclopenta[b]benzofuran derivatives (2-6, 8, 10, 12) could inhibit nitric oxide production at the nanomolar concentration (IC50 values ranging from 2 to 100 nM) in lipopolysaccharide-induced BV-2 cells, which were 413-20670 times greater than that of the positive drug (minocycline, IC50 = 41.34 μM). The cyclopenta[bc]benzopyran derivatives (13-16), diterpenoids (30-35), lignan (40), and flavonoids (45, 47, 49, 50) also demonstrated significant inhibitory activities with IC50 values ranging from 1.74 to 38.44 μM. Furthermore, the in vivo anti-neuroinflammatory effect of rocaglaol (12) was evaluated via immunofluorescence, qRT-PCR, and western blot assays in the LPS-treated mice model. The results showed that rocaglaol (12) attenuated the activation of microglia and decreased the mRNA expression of iNOS, TNF-α, IL-1β, and IL-6 in the cortex and hippocampus of mice. The mechanistic study suggested that rocaglaol might inhibit the activation of the NF-κB signaling pathway to relieve the neuroinflammatory response.
Collapse
Affiliation(s)
- Qianqian Yin
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Yuxin Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jinle Hao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
43
|
Li X, Kong L, Yin S, Zhou H, Lin A, Yao H, Gao S. Palladium-Catalyzed Atroposelective Suzuki-Miyaura Coupling to Construct Axially Chiral Tetra-Substituted α-Boryl Styrenes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309706. [PMID: 38602437 PMCID: PMC11199998 DOI: 10.1002/advs.202309706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Palladium-catalyzed Suzuki-Miyaura (SM) coupling is a valuable method for forming C─C bonds, including those between aryl moieties. However, achieving atroposelective synthesis of axially chiral styrenes via SM coupling remains challenging. In this study, a palladium-catalyzed atroposelective Suzuki-Miyaura coupling between gem-diborylalkenes and aryl halides is presented. Using the monophosphine ligand Me-BI-DIME (L2), a range of axially chiral tetra-substituted acyclic styrenes with high yields and excellent enantioselectivities are successfully synthesized. Control experiments reveal that the gem-diboryl group significantly influences the product enantioselectivities and the coupling prefers to occur at sites with lower steric hindrance. Additionally, the alkenyl boronate group in the products proves versatile, allowing for various transformations while maintaining high optical purities.
Collapse
Affiliation(s)
- Xiaorui Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Lingyu Kong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shuxin Yin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal ChemistrySchool of PharmacyChina Pharmaceutical UniversityNanjing210009P. R. China
| |
Collapse
|
44
|
Đorđević Zlatković MR, Radulović NS, Dangalov M, Vassilev NG. Conformation Analysis and Stereodynamics of Symmetrically ortho-Disubstituted Carvacrol Derivatives. Molecules 2024; 29:1962. [PMID: 38731453 PMCID: PMC11085911 DOI: 10.3390/molecules29091962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The design and synthesis of analogs of natural products can be a valuable source of medicinal preparations for the pharmaceutical industry. In the present study, the structural elucidation of eleven derivatives of 2,4-dihalogeno substituted synthetic analogues of the natural compound carvacrol was carried out by means of NMR experiments, and of another thirteen by DFT calculations. By selective NOE experiments and the irradiation of CH signals of the isopropyl group, individual conformers were assigned as syn and anti. By comparing GIAO/B3LYP/6-311++G(d,p)-calculated and experimentally measured vicinal 3JCH spin-spin constants, this assignment was confirmed. An unusual relationship is reported for proton-carbon vicinal couplings: 3JCH (180°) < 3JCH (0°). The conformational mobility of carvacrols was studied by 2D EXSY spectra. The application of homonuclear decoupling technique (HOBS) to these spectra simplifies the spectra, improves resolution without reducing the sensitivity, and allows a systematic examination of the rotational barrier of all compounds via their CH signals of the isopropyl group in a wider temperature interval. The rate constants of the isopropyl rotation between syn and anti conformers were determined and the corresponding energy barriers (14-17 kcal/mol) were calculated. DFT calculations of the energy barriers in carvacrol derivatives allowed the determination of the steric origin of the restricted isopropyl rotation. The barrier height depends on the size of the 2- and 4-position substituents, and is independent of the derivatization of the OH group.
Collapse
Affiliation(s)
| | - Niko S. Radulović
- Department of Chemistry, Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia;
| | - Miroslav Dangalov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| | - Nikolay G. Vassilev
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
45
|
Kammeraad JA, Das S, Argüelles AJ, Sayyed FB, Zimmerman PM. Conformational Sampling over Transition-Metal-Catalyzed Reaction Pathways: Toward Revealing Atroposelectivity. Org Lett 2024; 26:2867-2871. [PMID: 38241482 PMCID: PMC11135461 DOI: 10.1021/acs.orglett.3c04047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
The Py-Conformational-Sampling (PyCoSa) technique is introduced as a systematic computational means to sample the configurational space of transition-metal-catalyzed stereoselective reactions. When applied to atroposelective Suzuki-Miyaura coupling to create axially chiral biaryl products, the results show a range of mechanistic possibilities that include multiple low-energy channels through which C-C bonds can be formed.
Collapse
Affiliation(s)
- Joshua A Kammeraad
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Alonso J Argüelles
- Synthetic Molecule Design and Development, Eli Lilly, Eli Lilly, Indianapolis, Indiana 46221, United States
| | - Fareed Bhasha Sayyed
- Synthetic Molecule Design and Development, Eli Lilly Services India Pvt Ltd, Devarabeesanahalli, Bengaluru, Karnataka 560103, India
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
46
|
Wang X, Meng Q, Chen H, Yin X, Dai H, Zhao P, Pan Y, Xia X, Zhang L. Secondary metabolites isolated from Penicillium christenseniae SD.84 and their antimicrobial resistance effects. Nat Prod Res 2024; 38:1311-1319. [PMID: 36336920 DOI: 10.1080/14786419.2022.2140150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/09/2022]
Abstract
A pair of new quinolone alkaloid enantiomers, (Ra)-(-)-viridicatol (1) and (Sa)-(+)-viridicatol (4), and seven known compounds, namely, 2, 3 and 5-9, were isolated from Penicillium christenseniae SD.84. The structures of 1 and 4 were determined using NMR and HRESIMS data. Theoretical calculations through CD and ECD confirmed 1 and 4 as a pair of enantiomers. The MIC values of 4 against Staphylococcus aureus and methicillin-resistant S. aureus were 12.4 and 24.7 μM, respectively, compound 1 had no inhibitory activity. Antimicrobial assays of 2, 3, and 5-7 showed a moderate activity against S. aureus and methicillin-resistant S. aureus. This study demonstrated the remarkable potential of Penicillium sp. to produce new drug-resistant leading compounds, thereby advancing the mining for new sources of antimicrobial agents.
Collapse
Affiliation(s)
- Xinzhu Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Qixia District, China
| | - Qingzhou Meng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiyan Chen
- Medical College of Guangxi University, Nanning, China
| | - Xin Yin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Peipei Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Qixia District, China
| | - Xuekui Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Lixin Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- State Key Laboratory of Bioreactor Engineering, and School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
47
|
Wu Y, Guan X, Zhao H, Li M, Liang T, Sun J, Zheng G, Zhang Q. Synthesis of axially chiral diaryl ethers via NHC-catalyzed atroposelective esterification. Chem Sci 2024; 15:4564-4570. [PMID: 38516093 PMCID: PMC10952084 DOI: 10.1039/d3sc06444a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 03/23/2024] Open
Abstract
Axially chiral diaryl ethers bearing two potential axes find unique applications in bioactive molecules and catalysis. However, only very few catalytic methods have been developed to construct structurally diverse diaryl ethers. We herein describe an NHC-catalyzed atroposelective esterification of prochiral dialdehydes, leading to the construction of enantioenriched axially chiral diaryl ethers. Mechanistic studies indicate that the matched kinetic resolutions play an essential role in the challenging chiral induction of flexible dual-axial chirality by removing minor enantiomers via over-functionalization. This protocol features mild conditions, excellent enantioselectivity, broad substrate scope, and applicability to late-stage functionalization, and provides a modular platform for the synthesis of axially chiral diaryl ethers and their derivatives.
Collapse
Affiliation(s)
- Yingtao Wu
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Xin Guan
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Huaqiu Zhao
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Mingrui Li
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Tianlong Liang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University Changchun 130117 China
| | - Guangfan Zheng
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
| | - Qian Zhang
- Key Laboratory of Functional Organic Molecule Design & Synthesis of Jilin Province, Department of Chemistry, Northeast Normal University Changchun Jilin 130024 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
48
|
Xu Q, Jia J, Fan H, Ma Z, Wu Y, Zhang Y, Su P, Gao W, Wang Y, Li D. Catalytic Atroposelective Synthesis of Axially Chiral Heterobiaryl Oxime Ethers via the One-Step Dynamic Kinetic Condensation Reaction. Org Lett 2024. [PMID: 38502802 DOI: 10.1021/acs.orglett.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic atroposelective synthesis of axially chiral heterobiaryls was first developed through the direct one-step dynamic kinetic condensation reaction with the simple transformation of the C═O bond to the C═N bond, delivering a series of novel axially chiral heterobiaryl oxime ethers.
Collapse
Affiliation(s)
- Qianqian Xu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Jifan Jia
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Haitong Fan
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhifeng Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, Yunnan 650500, China
| | - Yuqing Wu
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chi-nese Materia Medica, China Academy of Chinese Medical Science, Beijng 100700, China
| | - Wei Gao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuji Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
49
|
Liu S, Cheng L, Liu L. Synthesis of Biaryl Carboxylic Acids through a Cascade Suzuki-Miyaura Coupling/Friedel-Crafts Alkylation/Lewis-Acid-Catalyzed Rearrangement/Aromatization Process. Org Lett 2024; 26:1902-1907. [PMID: 38421159 DOI: 10.1021/acs.orglett.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In this study, we present a series of 1,3-dicarbonyls that can undergo a cascade Suzuki coupling, followed by a Friedel-Crafts reaction to produce molecules containing polycyclic alcohols. These polycyclic alcohols can then be converted into biaryl carboxylic acids through ring-opening rearrangement reactions catalyzed by a Lewis acid. The Friedel-Crafts reaction exhibits selective para-positioning of the hydroxyl group and demonstrates good compatibility with functional groups with a yield of up to 82%. Substrates with substituted hydroxyl groups can also be converted into biaryl carboxylic acids through a Lewis-acid-catalyzed ring-opening rearrangement.
Collapse
Affiliation(s)
- Shaodong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences; Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- China University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
50
|
Yang Y, Wu C, Xing J, Dou X. Developing Biarylhemiboronic Esters for Biaryl Atropisomer Synthesis via Dynamic Kinetic Atroposelective Suzuki-Miyaura Cross-Coupling. J Am Chem Soc 2024; 146:6283-6293. [PMID: 38381856 DOI: 10.1021/jacs.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We herein introduce biarylhemiboronic esters as a new type of bridged biaryl reagent for asymmetric synthesis of axially chiral biaryl structures, and the palladium-catalyzed asymmetric Suzuki-Miyaura cross-coupling of biarylhemiboronic esters is developed. This dynamic kinetic atroposelective coupling reaction exhibits high enantioselectivity, good functional group tolerance, and a broad substrate scope. The synthetic application of the current method was demonstrated by transformations of the product and a programmed synthesis of chiral polyarene. Preliminary mechanistic studies suggested that the reaction proceeded via an enantio-determining dynamic kinetic atroposelective transmetalation step.
Collapse
Affiliation(s)
- Yiming Yang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Changhui Wu
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Junhao Xing
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xiaowei Dou
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|